
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Economics School of Economics

2-2017

Random assignments on preference domains with
a tier structure
Peng LIU
Singapore Management University, peng.liu.2013@phdecons.smu.edu.sg

Huaxia ZENG
Singapore Management University, huaxia.zeng.2011@phdecons.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research
Part of the Economic Theory Commons

This Working Paper is brought to you for free and open access by the School of Economics at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Research Collection School Of Economics by an authorized administrator of Institutional Knowledge
at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIU, Peng and ZENG, Huaxia. Random assignments on preference domains with a tier structure. (2017). 1-41. Research Collection
School Of Economics.
Available at: https://ink.library.smu.edu.sg/soe_research/1860

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111756738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/344?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F1860&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Random Assignments on Preference Domains
with a Tier Structure∗

Peng Liu† and Huaxia Zeng‡

February 10, 2017

Abstract

We address a standard random assignment problem (Bogomolnaia and Moulin (2001))
and search for sd-strategy-proof, sd-efficient and sd-envy-free (or equal-treatment-of-equals)
rules. We introduce a class of restricted preference domains, restricted tier domains, and
show that a rule is sd-strategy-proof, sd-efficient and equal-treatment-of-equals (or sd-
efficient and sd-envy-free) if and only if it is the Probabilistic Serial rule. More importantly,
we prove that a restricted tier structure is necessary for the existence of an sd-strategy-
proof, sd-efficient and sd-envy-free (or equal-treatment-of-equals) rule, provided that the
domain is connected (Monjardet (2009)).

Keywords: Probabilistic serial rule; sd-strategy-proofness; sd-efficiency; sd-envy-freeness;
equal treatment of equals; restricted tier domains

JEL Classification: C78, D71.

1 Introduction

We consider the problem of allocating several indivisible objects to a group of agents, each
of whom consumes at most one object. Classical examples include assigning college seats to
applicants (Gale and Shapley (1962)), houses to residents (Shapley and Scarf (1974)), and jobs
to workers (Hylland and Zeckhauser (1979)).

From the design point of view, the primary target is to identify rules that implement efficient
allocations, and at the same time provide incentives for agents to truthfully reveal their prefer-
ences. Efficiency implies that no reallocation can be arranged to make all agents at least as well
as before, and some agent strictly better off. Incentives, summarized by strategy-proofness of
a rule, says that, in a revelation game associated to the rule, truth-telling is a weakly dominant
∗Special acknowledgment goes to Shurojit Chatterji, William Thomson and Jingyi Xue for their patient re-

viewing and detailed suggestions. We are also grateful to Shigehiro Serizawa, Yoichi Kasajima, Youngsub Chun,
Acelya Altuntas and participants of the 13th Meeting of the Society for Social Choice and Welfare at Lund Uni-
versity, and the 3rd Microeconomics Workshop at Nanjing Audit University.
†School of Economics, Singapore Management University, Singapore.
‡Lingnan (University) College, Sun Yat-sen University, Guangzhou, China.
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strategy for each agent. The literature has introduced various classes of efficient and strategy-
proof rules, e.g., serial dictatorship rules (Svensson (1999)), hierarchical exchange rules (Pápai
(2000)), restricted endowment inheritance rules (Ehlers et al. (2002)) and trading cycles rules
(Pycia and Ünver (2017)). However, none of these rules satisfies any fairness requirement. For
instance, two agents reporting the same strict preference always receive distinct objects and
hence are never treated equally. Consequently, one of them must envy the other. Instead of
allocating deterministic objects, the literature has resorted to random assignment rules that as-
sign to each agent a lottery on objects to restore ex ante fairness. Thus, agents representing the
same preference may receive the same lottery, and the random assignment rule satisfies a classic
fairness axiom: equal treatment of equals.

Since ordinal preferences on deterministic objects are collected to establish the random as-
signment, one needs to extend agents’ preferences over deterministic objects to assess lotteries.
A standard practice is to adopt the stochastic dominance extension.1 A lottery is viewed at least
as good as another if the former (first-order) stochastically dominates the latter according to the
ordinal preference over objects. Equivalently, under the von-Neumann-Morgenstern hypothesis,
a lottery (first-order) stochastically dominates another one if and only if it delivers an expected
utility weakly higher than the expected utility delivered by the other lottery for every cardinal
utility representing her ordinal preference on objects. By adopting the stochastic dominance
extension, ex ante efficiency and strategy-proofness are defined and referred to as sd-efficiency
and sd-strategy-proofness.2 Beyond equal treatment of equals, ex ante fairness in random rules
can be strengthened by sd-envy-freeness which requires that each agent always prefers her own
lottery to any other’s.

Two classic random assignment rules have been widely studied in the literature: the Ran-
dom Serial Dictatorship (or RSD) rule (Abdulkadiroğlu and Sönmez (1998)) and the Proba-
bilistic Serial (or PS) rule (Bogomolnaia and Moulin (2001)). Neither one of them resolves the
conflict of sd-strategy-proofness and sd-efficiency with sd-envy-freeness or equal treatment of
equals. Specifically, the PS rule is sd-efficient and sd-envy-free but fails sd-strategy-proofness,
while the RSD rule is sd-strategy-proof and treats equals equally but is sd-inefficient. More-
over, an impossibility theorem is established by Bogomolnaia and Moulin (2001): when the
numbers of objects and agents are identical and larger than four, and every preference in the
universal domain is admissible3, no random assignment rule satisfies sd-strategy-proofness, sd-
efficiency and equal treatment of equals. Recently, this impossibility has been established on
some restricted preference domains, e.g., single-peaked domains and single-dipped domains by
Kasajima (2013), Chang and Chun (2016) and Altuntaş (2016). These results raise a natural
question: Is there a reasonably restricted domain of preferences on which there exists an sd-
strategy-proof, sd-efficient and sd-envy-free or equal-treatment-of-equals rule? Moreover, if the
answer is affirmative, what is that rule?

This paper provides answers to the above questions by introducing a class of restricted

1For other preference extensions, please refer to Cho (2012) and Aziz et al. (2014).
2Henceforth, we add prefix “sd-” to emphasize that the corresponding axiom is established with respect to the

stochastic dominance extension.
3The universal domain is referred to as the collection of all strict preferences. Throughout this paper, we assume

that the preference is strict.
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domains of preferences: restricted tier domains, and characterizing all sd-strategy-proof, sd-
efficient and equal-treatment-of-equals rules. To construct a restricted tier domain, objects are
first partitioned into several tiers each of which contains one or two objects; and all preferences
are required to respect a common ranking of these tiers while the relative rankings of objects
within a tier may vary arbitrarily. Such a common ranking of 1-or-2-object tiers is referred to
as a restricted tier structure. As an example, consider a skyscraper with two apartments on
each floor. A restricted tier structure can be generated according to floors (for instance, from
the top down to the bottom), i.e., all agents prefer higher apartments to lower ones. Between
two apartments on the same floor, however, the preferences may be arbitrary across agents.
For another example, consider a road from the downtown to the suburb along which houses of
similar quality are located on both sides. A restricted tier structure can be generated according
to the distance away from the downtown.

Our first theorem shows that a rule on a restricted tier domain is sd-strategy-proof, sd-
efficient and equal-treatment-of-equals if and only if it is the PS rule. Recall that the PS rule is
manipulable on the universal domain since the lotteries prescribed by the PS rule are sensitive
to unilateral deviations. Intuitively, the restricted tier structure embedded in a restricted tier
domain reduces such sensitivity, and therefore restores appropriate incentive property on the
PS rule.4 At every preference profile of a restricted tier domain, according to the PS rule, all
agents first equally share each tier of object(s), and moreover, within a tier with two objects,
say a and b, each agent in the (weak) majority group (e.g., the group of agents with cardinality
l > n

2
who prefer a to b, provided that n is the total number of agents) consumes 1

l
of her

preferred object a and obtains 2
n
− 1

l
of her less preferred object b, while each agent in the

minority group (i.e., the complementary group of the (weak) majority group) merely consumes
2
n

of her preferred object b. Consequently, any individual preference misrepresentation does not
affect the manipulator’s share on each tier, and cannot increase the consumption of her sincerely
preferred object in each 2-object tier. Therefore, we restore sd-strategy-proofness of the PS rule
on a restricted tier domain. Moreover, in the verification of this characterization, we find that
sd-envy-freeness is endogenized in an sd-strategy-proof, sd-efficient and equal-treatment-of-
equals rule, and essentially sd-efficiency and sd-envy-freeness pin down all random assignments
induced by the PS rule. Therefore, the PS rule is also uniquely characterized by sd-efficiency
and sd-envy-freeness on a restricted tier domain.

As the restricted tier structure helps to restore sd-strategy-proofness of the PS rule, it pro-
vides one particular sufficient condition for the existence of an sd-strategy-proof, sd-efficient
and sd-envy-free or equal-treatment-of-equals rule. More importantly, we characterize restricted
tier domains for the existence of such an admissible rule. We restrict attention to the class of
connected domains which have been widely studied in the voting literature (e.g., Monjardet
(2009), Sato (2013), Chatterji et al. (2013) and Chatterji et al. (2016)), and recently have been
adopted for characterizing random assignment rules in Cho (2012) and Cho (2016a). A pair of
preferences is said to be adjacent if they are identical up to a switch of two consecutively ranked
objects. Given a domain, a undirected graph is constructed such that the vertex set is the prefer-

4Kojima and Manea (2010) restrict such sensitivity by increasing the copies of objects, and hence restore sd-
strategy-proofness of the PS rule.
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ences in the domain and an edge is drawn between two adjacent preferences. Correspondingly,
a domain is said to be connected if this graph is connected. Our second theorem proves that if
a connected domain admits an sd-strategy-proof, sd-efficient and sd-envy-free rule, it must be a
restricted tier domain. This axiomatically justifies the necessity of the restricted tier structure,
and clearly specifies a boundary between the impossibility and possibility for designing desir-
able strategy-proof random assignment rules. Furthermore, when we weaken the fairness axiom
from sd-envy-freeness to equal treatment of equals, the domain characterized is, surprisingly,
not enlarged at all (see Theorem 3).

Last, we extend our preference restriction to a generalized model where each agent has an
outside option, and the number of agents may differ from the number of objects. This domain
strictly nests the one investigated by Bogomolnaia and Moulin (2002). On this domain, we
analogously characterize the PS rule by either sd-strategy-proofness, sd-efficiency and equal
treatment of equals or sd-efficiency and sd-envy-freeness. Hence, our result strengthens the
characterization in Bogomolnaia and Moulin (2002).

The rest of the paper is organized as follows. The remainder of the Introduction explains
the detailed relation of this paper to the literature. Section 2 specifies the model and axioms.
Section 3 first introduces our preference restriction, characterizes the PS rule and shows the
necessity of our preference restriction. Section 4 discusses the generalized model with outside
options while Section 5 concludes. An appendix gathers the omitted proofs.

1.1 Relation to the literature

In the literature, there are two main strains on the axiomatic characterizations of the PS
rule. The first strain focuses on identifying axioms that characterize the PS rule on the universal
domain.5 For instance, Bogomolnaia and Heo (2012) proposes the axiom bounded invariance,
and characterizes the PS rule along with sd-efficiency and sd-envy-freeness.6 Recently, Bogo-
molnaia (2015) adopts a different preference extension: lexicographic preference extension to
establish a weaker incentive notion, and then shows that the PS rule is unique for sd-efficiency,
sd-envy-freeness and strategy-proof with respect to the lexicographic preference extension.7

Alternatively, Hashimoto et al. (2014) neglect the incentive issue in random assignment rules,

5We discuss here only the characterizations in the model where ordinal preferences are strict; each agent re-
ceives exactly one object; and each object has one unit. There are also interesting characterizations of the PS rule
in other environments, e.g., Heo and Yılmaz (2015) add indifferences in preferences; Heo (2014b) allows each
agents to consume more than one object; Liu and Pycia (2011a) increase the copies of each object to infinity; while
both infinitely many copies and multiple-unit consumption are allowed in Liu and Pycia (2011b).

6Bounded invariance requires that whenever an agent’s unilateral deviation does not involve her top k ranked
objects, the allocation of each of these k objects remains unchanged. Hashimoto et al. (2014) weaken bounded
invariance and characterize the PS rule accordingly.

7Fix a preference and two distinct lotteries over objects. We rearrange each lottery according to the preference
from the worst object up to the best object. One lottery is evaluated better than the other according to the lexico-
graphic preference extension, if we can find one object which has strictly higher probability in the former lottery
than that in the latter one while for any less preferred object, the probabilities in both lotteries are identical. The
lexicographic preference extension induce a linear order over all lotteries while stochastic-dominance preference
extension only produces a partial order over all lotteries.
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and characterize the PS rule with a new axiom ordinal fairness which in fact strengthens sd-
efficiency and sd-envy-freeness combined.8

In the second strain, restrictions are imposed on either preference domains or preference
profiles, and the PS rule is characterized by canonical axioms, i.e., the axioms studied in our
paper. Bogomolnaia and Moulin (2002) introduce a model with preference restrictions which
can be described by the following realistic application. Consider a public service center which
is able to serve only one agent in each time slot. All agents want to be served earlier and differ
only on their deadlines of services beyond which the services are perceived of no value. The
deadlines are private information of agents, and the planner wants to truthfully elicit them and
then schedule an efficient and fair service plan. Then, they characterize the PS rule by either
sd-strategy-proofness, sd-efficiency and equal treatment of equals or sd-efficiency and sd-envy-
freeness. As we mentioned above, the model studied in Bogomolnaia and Moulin (2002) is
nested in our generalized model with outside options, and the same characterization results are
established. As to the scheduling problem of the service center mentioned above, our general-
ization can be interpreted as follows. On each day, there is one service slot in the morning and
one in the afternoon. All agents want to be served on an earlier date. However, given a service
date, some agents may prefer to be served in the morning while some others the afternoon. In
other words, our generalization suggests the use of the PS rule in these scheduling problems
even when agents’ preferences endows a slight perturbation.

Alternatively, various restrictions are introduced on preference profiles, and the PS assign-
ments are characterized via sd-efficiency and sd-envy-freeness, e.g., the full support requirement
in Liu and Pycia (2011a), rich support on a partition in Heo (2014a) and rich preferences in
Cho (2016b).9

Our paper lies in the same vein of the second strain. We focus on the incentive property
of rules on restricted preference domains (provided that each agent’s domain is assumed to be
identical), and canonical characterizations of the PS rule on these domains. More importantly,
we axiomatically justify the necessity of our domain restriction for the existence of sd-strategy-
proof, sd-efficient and sd-envy-free or equal-treatment-of-equals rules. Our characterization re-
sult implies that the PS assignments are unique for sd-efficiency and sd-envy-freeness on profiles
of restricted tier preferences.

In the verification of our domain characterization theorems (Theorems 2 and 3), we intro-
8Ordinal fairness requires that whenever an agent is assigned an object a with strictly positive probability, the

probability of this agent receiving an object better than a is no greater than the probability of any other agent
getting an object better than a.

9The full support requires that in a preference profile, each preference in the universal domain is adopted by
some agent. In a preference profile which is rich support on a partition, we first observe that all agents preference
share a common ranking on a partition of objects where some block of the partition may contain more than 2
objects. Moreover, in each block of the partition, the full support requirement holds. In a rich preference profile,
for each agent j and each object a, we can find an agent k (either k = j or k 6= j) who prefers a the most and
moreover, after partitioning all objects into two blocks according to agent j’s preference: objects better than or
identical to a and objects worse than a, we note that agent k also prefers the first block to the second one. Cho
(2016b) studies economies with random assignments, and shows that if an economy is able to be decomposed into
several feasible sub-economies via his recursive decomposability condition, then the PS assignment is the unique
one satisfying sd-efficiency and sd-envy-freeness in the economy. For more detailed relation of our paper to Heo
(2014a) and Cho (2016b), please refer to Remark 4.

5



duce an important notion called the elevating property which is a sufficient domain condition for
the incompatibility of sd-strategy-proofness, sd-efficiency and sd-envy-freeness or equal treat-
ment of equals. To the best of our knowledge, the elevating property covers all existing literature
related to the study of impossibility on the existence of sd-strategy-proof, sd-efficient and sd-
envy-free or equal-treatment-of-equals rules (e.g., Bogomolnaia and Moulin (2001), Kasajima
(2013), Chang and Chun (2016) and Altuntaş (2016)). More importantly, in contrast to these lit-
erature which proposes some domain conditions and establishes negative results, we formulate
the elevating property in a more general sense so that the avoidance of the elevating property
becomes a critical and informative condition which is then adopted to characterize the restricted
tier domains.

2 The model

Let A ≡ {a, b, . . . } be a finite set of objects and I ≡ {1, 2, . . . , n}, n > 4, a finite set of
agents. As a benchmark, we assume |A| = |I| = n. Each agent i is equipped with a complete,
transitive and antisymmetric binary relation Pi over A, i.e., a linear order. Let P denote the set
consisting of all strict preferences over A. The set of admissible preferences is a set D ⊆ P,
referred to as the preference domain. Thus, P is referred to as the universal domain. Given
Pi ∈ D and a ∈ A, let rk(Pi), k = 1, . . . , n, denote the kth ranked object according to Pi, and
B(Pi, a) = {x ∈ A|x Pi a} denote the (strict) upper contour set of a in Pi. A preference
profile P ≡ (P1, . . . , Pn) ≡ (Pi, P−i) ∈ Dn is an n-tuple of admissible preferences.

Let ∆(A) denote the set of lotteries, or probability distributions, over A. Given λ ∈ ∆(A),
λa denotes the probability assigned to object a. A (random) assignment is a bi-stochastic
matrix L ≡ [Lia]i∈I,a∈A, namely a non-negative square matrix whose elements in each row
and each column sum to unity, i.e., Lia > 0 for all i ∈ I and a ∈ A,

∑
a∈A Lia = 1 for all

i ∈ I , and
∑

i∈I Lia = 1 for all a ∈ A. Evidently, in a bi-stochastic matrix L, each row is
a lottery, i.e., Li ∈ ∆(A) for all i ∈ I . Let L denote the set of all bi-stochastic matrices.
Agents assess lotteries according to (first-order) stochastic dominance. Given Pi ∈ D and
lotteries λ, λ′ ∈ ∆(A), λ stochastically dominates λ′ according to Pi, denoted λ P sd

i λ′,
if
∑k

l=1 λrl(Pi) >
∑k

l=1 λ
′
rl(Pi)

for all 1 6 k 6 n. Analogously, given P ∈ Dn, we say an
assignment L stochastically dominates L′ according to P , denoted L P sd L′, if Li P sd

i L′i for
all i ∈ I .

A rule is a mapping ϕ : Dn → L. Given P ∈ Dn, ϕia(P ) denotes the probability of agent i
receiving object a, and thus ϕi(P ) denotes the lottery assigned to agent i.

Given P ∈ Dn, an assignment L is sd-efficient if it is not stochastically dominated by any
another assignment L′, i.e., [L′ P sd L] ⇒ [L′ = L]. Accordingly, a rule ϕ : Dn → L is
sd-efficient if the assignment ϕ(P ) is sd-efficient for all P ∈ Dn.

Next, a rule is sd-strategy-proof if for every agent, her lottery under truthtelling always
stochastically dominates her lottery induced by any misrepresentation, according to her true
preference. Formally, a rule ϕ : Dn → L is sd-strategy-proof if for all i ∈ I , Pi, P ′i ∈ D, and
P−i ∈ Dn−1, ϕi(Pi, P−i) P sd

i ϕi(P
′
i , P−i).

Last, we require that every agent weakly prefer her own lottery to any other’s. Given P ∈
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Dn, an assignment L is sd-envy-free if Li P sd
i Lj for all i, j ∈ I . Accordingly, a rule ϕ :

Dn → L is sd-envy-free if ϕ(P ) is sd-envy-free for all P ∈ Dn. As a weaker notion of
fairness, we say that an assignment L ∈ L satisfies equal treatment of equals if for all i, j ∈ I ,
[Pi = Pj] ⇒ [Li = Lj]. Similarly, a rule ϕ : Dn → L satisfies equal treatment of equals
if ϕ(P ) satisfies equal treatment of equals for all P ∈ Dn. Evidently, sd-envy-freeness implies
equal treatment of equals.

2.1 Random serial dictatorship rule and probabilistic serial rule

There are essentially two random assignment rules in the literature: the Random Serial
Dictatorship (or RSD) rule (Abdulkadiroğlu and Sönmez (1998)) and the Probabilistic Serial
(or PS) rule (Bogomolnaia and Moulin (2001)). In deterministic assignment models, serial
dictatorship rules are known to be (ex-post) strategy-proof and efficient (Svensson (1999)).
As a uniform randomization among all serial dictatorship rules, the RSD rule treats equals
equally and inherits ex ante incentive property, i.e., sd-strategy-proofness from ex-post strategy-
proofness of serial dictatorship rules. However, the RSD rule fails sd-efficiency, for which
Abdulkadiroğlu and Sönmez (2003) and Kesten (2009) provide extensive explanations.

The PS rule is initially introduced by Crès and Moulin (2001) to deal with the scheduling
problem and later introduced to the standard random assignment problem by Bogomolnaia and
Moulin (2001). The PS rule is fundamentally different from the RSD rule as it specifies directly
a random assignment for each preference profile, rather than using a mixture of some deter-
ministic assignments to determine the random assignment. The PS rule treats the objects as
infinitely divisible and agents consume the objects as time flows. When time starts, each agent
consumes her favorite object at the uniform speed, until some object(s) are exhausted. Then
agents reformulate their preferences by removing the exhausted object(s), and resume consum-
ing their favorite objects in the remaining ones at the uniform speed. Such procedure proceeds
until all the objects are exhausted. Finally, the share of an object consumed by an agent is in-
terpreted as the probability she receives this object. The axiomatic performance of the PS rule
is very different from the RSD rule. It is sd-efficient and sd-envy-free, since at each time point
each agent is consuming her favorite available object. However, the major drawback of the PS
rule is that it is manipulable, i.e., not sd-strategy-proof. This happens because the consumption
procedure is sensitive to unilateral deviations, which will be elaborated by Example 1 in the
next section.

From the above discussion of the RSD rule and the PS rule, there seems to be a fundamental
conflict between sd-strategy-proofness and sd-efficiency given fairness present. Such conflict is
formally established in the following impossibility result.

Proposition 1 (Bogomolnaia and Moulin (2001)) There exists no sd-strategy-proof, sd-efficient
and equal-treatment-of-equals rule on the universal domain.

7



3 Results

As shown in Proposition 1, on the domain of unrestricted preferences, sd-strategy-proofness,
sd-efficiency and equal-treatment-of-equals (or sd-envy-freeness) are incompatible. In this pa-
per, we ask what appropriate preference restriction is sufficient for the existence of an sd-
strategy-proof, sd-efficient and equal-treatment-of-equals (or sd-envy-free) rule. As a simpler
starting point, we investigate on what restricted preference domains, we can restore sd-strategy-
proofness of the PS rule. We start our investigation from a heuristic example.

Example 1 Let A = {a, b, c, d}. Let P ≡ (P−4, P4) and P ′ ≡ (P−4, P
′
4) be two preference

profiles below, which specify an profitable manipulation of agent 4. According to the PS rule,
the corresponding consumption procedures are depicted in Figure 1.

P =

 P1 : a � c � b � d
P2 : a � b � c � d
P3 : b � a � c � d
P4 : b � a � c � d

 P ′ =

 P1 : a � c � b � d
P2 : a � b � c � d
P3 : b � a � c � d
P ′4 : a � b � c � d



0 1
2

3
4 1

1

2

3

4

a c d
a c d

b c d

b c d

0 1
3

5
9

3
4 1

1

2

3

4

a c d
a b c d

b c d
a b c d

Figure 1: Consumption procedures under P and P ′ in the PS rule

Observe that ϕ4a(P ) + ϕ4b(P ) = 1
2
< 5

9
= ϕ4a(P

′) + ϕ4b(P
′). Thus, agent 4 can

profitably manipulate at profile P via P ′4. This indicates that the PS rule is vulnerable to small
manipulations like P4 and P ′4 which differ on the relative rankings of exactly one pair of objects.
Note that in profile P , each of a and b is most preferred by two agents. Therefore, as shown in
Figure 1, objects a and b are exhausted simultaneously at time 1

2
, and all agents turn to objects

in {c, d} at the same time. However, in profile P ′, a is top ranked in the preferences of agents 1,
2 and 4, and therefore is exhausted in a shorter time: 1

3
. This indicates that agent 3, who prefers

b the most, only consumes 1
3

of b while all others exhaust a. Furthermore, since c is the second
best in agent 1’s preference while a and b occupy the top two positions in all others’ preferences,
after time 1

3
, agent 1 starts to consume c while agents 2, 3 and 4 are going to equally share the

rest of object b. Consequently, agent 4 obtains 2
9

of b, and therefore has 5
9

of a and b combined
which is more desirable than that under profile P .

This manipulation is made possible by the following two facts. First, according to the PS
rule, agents are myopic and greedy: every agent consumes her favorite object among what are
not exhausted at every time point. Second, more specifically, agent 1’s preference differs to the
others in both profiles P and P ′ in the sense that c is ranked in between a and b in P1 while all
others rank both a and b above c.

8



Observe that in preferences P1, P2 and P3, object b occupies three distinct ranking positions,
and more specifically, is elevated successively from the third position in P1 to the second in P2,
and to the top in P3. Now, we impose an additional restriction on all agents’ preferences to
avoid such 3-position elevating phenomenon: both a and b occupy the top two positions, and
c and d obtain the other two positions. Thus, preference P1 is no longer admissible, and more
importantly, all preferences preserve a common tier structure: both a and b are ranked above
c and d. Accordingly, let P̄ ≡ (P̄1, P2, P3, P4) and P̄ ′ ≡ (P̄1, P2, P3, P

′
4) where for instance,

P̄1 = P2. The consumption procedure at P̄ (specified in Figure 2 below) remains identical to
that in Figure 1, while the consumption procedure at P̄ ′ becomes significantly simpler than that
at profile P ′, and is depicted in Figure 2 below.

P̄ =

 P̄1 : a � b � c � d
P2 : a � b � c � d
P3 : b � a � c � d
P4 : b � a � c � d

 P̄ ′ =

 P̄1 : a � b � c � d
P2 : a � b � c � d
P3 : b � a � c � d
P ′4 : a � b � c � d
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Figure 2: Consumption procedures under P̄ and P̄ ′ in the PS rule

Now, the manipulation of agent 4 at P̄ via P ′4 is non-profitable, i.e., the lottery assigned to
agent 4 at P̄ first-order stochastically dominates that at P̄ ′ according to her sincere preference
P4. First, it is evident that agent 4 obtains identical shares of objects c and d across profiles P̄
and P̄ ′. Second, more importantly, due to the common tier structure, the combined share of a
and b assigned to agent 4 at P̄ ′ is fixed to 1

2
which is identical to that at profile P̄ . Last, the

switch of a and b in P̄1 and P̄ ′1 makes agent 4 worse off as she consume less of b at P̄ ′ than that
at P̄ , i.e., agent 4 gets 1

6
of b at P̄ ′, and 1

2
at P̄ . �

3.1 Restricted tier domains: A possibility result

We now formally introduce the preference restriction suggested by Example 1: all object
are partitioned into tiers; each tier consists of one or two objects; and all admissible preferences
respect a common ranking of tiers.

Let P ≡ (Ak)
T
k=1 denote a tier structure, i.e., (i) tier Ak ⊆ A is not empty, k = 1, . . . , T ,

(ii) Ak ∩ Ak′ = ∅ for all k 6= k′, (iii) ∪Tk=1Ak = A. According to an arbitrary tier structure,
we have a tier domain where the relative rankings over tiers in every preference are identical.
Moreover, we impose an additional restriction: every tier contains at most two objects, and then
construct a restricted tier domain.

9



Definition 1 A domain D is a restricted tier domain if there exists a restricted tier structure
P ≡ (Ak)

T
k=1 such that

1. For all 1 6 k 6 T , |Ak| 6 2 ;

2. Given Pi ∈ D and a, b ∈ A, [a ∈ Ak, b ∈ Ak′ and k < k′]⇒ [a Pi b].

Let D(P) denote the restricted tier domain containing all admissible preferences.

Remark 1 Given a tier structure where some tier contains more than two objects, let D be the
tier domain containing all admissible preferences. Then, there are three preferences analogous
to P1, P2 and P3 in Example 1, and consequently, by a similar argument in Example 1, the PS
rule fails sd-strategy-proofness.

Remark 2 In an auction model, Bikhchandani et al. (2006) study a particular class of tiered do-
mains, named “order-based domains” where all (quasi linear) cardinal preferences they examine
induce an identical ordinal preference on objects at each payment level. More recently, tiered
domains are examined in two-sided matching (Akahoshi (2014) and Kandori et al. (2010)),
school choice (Kesten (2010) and Kesten and Kurino (2013)), and spectrum license auctions
(Serizawa and Zhou (2016)).

Remark 3 Let P ≡ (Ak)
T
k=1 be a tier structure with |Ak| = 2 for all 1 6 k 6 T . The

cardinality of the restricted tier domain D(P) is 2T .

On a restricted tier domain, we can escape the impossibility in Proposition 1 by restoring
sd-strategy-proofness of the PS rule. Moreover, Theorem 1 below shows that the PS rule is the
unique one on a restricted tier domain satisfying sd-strategy-proofness, sd-efficiency and equal
treatment of equals.

Theorem 1 On a restricted tier domain, a rule is sd-strategy-proof, sd-efficient and equal-
treatment-of-equals if and only if it is the PS rule.

Proof : Given P ≡ (Ak)
T
k=1, let D ⊆ D(P) be a restricted tier domain.

Due to the restricted tier structure embedded in D, at each preference profile, we can clearly
specify the random assignment induced by the PS rule as shown in Fact 1 below.

Fact 1 Given P ∈ Dn, the random assignment specified by the PS rule, L ≡ PS(P ), is the one
that satisfies the following two conditions: for each 1 6 k 6 T ,

1. LiAk ≡
∑

x∈Ak Lix = |Ak|
n

for all i ∈ I .

2. Assume Ak = {a, b}. Let Ik ≡ {i ∈ I|a Pi b} and l ≡ |Ik|.

(i) If n
2
6 l 6 n, then

– Lia = 1
l

and Lib = 2
n
− 1

l
for all i ∈ Ik;

– Lja = 0 and Ljb = 2
n

for all j ∈ I\Ik.

10



(ii) If 0 6 l < n
2
, then

– Lia = 2
n

and Lib = 0 for all i ∈ Ik;

– Lja = 2
n
− 1

n−l and Ljb = 1
n−l for all j ∈ I\Ik.

The verification of Fact 1 is routine, and we hence omit it. We first intuitively explain two
conditions in Fact 1. In the assignment L , all agents first equally share every tier. Next, in
a particular tier with two objects, say Ak = {a, b}, the set of agents who prefer a to b, i.e.,
Ik ≡ {i ∈ I|a Pi b}, is either a (weak) majority, i.e., n

2
6 |Ik| 6 n, or a (strict) minority, i.e.,

0 6 |Ik| < n
2
. If Ik is a (weak) majority, then all agents in Ik share a equally and exclusively,

and hence each receives the share 1
|Ik|

of a; I\Ik only consume b, and each of them receives
the share 2

n
of b. Moreover, all agents in Ik split what remains of b, and hence each obtains the

share 1−(n−|Ik|)× 2
n

|Ik|
= 2

n
− 1
|Ik|

of b. If Ik is a (strict) minority, then I\Ik is a (strict) majority, i.e.,
n
2
< |I\Ik| 6 n, and objects a and b are shared in an opposite symmetric way.

It is evident that the PS rule is always sd-efficient and equal-treatment-of-equals. We verify
that the PS rule is sd-strategy-proof on D. Given i ∈ I , Pi, P ′i ∈ D and P−i ∈ Dn−1, let L and L′

be two random assignments induced by the PS rule at profile P ≡ (Pi, P−i) and P ′ ≡ (P ′i , P−i)

respectively. We show Li P
sd
i L′i.

According to condition 1 above, we know that for every 1 6 k 6 T ,
∑k

t=1 LiAt =∑k
t=1 L

′
iAt

. Therefore, to complete the verification, it suffices to show that given 1 6 k 6 T ,
assuming Ak = {a, b} and a Pi b, we have Lia > L′ia. If a P ′i b, condition 2 above implies
Lia = L′ia. Next, assume b P ′i a. Let l be the number of agents who prefer a to b at P , i.e.,
l ≡ |{j ∈ I|a Pj b}|. Thus, 1 6 l 6 n and the number of agents who prefer a to b at P ′ must
be l − 1. If n

2
< l 6 n, condition 2(i) implies Lia = 1

l
> 0 = L′ia. If 1 6 l 6 n

2
, condition

2(i) (if l = n
2
) or condition 2(ii) (if 1 6 l < n

2
) implies Lia = 2

n
. Moreover, since L′ia 6

2
n

by condition 1, we have Lia > L′ia. Therefore, Lia > L′ia as required and hence Li P sd
i L′i. In

conclusion, the PS rule is sd-strategy-proof on domain D. This completes the verification of the
sufficiency part of Theorem 1.

Henceforth, we prove the necessity part of Theorem 1. Let ϕ : Dn → L a rule which
satisfies all three axioms. Fix P ≡ (P1, . . . , Pn) ∈ Dn and L ≡ ϕ(P ) for the verifications
below. Specifically, we show that L satisfies conditions 1 and 2 of Fact 1.

Lemma 1 For all k ∈ {1, . . . , T} and i ∈ I , LiAk = |Ak|
n

.

Proof : Let P̄ ∈ Dn be such that P̄i = P̄j for all i, j ∈ I . Then equal treatment of equals
implies ϕia(P̄ ) = 1

n
for all i ∈ I and all a ∈ A. Hence, ϕiAk(P̄ ) = |Ak|

n
for all i ∈ I

and all k ∈ {1, . . . , T}. According to P and P̄ , we can separate all agents into two groups:
Î = {i ∈ I|Pi 6= P̄i} and I\Î = {i ∈ I|Pi = P̄i}. Given S ⊆ Î , let P̄ S ∈ Dn be such that
P̄ S
i = Pi for all i ∈ S and P̄ S

i = P̄i for all i /∈ S. Thus, P̄ S = (PS, P̄−S). Evidently, P̄ ∅ = P̄

and P̄ Î = P .
Now, given i ∈ Î , sd-strategy-proofness implies

∑k
t=1 ϕiAt(P̄

{i}) =
∑k

t=1 ϕiAt(P̄
∅) for all

k ∈ {1, . . . , T}, which in turn implies ϕiAk(P̄
{i}) = |Ak|

n
for all k ∈ {1, . . . , T}. Furthermore,

equal treatment of equals implies ϕjAk(P̄
{i}) = |Ak|

n
for all j 6= i and all k ∈ {1, . . . , T}.
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Therefore, given i ∈ Î , ϕjAk(P̄
{i}) = |Ak|

n
for all j ∈ I and all k ∈ {1, . . . , T}. We continue

with an induction argument on S ⊆ Î .

Induction Hypothesis: Given 1 < l 6 |Î|, for all S ⊆ Î with 1 6 |S| 6 l − 1, we have
ϕiAk(P̄

S) = |Ak|
n

for all i ∈ I and k ∈ {1, . . . , T}.

Let S ⊆ Î with |S| = l. We will show ϕiAk(P̄
S) = |Ak|

n
for all i ∈ I and all k ∈ {1, . . . , T}.

Given j ∈ S, by sd-strategy-proofness and induction hypothesis,
∑k

t=1 ϕjAt(P̄
S) =∑k

t=1 ϕjAt(P̄
S\{j}) =

∑k
t=1

|At|
n

for all k ∈ {1, . . . , T}, which in turns implies ϕjAk(P̄
S) = |Ak|

n

for all k ∈ {1, . . . , T}. Furthermore, equal treatment of equals implies ϕiAk(P̄
S) = |Ak|

n
for all

i /∈ S and all k ∈ {1, . . . , T}. Therefore, ϕiAk(P̄
S) = |Ak|

n
for all i ∈ I and all k ∈ {1, . . . , T}.

This completes the verification of induction hypothesis. Therefore, LiAk = |Ak|
n

for all i ∈ I

and k ∈ {1, . . . , T}. �

Thus, random assignment L satisfies condition 1 of Fact 1.

Lemma 2 Given 1 6 k 6 T , assume Ak = {a, b} and let Ik = {i ∈ I|a Pi b}. The following
statements hold.

(i) For all i, j ∈ Ik, Lia = Lja.

(ii) For all i ∈ Ik and j ∈ I\Ik, Lia > Lja and Lib 6 Ljb.

Proof : Assume |Ik| = l. If l = 0, statements (i) and (ii) are satisfied vacuously. Henceforth,
assume 1 6 l 6 n. We consider three cases.

Case 1: l = 1.

Statement (i) is satisfied vacuously. Assume Ik = {i}. By sd-efficiency, either Lib = 0, or
Lja = 0 for all j 6= i. Suppose Lib > 0. Then, Lja = 0 for all j 6= i. Consequently, Lia = 1 and
Lia +Lib > 1. Contradiction! Therefore, Lib = 0. Then, Lemma 1 implies Lia = 2

n
. Moreover,

since Lja + Ljb = 2
n

for all j ∈ I\Ik, it is evident that Lia > Lja and Lib 6 Ljb for all i ∈ Ik
and all j ∈ I\Ik. This completes the verification of statement (ii) in Case 1.

Case 2: l = n.

Statement (ii) is satisfied vacuously. We focus on statement (i). Let P̄ ∈ Dn be such that
P̄i = P̄j for all i, j ∈ I and a P̄i b for all i ∈ I . Thus, according to P and P̄ , we can separate
all agents into two groups: Î = {i ∈ I|Pi 6= P̄i} and I\Î = {i ∈ I|Pi = P̄i}. Given S ⊆ Î , let
P̄ S ∈ Dn be such that P̄ S

i = P̄i for all i ∈ Î\S and P̄ S
i = Pi for all i /∈ Î\S. Thus, P̄ ∅ = P̄

and P̄ Î = P . First, equal treatment of equals implies ϕia(P̄ ) = 1
n

for all i ∈ I = Ik. Next, we
provide an induction argument on S.

Induction Hypothesis: Given 0 < s 6 |Î|, for all S ⊆ Î with 0 6 |S| < s and all i ∈ I , we
have ϕia(P̄ S) = 1

n
.

Given S ⊆ Î with |S| = s, we show ϕia(P̄
S) = 1

n
for all i ∈ I . Given i ∈ S, sd-

strategy-proofness and induction hypothesis imply ϕia(P̄ S) = ϕia(Pi, P̄
S
−i) = ϕia(P̄i, P̄

S
−i) =

ϕia(P̄
S\{i}) = 1

n
. Furthermore, in P̄ S , for all j ∈ I\S, equal treatment of equals implies
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ϕja(P̄
S) =

1−
∑
i∈S ϕia(P̄S)

|I\S| =
1−s× 1

n

n−s = 1
n

. Therefore, ϕia(P̄ S) = 1
n

for all i ∈ I . This
completes the verification of induction hypothesis. Therefore, Lia = Lja for all i, j ∈ Ik = I .
This completes the verification of statement (i) in Case 2.

Case 3: 1 < l < n.

First, sd-efficiency implies either Lib = 0 for all i ∈ Ik, or Lja = 0 for all j ∈ I\Ik. If
Lib = 0 for all i ∈ Ik, then Lemma 1 implies Lia = 2

n
for all i ∈ Ik. Thus, Lia = Lja for all

i, j ∈ Ik. Moreover, since Lja + Ljb = 2
n

for all j ∈ I\Ik, it is evident that Lia > Lja and
Lib 6 Ljb for all i ∈ Ik and j ∈ I\Ik.

Next, assume Lja = 0 for all j ∈ I\Ik, and Lib > 0 for some i ∈ Ik. By Lemma 1, Ljb = 2
n

for all j ∈ I\Ik. Moreover, since Lia + Lib = 2
n

for all i ∈ Ik, it is evident that Lia > Lja and
Lib 6 Ljb for all i ∈ Ik and j ∈ I\Ik. Hence, statement (ii) is verified.

Last, we verify statement (i). We first claim l > n
2
. Suppose not, i.e., l 6 n

2
and hence

|I\Ik| = n− l > n
2
. Since Lja = 0 for all j ∈ I\Ik, Lemma 1 implies Ljb = 2

n
for all j ∈ I\Ik.

Consequently,
∑

i∈I Lib =
∑

i∈Ik Lib+
∑

j∈I\Ik Ljb =
∑

i∈Ik Lib+(n−l) 2
n
> 1. Contradiction!

Therefore, l > n
2
.

Let P̄ ≡ (P̄Ik , P−Ik) ∈ Dn be such that P̄i = P̄j for all i, j ∈ Ik, and a P̄i b for all i ∈ Ik.
We divide Ik into two groups: Î = {i ∈ Ik|Pi 6= P̄i} and Ik\Î = {i ∈ Ik|Pi = P̄i}. Given
S ⊆ Î , let P̄ S ∈ Dn be such that P̄ S

i = P̄i for all i ∈ Î\S, and P̄ S
i = Pi for all i /∈ Î\S.

Evidently, P̄ ∅ = P̄ and P̄ Î = P .
Since l > n

2
, sd-efficiency impliesϕja(P̄ ∅) = 0 for all j ∈ I\Ik, and hence

∑
i∈Ik ϕia(P̄

∅) = 1.
Moreover, since equal treatment of equals implies ϕia(P̄ ∅) = ϕja(P̄

∅) for all i, j ∈ Ik, it is true
that ϕia(P̄ ∅) = 1

l
for all i ∈ Ik. Next, we provide an induction argument on S.

Induction Hypothesis: Given 0 < s 6 |Î|, for all S ⊆ Î with 0 6 |S| < s, ϕia(P̄ S) = 1
l

for all
i ∈ Ik.

Let S ⊆ Ik with |S| = s. We show ϕia(P̄
S) = 1

l
for all i ∈ Ik. Since l > n

2
, sd-

efficiency implies ϕja(P̄ S) = 0 for all j ∈ I\Ik. Thus,
∑

i∈Ik ϕia(P̄
S) = 1. Given i ∈ S, sd-

strategy-proofness and induction hypothesis imply ϕia(P̄ S) = ϕia(Pi, P̄
S
−i) = ϕia(P̄i, P̄

S
−i) =

ϕia(P̄
S\{i}) = 1

l
. Furthermore, in P̄ S , for all j ∈ Ik\S, equal treatment of equals implies

ϕja(P̄
S) =

1−
∑
i∈S ϕia(P̄S)

l−s =
1−s× 1

l

l−s = 1
l
. Therefore, ϕia(P̄ S) = 1

l
for all i ∈ Ik. This

completes the verification of induction hypothesis. Therefore, Lia = 1
l

for all i ∈ Ik, and hence,
Lia = Lja for all i, j ∈ Ik. This completes the verification of statement (i) in Case 3, and hence
the lemma. �

Lemma 3 Random assignment L satisfies sd-envy-freeness.

Proof : Given a ∈ A, assume a ∈ Ak. Given i ∈ I , assume a = rl(Pi). If Ak = {a}, or |Ak| =
2 and a = min(Pi, Ak), then Lemma 1 implies

∑l
t=1 Lirt(Pi) =

∑k
t=1

|Ak|
n

=
∑l

t=1 Ljrt(Pi) for
all j 6= i. If |Ak| = 2 and a = max(Pi, Ak), then Lemmas 1 and 2 imply

∑l
t=1 Lirt(Pi) =∑k−1

t=1
|Ak|
n

+ Lia >
∑k−1

t=1
|Ak|
n

+ Lja =
∑l

t=1 Ljrt(Pi) for all j 6= i. Therefore, Li P sd
i Lj for

all j 6= i. Thus, ϕ satisfies sd-envy-freeness. �
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Now, given 1 6 k 6 T , assume Ak = {a, b}, and let Ik ≡ {i ∈ I|a Pi b} and l ≡ |Ik|. By
sd-envy-freeness, we first know that for each pair i, j ∈ Ik, or each pair i, j ∈ I\Ik, Lia = Lja
and Lib = Ljb. Next, by sd-efficiency and feasibility, we know that

(i) If n
2
6 l 6 n, then

– Lia = 1
l

and Lib = 2
n
− 1

l
for all i ∈ Ik;

– Lja = 0 and Ljb = 2
n

for all j ∈ I\Ik.

(ii) If 0 6 l < n
2
, then

– Lia = 2
n

and Lib = 0 for all i ∈ Ik;

– Lja = 2
n
− 1

n−l and Ljb = 1
n−l for all j ∈ I\Ik.

Thus, random assignment L satisfies condition 2 of Fact 1. Therefore, L is induced by the PS
rule. This completes the verification of the necessity part of Theorem 1. �

According to the verification of Theorem 1, on a restricted tier domain, we also characterize
the PS rule under sd-efficiency and sd-envy-freeness.

Corollary 1 On a restricted tier domain, a rule is sd-efficient and sd-envy-free if and only if it
is the PS rule.

Proof : The sufficiency part holds evidently. We focus on the necessity part. Let ϕ : Dn → L
be an sd-efficient and sd-envy-free rule. Fixing P ≡ (P1, . . . , Pn) ∈ Dn, let L ≡ ϕ(P ). Fix
1 6 k 6 T . First, sd-envy-freeness implies that LiAk = LjAk for all i, j ∈ I . Hence, feasibility
implies that LiAk = |Ak|

n
for all i ∈ I . Thus, L satisfies condition 1 of Fact 1. Furthermore, in

the proof of the necessity part of Theorem 1, note that the verification of Lemma 3 only relies
on the application of sd-efficiency and sd-envy-freeness. Hence, L must also satisfy condition 2
of Fact 1. Therefore, ϕ is the PS rule. �

Remark 4 Since every preference profile on a restricted tier domain has rich support on a par-
tition (Heo (2014a)) and is recursively decomposable in the sense of Cho (2016b), by invoking
either Theorem 1 in Heo (2014a) or Theorem 3 in Cho (2016b), we can also establish Corol-
lary 1. We use the following examples to illustrate. Let A ≡ {a, b, c, d}, P ≡ (A1, A2) where
A1 ≡ {a, b} and A2 ≡ {c, d}), and I ≡ {1, 2, 3, 4}. Consider two preference profiles on the
restricted tier domain D(P) specified below.

P =

 P1 : a � b � c � d
P2 : a � b � c � d
P3 : b � a � c � d
P4 : b � a � c � d

 P̄ =

 P̄1 : a � b � c � d
P̄2 : a � b � c � d
P̄3 : b � a � d � c
P̄4 : a � b � d � c


According to profile P , in the tier A2, since every agent prefers c to d, we refine the tier

structure P to P ′ ≡ (A1, A
1
2, A

2
2) ≡ ({a, b}, {c}, {d}). Thus, profile P has rich support on par-

tition P ′, and hence the PS rule is the unique one satisfying sd-efficiency and sd-envy-freeness.
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According to profile P̄ , we first partition the objects into A1 ≡ {a, b} and A2 ≡ {c, d} and
construct a type 1 decomposition in Cho (2016b). Then, sd-efficiency and sd-envy-freeness
requires that each agent should consume 1

2
of {a, b} and 1

2
of {c, d}. Next, we partition

A2 ≡ {c, d} into {c} and {d} and agents into {1, 2} and {3, 4}. Thus, we construct a type
2 decomposition in Cho (2016b). Then, by sd-efficiency and sd-envy-freeness, agents 1 and 2
both consume 1

2
of c; and agents 3 and 4 both consume 1

2
of d. Last, we “partition” {a, b} into

{a, 1
2

of b}, and {1
2

of b}, and partition agents into {1, 2, 4} and {3}. In this way, we construct
a type 3 decomposition in Cho (2016b). Then, sd-efficiency and sd-envy-freeness implies that
agents 1, 2 and 4 share a equally and each obtains 1

6
of b, while agent 3 receives 1

2
of b.

3.2 Necessity: A characterization of restricted tier domains

We have proposed a class of restricted domains, restricted tier domains, which is sufficient
for the admission of an sd-strategy-proof, sd-efficient and sd-envy-free (or equal-treatment-of-
equals) rule, specifically the PS rule. Despite of the significant restriction and small cardinal-
ity of restricted tier domains (recall Remark 3), we show in this section that a restricted tier
structure is necessary for the existence of an sd-strategy-proof, sd-efficient and sd-envy-free (or
equal-treatment-of-equals) rule, provided a mild richness condition.

We first introduce the richness condition: connectedness (Monjardet (2009)). Two prefer-
ences Pi, P ′i ∈ D are adjacent, denoted Pi ∼A P ′i , if there exist x, y ∈ A such that

(i) x = rk(Pi) = rk+1(P ′i ) and y = rk+1(Pi) = rk(P
′
i ) for some 1 6 k 6 n− 1; and

(ii) rl(Pi) = rl(P
′
i ) for all l 6= k.

Accordingly, a domain D is connected if for every pair of distinct preferences Pi, P ′i ∈ D, there
exists a sequence of consecutively adjacent preferences (in other words, a path) {P k

i }tk=1 ⊆ D
connecting Pi and P ′i , i.e., P 1

i = Pi, P t
i = P ′i and P k

i ∼A P k+1
i , k = 1, . . . , t − 1. Intuitively,

connectedness implies that the difference of two preferences in the domain can be reconciled
via a sequence of local switchings. When a domain is interpreted as a collection of opinions
in a society (Puppe (2016)), connectedness implies that the society’s opinions are sufficiently
dispersed.

Remark 5 The notion of connectedness is introduced in Monjardet (2009) for the study of
maximal Condorcet domains. Recently, it has been identified by Sato (2013) as a necessary con-
dition for the equivalence of local and global strategy-proofness in deterministic voting. Note
that many well studied domains are connected, including the universal domain (Gibbard (1973)
and Satterthwaite (1975)), the single-peaked domain (Moulin (1980) and Demange (1982)), the
single-dipped domain (Barberà et al. (2012)), and maximal single-crossing domains (Saporiti
(2009) and Carroll (2012)).

We now present the domain characterization result.

Theorem 2 If a connected domain admits an sd-strategy-proof, sd-efficient and sd-envy-free
rule, it is a restricted tier domain.
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Proof : First, note that if D contains exactly two preferences, by connectedness, it is evident
that it is a restricted tier domain. Henceforth, we assume that D contains at least three prefer-
ences. Let ϕ : Dn → L be an sd-strategy-proof, sd-efficient and sd-envy-free rule. To prove
Theorem 2, we first introduce an important terminology, the elevating property.

Definition 2 A domain satisfies the elevating property if there exist three preferences P̄i, Pi, P̂i,
three objects a, b, c and a ranking position 1 6 k 6 n − 2 such that the following three condi-
tions are satisfied.

1. a = rk(P̄i) = rk(Pi) = rk+1(P̂i).

2. b = rk+2(P̄i) = rk+1(Pi) = rk(P̂i).

3. c = rk+1(P̄i) = rk+2(Pi) = rk+2(P̂i).

4. B(P̄i, a) = B(Pi, a) = B(P̂i, b).10

We use Table 1 below to illustrate the elevating property:

Ranking: k k + 1 k + 2

P̄i: · · · · · · · · ·︸ ︷︷ ︸
B(P̄i,a)

� a � c � b � · · · · · · · · ·

q

Pi:
B(Pi, a)︷ ︸︸ ︷
· · · · · · · · ·︸ ︷︷ ︸
B(Pi, a)

� a � b � c � · · · · · · · · ·

q

P̂i:
B(P̂i,b)︷ ︸︸ ︷
· · · · · · · · · � b � a � c � · · · · · · · · ·

Table 1: The elevating property

Recall preferences P1, P2 and P3 in Example 1. Note that objects a, b and c cluster in 3
ranking positions of these preferences; three corresponding upper contour sets are empty (and
hence identical); and moreover, object b is elevated from the third ranking position in P1 to the
second in P2, and then is successively elevated to the top of P3. (This is a problem. Either
remove this part or change the preference in Example 1.) Many well known voting domains
satisfy the elevating property.11 In a contrary, since each object takes at most two positions
in all preferences of a restricted tier domain, it is evident that restricted tier domains always
violate the elevating property. Lemma 4 below shows that domain D must violate the elevating
property since it is the key for the incompatibility of sd-strategy-proofness, sd-efficiency and
sd-envy-freeness.

10Note that within the upper contour set, the relative rankings of objects in three preferences are arbitrary.
11See for instance, the universal domain (Gibbard (1973)), the single-peaked domain (Moulin (1980) and De-

mange (1982)), the single-dipped domain (Barberà et al. (2012)), all the maximal single-crossing domains (Saporiti
(2009)), the multi-dimensional single-peaked domain (Barberà et al. (1993)) and the separable domain (Le Breton
and Sen (1999)), some linked domains (Aswal et al. (2003)) and some circular domains (Sato (2010)).
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Lemma 4 Domain D violates the elevating property.

Proof : Suppose that D satisfy the elevating property. Specifically, assume that D contains three
preferences in Table 1. Let B ≡ B(P̄i, a) = B(Pi, a) = B(P̂i, b) for notational convenience.
Thus, |B| = k − 1. In the detailed verification below, we consider four particular profiles:

(i) P , where every agent presents preference Pi in Table 1,

(ii) (P̄1, P−1), where agent 1 deviates at P via P̄i in Table 1,

(iii) (P̂2, P−2), where agent 2 deviates at P via P̂i in Table 1, and

(iv) (P̄1, P̂2, P−{1,2}), where agent 2 deviates at (P̄1, P−1) via P̂i in Table 1.

First, at all four profiles, sd-envy-freeness and feasibility imply that the cumulative probability
placed on subset B for each agent is fixed to k−1

n
which is identical to that given by the PS rule.

Next, at all these four preference profiles, we only focus on the probabilities assigned to objects
a and b. We first show that at profiles P , (P̄1, P−1) and (P̂2, P−2), these probabilities induced
by ϕ are the same as those induced by the PS rule. Last, we show that, under (P̄1, P̂2, P−{1,2}),
sd-strategy-proofness implies that agent 2’s probability of receiving a is the same as that given
by the PS rule, while sd-efficiency requires that the probability of agent 2 getting b is higher
than that given by the PS rule. Consequently, every agent other than 1 and 2 envies agent 2.

By sd-envy-freeness and feasibility, it is evident that
∑

x∈B ϕix(P ) =
∑

x∈B ϕix(P̄1, P−1) =∑
x∈B ϕix(P̂2, P−2) =

∑
x∈B ϕix(P̄1, P̂2, P−{1,2}) = k−1

n
for all i ∈ I .

Now, we start with profile P . By sd-envy-freeness, ϕix(P ) = 1
n

for all i ∈ I and x ∈ A.
Next, we consider profile (P̄1, P−1).

Claim 1: The following two statements hold:

(i) ϕia(P̄1, P−1) = 1
n

for all i ∈ I by sd-envy-freeness.

(ii) ϕ1b(P̄1, P−1) = 0 by sd-efficiency, and ϕib(P̄1, P−1) = 1
n−1

for all i 6= 1 by sd-envy-
freeness.

Next, we consider profile (P̂2, P−2).

Claim 2: The follow two statements hold:

(i) ϕ2a(P̂2, P−2) = 0 by sd-efficiency, and ϕ2b(P̂2, P−2) = 2
n

by sd-strategy-proofness ac-
cording to ϕ2(P ).

(ii) ϕia(P̂2, P−2) = 1
n−1

for all i 6= 2 and ϕib(P̂2, P−2) = 2
n
− 1

n−1
for all i 6= 2 by sd-envy-

freeness and Claim 2(i).

Last, we consider profile (P̄1, P̂2, P−{1,2}).

Claim 3: The following two statements hold:

(i) ϕ1a(P̄1, P̂2, P−{1,2}) = 1
n−1

by sd-strategy-proofness according to ϕ1(P̂2, P−2) and Claim
2, and ϕ1b(P̄1, P̂2, P−{1,2}) = 0 by sd-efficiency.
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(ii) ϕ2a(P̄1, P̂2, P−{1,2}) = 0 by sd-efficiency, and ϕ2b(P̄1, P̂2, P−{1,2}) = 1
n

+ 1
n−1

by sd-
strategy-proofness according to ϕ2(P̄1, P−1) and Claim 1.

Now, by feasibility and Claim 3 (i) and (ii), we know that for all i /∈ {1, 2},

ϕia(P̄1, P̂2, P−{1,2}) =
1

n− 2

[
1−

∑
j∈{1,2}

ϕja(P̄1, P̂2, P−{1,2})
]

=
1

n− 1
,

ϕib(P̄1, P̂2, P−{1,2}) =
1

n− 2

[
1−

∑
j∈{1,2}

ϕjb(P̄1, P̂2, P−{1,2})
]

=
1

n− 2
(1− 1

n
− 1

n− 1
).

Consequently, between agent 2 and any agent i /∈ {1, 2}, we have
∑

x∈B∪{a,b}
ϕ2x(P̄1, P̂2, P−{1,2}) =

k−1
n

+ 0 + ( 1
n

+ 1
n−1

) > k−1
n

+ 1
n−1

+ 1
n−2

(1− 1
n
− 1

n−1
) =

∑
x∈B∪{a,b}

ϕix(P̄1, P̂2, P−{1,2}). This

contradicts sd-envy-freeness and we hence completes the verification of Lemma 4. �

Henceforth, we will use the information of violating the elevating property in Lemma 4 to
characterize the restricted tier structure in domain D.

Lemma 5 For every path {P k
i }tk=1, if there exists 1 6 l 6 n − 1 such that rl(P 1

i ) = a,
rl+1(P 1

i ) = b and rl(P k
i ) = b for all k = 2, . . . , t, then rl+1(P k

i ) = a for all k = 2, . . . , t.

Proof : Given a path {P k
i }tk=1, consider l = n − 1. Thus, rn−1(P 1

i ) = a, rn(P 1
i ) = b, and

rn−1(P k
i ) = b for all k = 2, . . . , t. Suppose rn(P 2

i ) ≡ c 6= a. Thus, cP 1
i b (recall that b is

the bottom ranked object) and bP 2
i c. Therefore, the local switching pair in P 1

i and P 2
i is b

and c. Consequently, it must be the case that rn−1(P 1
i ) = c 6= a. Contradiction! Therefore,

rn(P 2
i ) = a. Next, consider P 3

i , and suppose rn(P 3
i ) ≡ c 6= a. Thus, cP 2

i a (recall that a
is the bottom ranked object) and aP 3

i c. Therefore, the local switching pair in P 2
i and P 3

i is c
and a. Consequently, it must be the case that rn−1(P 2

i ) = c 6= b. Contradiction! Therefore,
rn(P 3

i ) = a. Applying the same argument along the path, we can show that rn(P k
i ) = a for all

k = 4, . . . , t. We next adopt an induction argument.

Induction Hypothesis: Given 1 6 l 6 n−1, for every path {P k
i }tk=1, if there exists l < l′ 6 n−1

such that rl′(P 1
i ) = a, rl′+1(P 1

i ) = b, and rl′(P k
i ) = b for all k = 2, . . . , t, then rl′+1(P k

i ) = a

for all k = 2, . . . , t.

Now, given a path {P k
i }tk=1, assume that rl(P 1

i ) = a, rl+1(P 1
i ) = b; and rl(P k

i ) = b for all
k = 2, . . . , t. We will show that rl+1(P k

i ) = a for all k = 2, . . . , t.
Since P 1

i ∼A P 2
i , it is evident that rl+1(P 2

i ) = a. Suppose that there exists 2 6 k̄ 6 t

such that rl+1(P k̄
i ) 6= a. Assume rl+1(P k̄

i ) = c. Evidently, k̄ > 2 and c /∈ {a, b}. Moreover,
we can assume rl+1(P k

i ) = a for all 2 6 k 6 k̄ − 1. Since P k̄−1
i ∼A P k̄

i , rl(P k̄−1
i ) =

rl(P
k̄
i ) = b, and rl+1(P k̄−1

i ) = a 6= c = rl+1(P k̄
i ), it must be the case that rl+2(P k̄−1

i ) = c and
rl+2(P k̄

i ) = a. Now, consider the path {P k̄
i , P

k̄−1
i , . . . , P 2

i }. Since rl+1(P k̄
i ) = c, rl+2(P k̄

i ) = a

and rl+1(P k
i ) = a for all k = k̄ − 1, . . . , 2, induction hypothesis implies rl+2(P k

i ) = c for
all k = k̄ − 1, . . . , 2. Furthermore, since P 1

i ∼A P 2
i , rl+2(P 1

i ) = rl+2(P 2
i ) = c. Along the

sub-path {P k
i }k̄k=1, since a, b and c take positions l, l + 1 and l + 2 in every preference, it is
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easy to verify that the sets of top l − 1 ranked objects are identical for all preferences. Thus,
B(b, P k̄

i ) = B(b, P k̄−1
i ) = B(a, P 1

i ). Consequently, preferences P k̄
i , P

k̄−1
i and P 1

i indicates that
domain D satisfies the elevating property (see the table below). Contradiction to Lemma 4!

Ranking: l l + 1 l + 2

P k̄
i : · · · · · · · · ·︸ ︷︷ ︸

B(P k̄i ,b)

� b � c � a � · · · · · · · · ·

q

P k̄−1
i :

B(P k̄−1
i , b)︷ ︸︸ ︷

· · · · · · · · ·︸ ︷︷ ︸
B(P k̄−1

i , b)

� b � a � c � · · · · · · · · ·

q

P 1
i :

B(P 1
i ,a)︷ ︸︸ ︷

· · · · · · · · · � a � b � c � · · · · · · · · ·

Therefore, rl+1(P k
i ) = a for all k = 2, . . . , t. This completes the verification of induction

hypothesis and hence the lemma. �

Lemma 6 For every path {P k
i }tk=1, if there exists 1 6 l 6 n − 1 such that rl(P 1

i ) = a,
rl+1(P 1

i ) = b, and rl+1(P k
i ) = a for all k = 2, . . . , t, then rl(P k

i ) = b for all k = 2, . . . , t.

Proof : The verification of this lemma is symmetric to Lemma 5. The induction argument in
the proof of Lemma 5 starts from the bottom (i.e., l = n − 1) and proceeds successively up to
the top (i.e., l = 1). To verify this lemma, an analogous induction argument can be adopted
from the top (i.e., l = 1) down to the bottom (i.e., l = n− 1). �

Lemma 7 Given Pi, P ′i ∈ D, assume Pi ∼A P ′i , a = rl(Pi) = rl+1(P ′i ) and b = rl+1(Pi) =

rl(P
′
i ). In every preference, objects a and b occupy positions l and l+1, i.e.,

{
rl(Pj), rl+1(Pj)

}
=

{a, b} for all Pj ∈ D.

Proof : It is evident that
{
rl(Pi), rl+1(Pi)

}
= {a, b} and

{
rl(P

′
i ), rl+1(P ′i )

}
= {a, b}. Next, fix

an arbitrary Pj ∈ D\{Pi, P ′i}, and we show
{
rl(Pj), rl+1(Pj)

}
= {a, b}. Since D is connected

and Pi ∼A P ′i , it is true that there exists a path {P k
i }tk=1 ⊆ D such that {P 1

i , P
2
i } = {Pi, P ′i}

and P t
i = Pj . We assume P 1

i = Pi and P 2
i = P ′i . The verification of the situation P 1

i = P ′i and
P 2
i = Pi is symmetric and we hence omit it.

If rl(P k
i ) = b for all k = 3, . . . , t, then Lemma 5 implies

{
rl(Pj), rl+1(Pj)

}
= {a, b}.

Next, we assume that there exists 3 6 k 6 t such that rl(P k
i ) 6= b. We highlight the subset

{kj}νj=1 ⊆ {3, . . . , t} such that rl(P
kj
i ) 6= rl(P

kj−1
i ), j = 1, . . . , ν. Since there exists 3 6 k 6 t

such that rl(P k
i ) 6= b, the set of preferences {P kj

i }νj=1 is not empty. Moreover, we can separate
the path {P k

i }tk=1 into ν + 1 parts according to the l-th ranked object in each preference, i.e.,
rl(P

2
i ) = · · · = rl(P

k1−1
i ), rl(P k1

i ) = · · · = rl(P
k2−1
i ), ...... , rl(P

kν−1

i ) = · · · = rl(P
kν−1
i ), and

rl(P
kν
i ) = · · · = rl(P

t
i ) (see the table below).
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P 2
i , . . . , P

k1−1
i ; P k1

i , . . . , P
k2−1
i ; P k2

i , . . . . . . , P
kν−1−1
i ; P

kν−1

i , . . . , P kν−1
i ; P kν

i , . . . , P t
i

the same lth the same lth the same lth the same lth
ranked alternative ranked alternative ranked alternative ranked alternative

Evidently, rl(P 2
i ) = · · · = rl(P

k1−1
i ) = b. Then, we apply Lemma 5 on the sub-path

{P 1
i , P

2
i , . . . P

k1−1
i } and obtain rl+1(P k

i ) = a for all k = 2, . . . , k1 − 1.

Claim 1: rl(P k1
i ) = a.

Evidently, rl(P k1
i ) 6= rl(P

k1−1
i ) = b. Suppose rl(P k̄

i ) = c 6= a. Thus, c /∈ {a, b}. Since
P k1−1
i ∼A P k1

i and rl(P k1−1
i ) = b 6= c = rl(P

k1
i ), it must be the case that rl+1(P k1

i ) = a. Fur-
thermore, since rl+1(P k1−1

i ) = rl+1(P k1
i ) = a, it is true that rl−1(P k1

i ) = b and rl−1(P k1−1
i ) = c.

Now, we can apply Lemma 6 on the sub-path {P k1
i , P

k1−1
i , . . . , P 2

i } and obtain rl−1(P k
i ) = c

for all k = k1 − 1, . . . , 2. Moreover, since P 1
i ∼A P 2

i , rl−1(P 1
i ) = rl−1(P 2

i ) = c. Furthermore,
it is easy to verify that the set of top l − 2 ranked objects in each preference of the sub-path
{P k

i }
k1
k=1 is identical. Thus, B(c, P 1

i ) = B(c, P k1−1
i ) = B(b, P k1

i ). Consequently, preferences
P 1
i , P

k1−1
i and P k1

i indicates that domain D satisfies the elevating property (see the table below).
Contradiction to Lemma 4!

Ranking: l − 1 l l + 1

P 1
i : · · · · · · · · ·︸ ︷︷ ︸

B(P 1
i ,c)

� c � a � b � · · · · · · · · ·

q

P k1−1
i :

B(Pk1−1
i , c)︷ ︸︸ ︷

· · · · · · · · ·︸ ︷︷ ︸
B(Pk1−1

i , c)

� c � b � a � · · · · · · · · ·

q

P k1
i :

B(P
k1
i ,b)︷ ︸︸ ︷

· · · · · · · · · � b � c � a � · · · · · · · · ·

This completes the verification of the claim.

Now, we know rl(P
k1
i ) = · · · = rl(P

k2−1
i ) = a. Applying Lemma 5 on {P k1−1

i , P k1
i , . . . , P

k2−1
i },

we have rl+1(P k1
i ) = · · · = rl+1(P k2−1

i ) = b. Along the path {P k
i }tk=1, repeatedly applying the

symmetric argument above, we finally have {rl(Pj), rl+1(Pj)} = {a, b}. �

Now, we are ready to reveal the restricted tier structure in domain D. If there exists a ∈ A
such that r1(Pi) = a for all Pi ∈ D, let A1 = {a}. If there exist Pi, P ′i ∈ D such that
r1(Pi) ≡ a 6= b ≡ r1(P ′i ), connectedness implies that there must exist P̄i, P̄ ′i ∈ D such that
P̄i ∼A P̄ ′i , r1(P̄i) = a and r1(P̄ ′i ) = b. Thus, r2(P̄i) = b and r2(P̄ ′i ) = a. Then, Lemma 7
implies {r1(Pi), r2(Pi)} = {a, b} for all Pi ∈ D. Then, let A1 = {a, b}.

Assume |A1| = l (either l = 1 or l = 2). If there exists x ∈ A such that rl+1(Pi) = x for all
Pi ∈ D, let A2 = {x}. Next, assume that there exist Pi, P ′i ∈ D such that rl+1(Pi) ≡ x 6= y ≡
rl+1(P ′i ). Since the set of top l ranked objects in every preference is identical, connectedness
implies that there must exist P̄i, P̄ ′i ∈ D such that P̄i ∼A P̄ ′i , rl+1(P̄i) = x and rl+1(P̄ ′i ) = y.
Thus, rl+2(P̄i) = y and rl+2(P̄ ′i ) = x. Then, Lemma 7 implies {rl+1(Pi), rl+2(Pi)} = {x, y}
for all Pi ∈ D. Then, let A2 = {x, y}.
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Applying the symmetric argument repeatedly, sinceA is finite, we can generate tiersA1, A2, . . . , AT
such that (i) Ak ∩ Ak′ = ∅ for all 1 6 k < k′ 6 T and ∪Tk=1Ak = A, (ii) 1 6 |Ak| 6 2 for all
1 6 k 6 T , and (iii) for all 1 6 k < k′ 6 T , [a ∈ Ak and b ∈ Ak′ ]⇒ [aPib for all Pi ∈ D]. In
conclusion, domain D is a restricted tier domain. �

We now weaken sd-envy-freeness to equal treatment of equals, and investigate the con-
nected domains which admit an sd-strategy-proof, sd-efficient, and equal-treatment-of-equals
rule. Surprisingly, such weakening does not expand the characterized domains, i.e., they are
still restricted tier domains.

Theorem 3 If a connected domain admits an sd-strategy-proof, sd-efficient and equal-treatment-
of-equals rule, it is a restricted tier domain.

Lemmas 5 - 7 remain valid for the proof of Theorem 3. However, the proof of Lemma 4
becomes significantly complicated as we weaken sd-envy-freeness to equal treatment of equals.
Therefore, we relegate the proof of Theorem 3 to the Appendix.

As restricted tier domains are characterized in Theorems 2 and 3 under different fairness
axioms, it suggests that the source of restriction power that pins down the restricted tier domains
arises mainly from the resolution of the conflict between sd-strategy-proofness and sd-efficiency
under the elevating property.

Since the weakening of fairness axiom in Theorem 3 does not expand the characterized
domain in Theorem 2 and more importantly the proof of Theorem 2 is significantly simpler and
conveys the central logic of the proof of Theorem 3, we believe that Theorem 2 is of special
interest and present it in the first place.

Our proof of Theorem 3 uses the proof strategy introduced by Chang and Chun (2016)
in their impossibility which says that there is no sd-strategy-proof, sd-efficient, and equal-
treatment-of-equals rule on a domain that includes three particular preferences such that one
object takes the last three ranking positions respectively and all the other objects are identi-
cally ranked in these three preferences. Their preference structure is actually a special case of
our elevating property! In the Appendix, we establish the impossibility of the existence of an
sd-strategy-proof, sd-efficient and equal-treatment-of-equals rule on a domain satisfying the el-
evating property which hence generalizes the impossibility theorem in Chang and Chun (2016).
We believe that such a generalization is significant since it allows first the elevated object to take
arbitrary three consecutive positions; second the other objects to be arbitrarily ranked as long
as the truncation sets up to the elevating positions in three preferences are the same; and more
importantly, our impossibility result under the elevating property appears to be informative and
is hence repeatedly referred to for establishing Theorem 3. Last, our proof slightly improves
theirs in logical conciseness and fluency (see for instance, footnote 13).

We conclude this section by emphasizing insightful light shed by our domain characteri-
zation results on the direction of identifying a unified necessary and sufficient condition for
the existence of an sd-strategy-proof, sd-efficient and sd-envy-free or equal-treatment-of-equals
rule. When we encounter with a preference domain which fails connectedness but admits an sd-
strategy-proof, sd-efficient and sd-envy-free or equal-treatment-of-equals rule, we first partition
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the domain into several connected subdomains. Thus, Theorem 2 or 3 implies that each sub-
domain must be a restricted tier domain. Therefore, to completely reveal the domain structure,
one needs to resolve this problem: what are the relations among the restricted tier structures of
these subdomains? For instance, more specifically, if two restricted tier subdomains share an
identical set of tiers, how is this set of tiers systematically organized in two distinct restricted
tier structures? Recently, an independent research of Liu (2016) provides a clear answer to this
question.

4 A generalized model with outside options

In this section, we extend our model to situations in which the number of agents may differ
from the number of objects, and each agent has an outside option. In the generalized model,
the characterizations of the PS rule in Theorem 1 still hold. This extension can be viewed as
a strengthening of Bogomolnaia and Moulin (2002) since their domain is strictly nested in the
class of domains investigated in this section.

Let m ≡ |A| and n ≡ |I|. Moreover, there is an object ∅ with at least n copies. Object
∅ can be interpreted as an individual outside option for each agent. Each agent i has a strict
preference order Pi over A ∪ {∅}. An object a ∈ A is acceptable if a Pi ∅. Let A(Pi) denote
the set of acceptable objects in Pi.

Since the number of agents may differ from the number of objects, it may be that an object
is not fully shared by all agents. Accordingly, the definition of an assignment [Lia]i∈I,a∈A∪{∅}
is modified in such a way that (i) Lia > 0 for all i ∈ I and a ∈ A∪{∅}, (ii)

∑
a∈A∪{∅} Lia = 1

for all i ∈ I , and (iii) 0 6
∑

i∈I Lia 6 1 for all a ∈ A.
All original axioms of sd-strategy-proofness, sd-efficiency, sd-envy-freeness, and equal treat-

ment of equals apply without any modification. Also, the definition of the PS rule remains
unchanged. Evidently, the PS rule remains sd-efficient and sd-envy-free.

However, we need to modify the definition of a restricted tier domain of preferences. No-
tably, we require restricted tier structure only on the acceptable objects.

Definition 3 A domain D is an augmented restricted tier domain if there exists a restricted tier
structure P ≡ (Ak)

T
k=1 (over A, not A ∪ {∅}) such that

1. For all 1 6 k 6 T , |Ak| 6 2;

2. Given Pi ∈ D, A(Pi) = ∪tk=1Ak for some 0 6 t 6 T ;

3. Given Pi ∈ D and a, b ∈ A, [a ∈ Ak, b ∈ Ak′ , a, b ∈ A(Pi) and k < k′]⇒ [a Pi b].

Example 2 Let |A| = 5 and P ≡ (A1, A2, A3) where A1 = {a1, a2}, A2 = {a3}, and A3 =

{a4, a5}. Then D = {P1, P2, P3, P4} is an augmented restricted tier domain associated to P .

P1: ∅ � · · ·
P2: a1 � a2 � ∅ � · · ·
P3: a2 � a1 � a3 � ∅ � · · ·
P4: a1 � a2 � a3 � a5 � a4 � ∅
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In words, an agent with P1 perceives every object as unacceptable, and all unacceptable objects
are ranked arbitrarily. An agent with P2 perceives only A1 as acceptable and she prefers a1 to
a2. An agent with P3 perceives A1 and A2 as acceptable and A3 as unacceptable. In addition,
she prefers all objects in A1 to all objects in A2 according to the tier structure. Last, in P4, all
objects are acceptable, and ranked according to the tier structure restriction. �

Analogous to Theorems 1, Theorem 4 below characterizes the PS rule on augmented re-
stricted tier domains.

Theorem 4 On an augmented restricted tier domain, a rule is sd-strategy-proof, sd-efficient
and equal-treatment-of-equals if and only if it is the PS rule.

Proof : Given P ≡ (Ak)
T
k=1, let D ⊆ D(P) be a augmented restricted tier domain.

Given P ∈ Dn and 1 6 k 6 T , let Nk ≡ {i ∈ I|Ak ⊆ A(Pi)} denote the set of agents
whose acceptable set includes tier Ak, and nk ≡ |Nk|. Given 1 6 k 6 T , if nk > 0 (equiv-
alently, tier Ak is acceptable for some agent), it is true that nk′ > 0 for all 1 6 k′ 6 k − 1

(equivalently, each tier Ak′ , 1 6 k′ < k − 1, is also acceptable for some agent). Therefore,
given 1 6 k 6 T with nk > 0, we can define rk′ =

∑k′−1
t=1

|At|
nt

for all 1 6 k′ 6 k+ 1. Note that
it is either rk 6 1 or rk > 1.12

Due to the augmented restricted tier structure embedded in D, at each preference profile, we
can clearly specify the random assignment induced by the PS rule as shown in Fact 2 below.

Fact 2 Given a profile P ∈ Dn, let L be the random assignment induced by the PS rule. Then,
the following five conditions hold.

1. Given i ∈ I , assume A(Pi) = ∪kt=1At. Then, Li∅ = max(0, 1 − rk+1) and Lia = for all
a /∈ A(Pi).

Given 1 6 k 6 T , assume Ak = {a} or Ak = {a, b}, and nk > 0. If Ak = {a, b}, let
Ik = {i ∈ I|a Pi b} and |Ik ∩Nk| = l.

2. If rk > 1, then LiAk = 0 (equivalently, Lia = 0 for all a ∈ Ak) for all i ∈ Nk.

3. If rk < 1 and Ak = {a}, then Lia = min( 1
nk
, 1− rk) for all i ∈ Nk.

4. If rk < rk+1 < 1 and Ak = {a, b}, we have

• [nk
2
< l 6 nk]⇒

{
Lia = 1

l
and Lib = 2

nk
− 1

l
for all i ∈ Nk ∩ Ik;

Lia = 0 and Lib = 2
nk

for all i ∈ Nk\Ik.

• [0 6 l 6 nk
2

]⇒

{
Lia = 2

nk
and Lib = 0 for all i ∈ Nk ∩ Ik;

Lia = 2
nk
− 1

nk−l
and Lib = 1

nk−l
for all i ∈ Nk\Ik.

12For instance, in profile P , if all tiers are acceptable for all agents, then rk 6 1 for all 1 6 k 6 T + 1. If one
agent accepts all tiers and all others do not accept any tier, then rk > 1 for all 1 6 k 6 T + 1. In particular, recall
the consumption procedure at profile P in the PS rule, and note that if 0 6 rk < 1, then rk is identical to the time
at which all tiers A1, . . . , Ak−1 are exhausted, and all agents in Nk are about to consume Ak.
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5. If rk < 1 6 rk+1 and Ak = {a, b}, we have

• [nk

2 < l 6 nk]⇒

{
Lia = min( 1

l , 1− rk) and Lib = max(1− rk − 1
l , 0) for all i ∈ Nk ∩ Ik;

Lia = 0 and Lib = 1− rk for all i ∈ Nk\Ik.

• [0 6 l 6 nk

2 ]⇒

{
Lia = 1− rk and Lib = 0 for all i ∈ Nk ∩ Ik;

Lia = max(1− rk − 1
nk−l , 0) and Lib = min( 1

nk−l , 1− rk) for all i ∈ Nk\Ik.

The verification of Fact 2 is routine, and we hence omit it.
It is evident that the PS rule satisfies sd-efficiency and equal treatment of equals. We first

show that the PS rule is sd-strategy-proof on D.
Fix i ∈ I , P ∈ Dn and P ′i ∈ D. Assume A(Pi) = ∪kt=1At and A(P ′i ) = ∪k′t=1At. Let L and

L′ be two random assignments induced by the PS rule at profiles P and (P ′i , P−i) respectively.
We show Li P

sd
i L′i.

According Fact 2, we know LiAt = L′iAt for all 1 6 t 6 min(k, k′). Moreover, given
1 6 t 6 min(k, k′), assume At = {a, b} and a Pi b. By a similar argument in verifying
sd-strategy-proofness of the PS rule in Theorem 1, we have Lia > L′ia.

Let l ≡
∑min(k,k′)

t=1 |At| and l̄ ≡
∑max(k,k′)

t=1 |At|. Given x ∈ A ∪ {∅}, assume x = rl(Pi).
If 1 6 l 6 l, then

∑l
t=1 Lirt(Pi) >

∑l
t=1 L

′
irt(Pi)

. If l > l and k 6 k′, it is evident that∑l
t=1 Lirt(Pi) = 1 >

∑l
t=1 L

′
irt(Pi)

by condition 1 of Fact 2.
Last, assume l > l and k > k′. Observe that L′iz = 0 for all z ∈ ∪kt=k′+1At by condition 1

of Fact 2. Therefore, if l < l 6 l̄, we have
∑l

t=1 Lirt(Pi) =
∑l

t=1 Lirt(Pi) +
∑l

t=l+1 Lirt(Pi) >∑l
t=1 L

′
irt(Pi)

+
∑l

t=l+1 L
′
irt(Pi)

=
∑l

t=1 L
′
irt(Pi)

. Furthermore, if l̄ < l 6 |A| + 1, it is evident
that

∑l
t=1 Lirt(Pi) = 1 >

∑l
t=1 L

′
irt(Pi)

by condition 1 of Fact 2.
Therefore,

∑l
t=1 Lirt(Pi) >

∑l
t=1 L

′
irt(Pi)

for all 1 6 l 6 |A| + 1. Hence, Li P sd
i L′i as

required. In conclusion, the PS rule is sd-strategy-proof on domain D.

Henceforth, we prove that on domain D, the PS rule is the unique one satisfying sd-strategy-
proofness, sd-efficiency and equal treatment of equals. Let ϕ : Dn → L a rule which satisfies
all three axioms.

Fixing P ≡ (P1, . . . , Pn) ∈ Dn, let L ≡ ϕ(P ). We first show that L satisfies sd-envy-
freeness, and then show that L satisfies all five conditions of Fact 2. Given 1 6 k 6 T , recall
Nk ≡ {i ∈ I|Ak ⊆ A(Pi)} and nk ≡ |Nk|. Moreover, let k∗ ≡ max

{
k ∈ {1, . . . , T}|LiAk >

0 for some i ∈ I
}

be the maximum index in {1, . . . , T} such that some agent consumes strictly
positive proportion of Ak∗ . Consequently, nk∗ > 0. Hence, nk > 0 for all 1 6 k 6 k∗, and
rk =

∑k−1
t=1

|At|
nk

, 1 6 k 6 k∗ + 1, is well-defined.
First, taking each tierAk as one combined object and applying Theorem 5.1 in Bogomolnaia

and Moulin (2002), we have the following three statements.

(i) Given i ∈ I , assume A(Pi) = ∪kt=1At. Then, we have

• Li∅ = max(0, 1− rk+1) and Lia = 0 for all a /∈ A(Pi).

•
∑k′

t=1 LiAt >
∑k′

t=1 LjAt for all 0 6 k′ 6 min(k, k∗) and j 6= i.

(ii) Given 1 6 k < k∗, LiAk = |Ak|
nk

for all i ∈ Nk.
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(iii) LiAk∗ = 1− rk∗ 6 |Ak∗ |
nk∗

for all i ∈ Nk∗ .

According to the first part of statement (i) above, condition 1 of Fact 2 is satisfied in L.

Lemma 8 Given 1 6 k 6 k∗, assume Ak = {a, b} and let Ik = {i ∈ I|a Pi b}. The following
two statements hold.

(1) For all i, j ∈ Nk ∩ Ik, Lia = Lja.

(2) For all i ∈ Nk ∩ Ik and j ∈ Nk\Ik, Lia > Lja and Lib 6 Ljb.

Proof : The verification of this lemma follows from a modification of the proof of Lemma
2. Specifically, fix all preferences in profile P whose acceptable set do not include Ak, and
apply all proofs of Lemma 2 with respect to the remaining preferences in P with the following
modifications:

• Change I in the proof of Lemma 2 to Nk.

• Change Ik in the proof of Lemma 2 to Nk ∩ Ik.

• Change I\Ik in the proof of Lemma 2 to Nk\Ik.

• Change n in the proof of Lemma 2 to nk.

• If k < k∗, change 2
n

, n
2

and 1
n

in the proof of Lemma 2 to 2
nk

, nk
2

and 1
nk

respectively.
Moreover, whenever Lemma 1 is referred to in the proof of Lemma 2, change it to state-
ment (ii) above.

• If k = k∗, change 2
n

, n
2

and 1
n

in the proof of Lemma 2 to 1− rk, 1
1−rk

and min( 1
nk
, 1− rk)

respectively. Moreover, whenever Lemma 1 is referred to in the proof of Lemma 2,
change it to statement (iii) above.

�

Lemma 9 Random assignment L satisfies sd-envy-freeness.

Proof : Fix i ∈ I and assume A(Pi) = ∪kt=1At. Thus, ∅ = rl∗(Pi) where l ≡
∑k

t=1 |At| + 1.
Evidently, sd-efficiency implies

∑l∗

t=1 Lirt(Pi) = 1 >
∑l∗

t=1 Ljrt(Pi) for all j 6= i.
Next, given a ∈ A, assume a ∈ As and a = rl(Pi). We consider three cases.

Case 1: s > min(k, k∗).
Statements (i) - (iii) above imply

∑l
t=1 Lirt(Pi) = 1 >

∑l
t=1 Ljrt(Pi) for all j 6= i.

Case 2: s 6 min(k, k∗) and moreover, either As = {a}, or |As| = 2 and a = min(Pi, As).
The second part of statement (i) above implies

∑l
t=1 Lirt(Pi) =

∑s
t=1 LiAs >

∑s
t=1 LjAs =∑l

t=1 Ljrt(Pi) for all j 6= i.

Case 3: s 6 min(k, k∗) and moreover, |As| = 2 and a = max(Pi, As).
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Let j 6= i. If As is not included in A(Pj), the first part of statement (i) above implies
Lja = 0. If As is included in A(Pj), Lemma 8 implies Lia > Lja. Therefore, Lia > Lja.
Furthermore, since

∑s−1
t=1 LiAt >

∑s−1
t=1 LjAt by the first part of statement (i) above, we have∑l

t=1 Lirt(Pi) =
∑s−1

t=1 LiAt + Lia >
∑s−1

t=1 LjAt + Lja =
∑l

t=1 Ljrt(Pi).

In conclusion,
∑l

t=1 Lirt(Pi) >
∑l

t=1 Ljrt(Pi) for all 1 6 l 6 |A| + 1 and j 6= i. Therefore,
L satisfies sd-envy-freeness. �

Last, we use the following 5 claims to show that conditions 2 - 5 of Fact 2 are satisfied in L.

Claim 1: rk∗ < 1 6 rk∗+1.

According to the definition of k∗, there exist i ∈ Nk∗ such that LiAk∗ > 0. Fix such an
agent i. By statement (ii) above, we know rk∗ =

∑k∗−1
t=1

|At|
nt

=
∑k∗−1

t=1 LiAt < 1. Moreover, by
statement (iii), we have rk∗+1 =

∑k∗

t=1
|At|
nt

= rk∗ + |Ak∗ |
nk∗
> 1. This completes the verification

of the claim.

Given 1 6 k 6 T , assume Ak = {a} or Ak = {a, b}, and nk > 0. If Ak = {a, b}, let
Ik = {i ∈ I|a Pi b} and |Ik ∩Nk| = l.

Claim 2: Condition 2 of Fact 2 is satisfied in L.

According to the hypothesis of condition 2, since rk > 1, Claim 1 implies k > k∗+1. Then,
the definition of k∗ implies LiAk = 0 for all i ∈ I (hence for all i ∈ Nk). This completes the
verification of the claim.

Claim 3: Condition 3 of Fact 2 is satisfied in L.

According to the hypothesis of condition 3, since rk < 1, Claim 1 implies k 6 k∗. Fix
i ∈ Nk. If k < k∗, then statement (ii) above implies Lia = |Ak|

nk
= 1

nk
. Since k + 1 6 k∗ and

rk∗ < 1, it must be the case that rk + |Ak|
nk

= rk + 1
nk

= rk+1 6 rk∗ < 1. Thus, 1
nk
< 1 − rk,

and hence Lia = min( 1
nk
, 1 − rk). If k = k∗, statement (iii) above implies Lia = 1 − rk∗ =

min( 1
nk∗

, 1 − rk∗). In conclusion, Lia = min( 1
nk
, 1 − rk) for all i ∈ Nk. This completes the

verification of the claim.

Claim 4: Condition 4 of Fact 2 is satisfied in L.

According to the hypothesis of condition 4, since rk+1 < 1, Claim 1 implies k + 1 6 k∗,
and hence k < k∗. Therefore, Lia + Lib = LiAk = |Ak|

nk
= 2

nk
for all i ∈ Nk by statement (ii)

above. Recall Ik = {i ∈ I|a Pi b} and |Nk ∩ Ik| = l. Then, sd-efficiency and sd-envy-freeness
(recall Lemma 9) imply

• [nk
2
< l 6 nk]⇒

{
Lia = 1

l
and Lib = 2

nk
− 1

l
for all i ∈ Nk ∩ Ik;

Lia = 0 and Lib = 2
nk

for all i ∈ Nk\Ik.

• [0 6 l 6 nk
2

]⇒

{
Lia = 2

nk
and Lib = 0 for all i ∈ Nk ∩ Ik;

Lia = 2
nk
− 1

nk−l
and Lib = 1

nk−l
for all i ∈ Nk\Ik.
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Claim 5: Condition 5 of Fact 2 is satisfied in L.

According to the hypothesis of condition 5, since rk < 1 6 rk+1, Claim 1 implies k = k∗.
Thus, by statement (iii), Lia + Lib = LiAk∗ = 1 − rk∗ 6 |Ak∗ |

nk∗
= 2

nk∗
for all i ∈ Nk∗ . Recall

Ik∗ ≡ {i ∈ I|a Pi b} and l ≡ |Nk∗ ∩ Ik∗ |. We know either nk∗
2
< l 6 nk∗ or 0 6 l 6 nk∗

2
.

First, assume nk∗
2
< l 6 nk∗ . Subsequently, two cases are separately considered.

Case 1: nk∗
2
< l 6 nk∗ and 1

l
6 1− rk∗ .

If l = nk∗ , then sd-envy-freeness implies Lia = 1
l
, and hence Lib = 1 − rk∗ − 1

l
for all

i ∈ Nk ∩ Ik. If nk∗
2
< l < nk∗ , sd-efficiency first implies Lia = 0, and hence Lib = 1 − rk∗

for all i ∈ Nk\Ik. Consequently, sd-envy-freeness implies Lia = 1
l

for all i ∈ Nk ∩ Ik. Hence,
Lib = 1− rk∗ − 1

l
for all i ∈ Nk ∩ Ik.

Case 2: nk∗
2
< l 6 nk∗ and 1

l
> 1− rk∗ .

If l = nk∗ , sd-envy-freeness implies Lia = Lja for all i, j ∈ Nk ∩ Ik. Moreover, since
1
l
> 1 − rk∗ , it is true that Lia = 1 − rk∗ , and hence Lib = 0 for all i ∈ Nk ∩ Ik. If

nk∗
2
< l < nk∗ , sd-efficiency first implies Lia = 0, and hence Lib = 1 − rk∗ for all i ∈ Nk\Ik.

Next, sd-envy-freeness implies Lia = Lja for all i, j ∈ Nk ∩ Ik. Since 1
l
> 1− rk∗ , it is true that

Lia = 1− rk∗ for all i ∈ Nk ∩ Ik. Hence, Lib = 0 for all i ∈ Nk ∩ Ik.

In conclusion, if nk∗
2
< l 6 nk∗ ,

Lia = min(
1

l
, 1− rk∗) and Lib = max(1− rk∗ −

1

l
, 0) for all i ∈ Nk ∩ Ik;

Lia = 0 and Lib = 1− rk∗ for all i ∈ Nk\Ik.

By a symmetric argument, if 0 6 l 6 nk∗
2

,

Lia = 1− rk∗ and Lib = 0 for all i ∈ Nk ∩ Ik;

Lia = max(1− rk∗ −
1

nk∗ − l
, 0) and Lib = min(

1

nk∗ − l
, 1− rk∗) for all i ∈ Nk\Ik.

Thus, all five conditions of Fact 2 are verified. Therefore, ϕ is the PS rule. This completes
the verification of Theorem 4. �

Analogous to Corollary 1, the verification of Theorem 4 implies that the PS rule is the unique
one satisfying sd-efficiency and sd-envy-freeness on an augmented restricted tier domain.

Corollary 2 Let D be an augmented restricted tier domain. A rule is sd-efficient and sd-envy-
free if and only if it is the PS rule.

Proof : The sufficiency part hold evidently. We focus on the necessity part. Let ϕ : Dn → L
be an sd-efficient and sd-envy-free rule. Fixing P ≡ (P1, . . . , Pn) ∈ Dn, let L ≡ ϕ(P ). First,
according to Theorem 4.1 in Bogomolnaia and Moulin (2002), we have statements (i) - (iii) in
the proof of the necessity part of Theorem 4. Furthermore, in the proof of the necessity part of
Theorem 4, note that the verification of Claims 1 - 5 only relies on the application of statements
(i) - (iii) and the axioms of sd-efficiency and sd-envy-freeness. Therefore, we assert that ϕ is the
PS rule. �
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5 Conclusion

In this paper, we have shown that if a connected domain admits an sd-strategy-proof, sd-
efficient and equal-treatment-of-equals (or sd-envy-free) rule, the domain is a restricted tier
domain, and this rule must be the PS rule.

Our results may be interpreted as both negative and positive. On the one hand, a restricted
tier domain is restrictive, and does not give much freedom for agents to spell their preferences.
On the other hand, in some realistic situations, for example the house allocation in a skyscraper
or along a road, the restricted tier structure seems to be an appropriate assumption. Then our
characterization of the PS rule supports its application in these situations.

More importantly, we identify the restricted tier domain as a boundary for the compatibility
of these canonical axioms. Since connectedness is a mild and economically reasonable domain
richness assumption and the axioms we impose are both canonical and normatively desirable,
our characterizations suggest that a restricted tier structure must be embedded and the PS rule
should be used to determine random assignments.

For further research, it would be interesting to investigate the analogous characterization
problem for more general class of domains beyond connectedness. Another interesting problem
is related to the domain characterization under different preference extension approaches (e.g.,
Cho (2012) and Aziz et al. (2014)) other than the stochastic-dominance extension.
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A Appendix: Proof of Theorem 3

To prove Theorem 3, it suffices to show that if domain D satisfies the elevating property,
there exists no sd-strategy-proof, sd-efficient and equal-treatment-of-equals rule.

Suppose that D satisfy the elevating property, e.g., domain D contains preferences P̄i, Pi, P̂i
in Table 1. Let ϕ : Dn → L be a rule satisfying sd-strategy-proofness, sd-efficiency, and
equal treatment of equals. Let n̄ ≡ n

2
if n is even, and n̄ ≡ n−1

2
if n is odd. We search for a

contradiction. We first provide the sketch of proofs.
We consider the following four groups of preference profiles: Profile Groups I - IV. In

particular, for the case of odd number of agents, we consider two additional groups of preference
profiles: Profile Groups V and VI. See Table 2 below. Note that every preference profile in
these groups consists of only preferences of P̄i, Pi and P̂i.

Profile Group I: n is either even or odd Profile Group II: n is either even or odd

P 1,0 = (P1, P2, . . . , Pn)

P 1,1 = (P̂1, P2, . . . , Pn) P 2,1 = (P1, P2, . . . , Pn−1, P̄n)
... P 2,2 = (P̂1, P2, . . . , Pn−1, P̄n)
...

...

P 1,m = (P̂1, . . . , P̂m, Pm+1, . . . , Pn) P 2,m = (P̂1, . . . , P̂m−1, Pm, . . . , Pn−1, P̄n)
...

...

P 1,n̄ = (P̂1, . . . , P̂n̄, Pn̄+1, . . . , Pn) P 2,n̄ = (P̂1, . . . , P̂n̄−1,Pn̄, Pn̄+1, . . . , Pn−1, P̄n)

P 2,n̄+1 = (P̂1, . . . , P̂n̄−1, P̂n̄, Pn̄+1, . . . , Pn−1, P̄n)

Profile Group III: n is either even or odd Profile Group IV: n is either even or odd

P 3,0 = (P̂1, . . . , P̂n−1, P̂n)

P 3,1 = (P̂1, . . . , P̂n−1, Pn) P 4,1 = (P̂1, . . . , P̂n−2, P̂n−1, P̄n)
... P 4,2 = (P̂1, . . . , P̂n−2, Pn−1, P̄n)
...

...

P 3,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn) P 4,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn−1, P̄n)
...

...

P 3,n̄ = (P̂1, . . . , P̂n−n̄, Pn−n̄+1, . . . , Pn) P 4,n̄ = (P̂1, . . . , P̂n−n̄, Pn−n̄+1, . . . , Pn−1, P̄n)

Profile Group V: n is odd Profile Group VI: n is odd

P 5,1 = (P1, P2, . . . , Pn−2, P̄n−1, P̄n) P 6,1 = (P̂1, . . . , P̂n−3, P̂n−2, Pn−1, P̄n)

P 5,2 = (P̂1, P2, . . . , Pn−2, P̄n−1, P̄n) P 6,2 = (P̂1, . . . , P̂n−3, P̂n−2, P̄n−1, P̄n)
... P 6,3 = (P̂1, . . . , P̂n−3, Pn−2, P̄n−1, P̄n)
...

...
P 5,m = (P̂1, . . . , P̂m−1, Pm, . . . , Pn−2, P̄n−1, P̄n) P 6,m = (P̂1, . . . , P̂n−m, Pn−m+1, . . . , Pn−2, P̄n−1, P̄n)

...
...

P 5,n̄ = (P̂1, . . . , P̂n̄−1, Pn̄, Pn̄+1, . . . , Pn−2, P̄n−1, P̄n) P 6,n̄ = (P̂1, . . . , P̂n−n̄, Pn−n̄+1, . . . , Pn−2, P̄n−1, P̄n)

P 5,n̄+1 = (P̂1, . . . , P̂n̄−1, P̂n̄,Pn̄+1, . . . , Pn−2, P̄n−1, P̄n)

Table 2: Preference Profile Groups

We first show that for every preference profile of each profile group and every agent, the
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sum of probabilities over objects a, b and c equals to 3
n

(see Lemma 10). Then, in the rest of
verification, we only focus on the random assignments of objects a, b and c.

At every preference profile in profile groups I - IV, we fully characterize the random assign-
ment of objects a, b and c(see Claims 1 - 5). Then, we realize that when n is an even number,
the probability of assigning object c to agent n̄ under profile P 2,n̄ is distinct from that under
profile P 4,n̄. This formulates a contradiction against sd-strategy-proofness since from P 2,n̄ to
P 4,n̄, agent n̄ unilaterally deviates from Pi to P̂i, and object c shares the same upper contour set
in both Pi and P̂i.

When n is an odd number, in addition to profile groups I - IV, we consider profile groups V
and VI. At every preference profile in both profile groups V and VI, we focus on characterizing
probabilities of assigning object c to every agent (see Claims 6 - 8). Eventually, we observe that
the probability of assigning object c to agent n̄ + 1 under profile P 5,n̄+1 is distinct from that
under profile P 6,n̄. This formulates a similar contradiction against sd-strategy-proofness.

Lemma 10 For every profile P in profile groups I - VI, ϕia(P ) + ϕib(P ) + ϕic(P ) = 3
n

.

Proof : The verification of this lemma is routine. In each profile group, repeatedly applying
sd-strategy-proofness and equal treatment of equals, we have the result. Due to the tediousness,
we omit the detailed proof. �

Now, we consider profile groups I - IV. According to Lemma 10, we only focus on the
random assignments over a, b and c in each preference profile.

Claim 1 In profile group I, for each m = 0, 1, . . . , n̄, the random assignment ϕ(P 1,m) over a, b
and c is specified below

a b c

1 0 2
n

1
n

...
...

...
...

m 0 2
n

1
n

m+ 1 1
n−m

n−2m
n(n−m)

1
n

...
...

...
...

n 1
n−m

n−2m
n(n−m)

1
n

Proof : For m = 0, equal treatment of equals implies ϕix(P 1,0) = 1
n

for all i ∈ I and x ∈
{a, b, c}.

Next, we show ϕic(P
1,m) = 1

n
for all i ∈ I and m = 1, . . . , n̄. We specify an induction

hypothesis: given 1 6 m 6 n̄, for all 0 6 l < m, ϕic(P 1,l) = 1
n

for all i ∈ I . We will
show ϕic(P

1,m) = 1
n

for all i ∈ I . Notice that profiles P 1,m−1 and P 1,m are different only in
agent m’s preference, i.e., Pm−1

m = Pi and Pm
m = P̂i in Table 1. Then sd-strategy-proofness

and induction hypothesis imply ϕmc(P 1,m) = ϕmc(P
1,m−1) = 1

n
. Moreover, equal treatment of

equals and feasibility imply ϕic(P 1,m) = 1
n

for all i ∈ I .
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Last, for m = 1, . . . , n̄, note that |{1, . . . ,m}| 6 n
2

and all agents in {m+ 1, . . . , n} prefer
a to b in profile P 1,m. Consequently, by sd-efficiency, feasibility and Lemma 10, we have
ϕia(P

1,m) = 0 for all i = 1, . . . ,m.
Finally, by Lemma 10, feasibility and equal treatment of equals, we have the claim. �

Claim 2 In profile group II, the random assignment ϕ(P 2,1) over a, b and c is specified below

a b c

1 1
n

1
n−1

n−2
n(n−1)

...
...

...
...

n− 1 1
n

1
n−1

n−2
n(n−1)

n 1
n

0 2
n

Proof : The verification is routine and we hence omit it. �

Claim 3 In profile group II, for eachm = 2, . . . , n̄ (if n is even), and for eachm = 2, . . . , n̄, n̄+

1 (if n is odd), the random assignment ϕ(P 2,m) over a, b and c is specified below

a b c

1 0 3
n
− α(m) α(m)

...
...

...
...

m− 1 0 3
n
− α(m) α(m)

m 1
n−(m−1)

1−(m−1)[ 3
n
−α(m)]

n−m
1−[ 3

n
− 1
n−(m−1)

]−(m−1)α(m)

n−m
...

...
...

...

n− 1 1
n−(m−1)

1−(m−1)[ 3
n
−α(m)]

n−m
1−[ 3

n
− 1
n−(m−1)

]−(m−1)α(m)

n−m

n 1
n−(m−1)

0 3
n
− 1

n−(m−1)

where α(m) = n2−(m+1)n+(3m−4)
n(n−1)[n−(m−1)]

Proof : The verification of this claim consists of 4 steps. The first 3 steps are valid for m =

2, . . . , n̄, n̄+ 1 no matter n is even or odd. The last steps is verified under the cases of even and
odd number of agents separately.

Step 1, we show ϕna(P
2,m) = 1

n−(m−1)
for all m = 2, . . . , n̄, n̄ + 1. Notice that P 2,m

and P 1,m−1 are different merely in agent n’s preferences, i.e., P 2,m
n = P̄i and P 1,m−1

n = Pi in
Table 1. Then, sd-strategy-proofness implies P 2,m

na = P 1,m−1
na = 1

n−(m−1)
. This completes the

verification of step 1.

Step 2, we show ϕnb(P
2,m) = 0 and ϕnc(P 2,m) = 3

n
− 1

n−(m−1)
for all m = 2, . . . , n̄, n̄+ 1.

Given m ∈ {1, . . . , n̄, n̄ + 1}, since all agents other than n prefer b to c, sd-efficiency and
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feasibility imply ϕnb(P
2,m) = 0. Then, by Lemma 10 and Step 1, we have ϕnc(P 2,m) =

3
n
− 1

n−(m−1)
. This completes the verification of step 2.

Step 3, we show ϕic(P
2,m) = α(m) for all i = 1, . . . ,m − 1 and m = 2, . . . , n̄, n̄ + 1. By

equal treatment of equals, it suffices to show ϕm−1,c(P
2,m) = α(m) for allm = 2, . . . , n̄, n̄+1.

Notice that for all m = 2, . . . , n̄, n̄ + 1, profiles P 2,m and P 2,m−1 are different merely in
agent m− 1’s preferences, i.e., P 2,m−1

m−1 = Pi and P 2,m
m−1 = P̂i in Table 1.

Now, we prove Step 3 by an induction argument on m = 2, . . . , n̄, n̄+ 1.
Initial statement: for m = 2, by sd-strategy-proofness and Claim 2, we have

ϕ1,c(P
2,2) = ϕ1,c(P

2,1) =
n− 2

n(n− 1)
=
n2 − (2 + 1)n+ (3× 2− 4)

n(n− 1)[n− (2− 1)]
= α(2).

Induction Hypothesis: Given 2 6 m 6 n̄, for all 2 6 l < m+ 1, we have ϕl−1,c(P
2,l) = α(l).

We show ϕm,c(P
2,m+1) = α(m+ 1) by the following elaboration.

ϕm,c(P
2,m+1) = ϕm,c(P

2,m) by sd-strategy-proofness

=
1−ϕnc(P 2,m)−

∑m−1
i=1 ϕic(P

2,m)

n−m by equal treatment of equals and feasibility

=
1−[ 3

n
− 1
n−(m−1)

]−(m−1)ϕm−1,c(P 2,m)

n−m by Step 2 and equal treatment of equals

=
1−[ 3

n
− 1
n−(m−1)

]−(m−1)α(m)

n−m by induction hypothesis

= α(m+ 1) by simplifying the expression

This completes the verification of induction hypothesis and hence step 3.

Step 4, we show ϕia(P
2,m) = 0 for all i = 1, . . . ,m− 1 and m = 2, . . . , n̄ (if n is even) or

m = 2, . . . , n̄, n̄+1 (if n is odd).13 Givenm ∈ {2, . . . , n̄} (if n is even), orm ∈ {2, . . . , n̄, n̄+1}
(if n is odd), suppose that ϕia(P 2,m) = β > 0 for some i = 1, . . . ,m − 1. Thus, sd-efficiency
implies that ϕjb(P 2,m) = 0 for all j = m, . . . , n − 1. Consequently, since ϕnb(P 2,m) = 0 by
Step 2, we know

∑m−1
i=1 ϕib(P

2,m) = 1.
Evidently, equal treatment of equals implies ϕia(P 2,m) = β for all i = 1, . . . ,m− 1. Thus,

by Lemma 10 and Step 3, we have ϕib(P 2,m) = 3
n
− α(m) − β for all i = 1, . . . ,m − 1.

Therefore, equal treatment of equals implies

m−1∑
i=1

ϕib(P
2,m) = (m−1)×

[
3

n
− α(m)− β

]
< (m−1)×

[
3

n
− n2 − (m+ 1)n+ (3m− 4)

n(n− 1)[n− (m− 1)]

]
.

To induce the contradiction
∑m−1

i=1 ϕib(P
2,m) < 1, we show (m−1)×

[
3
n
− n2−(m+1)n+(3m−4)

n(n−1)[n−(m−1)]

]
6

1. Equivalently, we show −2m2n+ 3mn2 +m− n3 − 2n2 + 2nm− 1 6 0.
Consider the function f(θ) = −2θ2n + 3θn2 + θ − n3 − 2n2 + 2nθ − 1, θ ∈ R. We know

f ′(θ) = −4nθ + 3n2 + 1 + 2n and f ′′(θ) = −4n < 0 for all θ ∈ R. It is evident that f ′(θ) is
a strictly decreasing function on R. Now, we consider the case n is even and the case n is odd
separately.

13In Chang and Chun (2016), the verification related to this step is simply an application of sd-efficiency. How-
ever, due to the complexity of α(m), mere sd-efficiency is not enough for the verification.
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Case 1: n is even. Thus, n̄ = n
2
. Since f ′(n

2
) = (n + 1)2 > 0, it must be the case that

f ′(θ) > 0 for all 2 6 θ 6 n
2
. Therefore, f is a strictly increasing function on 2 6 θ 6 n

2
. Next,

since f(n
2
) = −(n− 1

4
)2 − 15

16
< 0, we have f(θ) < 0 for all 2 6 θ 6 n

2
.

Case 2: n is odd. Thus, n̄ = n−1
2

. Since f ′(n+1
2

) = n2 + 1 > 0, it must be the case that
f ′(θ) > 0 for all 2 6 θ 6 n+1

2
. Therefore, f is a strictly increasing function on 2 6 θ 6 n+1

2
.

Since f(n+1
2

) = −1
2
(n− 1)2 < 0, we have f(θ) < 0 for all 2 6 θ 6 n+1

2
.

In conclusion, no matter n is even or odd, we have −2m2n + 3mn2 + m − n3 − 2n2 +

2nm − 1 = f(m) < 0, and hence,
∑m−1

i=1 ϕib(P
2,m) < 1. Contradiction! This completes the

verification of step 4.

Finally, Lemma 10, feasibility and equal treatment of equals give the rest of characteriza-
tions in the claim. �

Claim 4 In profile group III, for each m = 0, 1, . . . , n̄, the random assignment ϕ(P 3,m) over
a, b and c is specified below

a b c

1 n−2m
n(n−m)

1
n−m

1
n

...
...

...
...

n−m n−2m
n(n−m)

1
n−m

1
n

n−m+ 1 2
n

0 1
n

...
...

...
...

n 2
n

0 1
n

Proof : The verification follows from a similar argument in the proof of Claim 1. �

Claim 5 In profile group IV, for each m = 1, . . . , n̄, the random assignment ϕ(P 4,m) over a, b
and c is specified below

a b c

1 n−2m
n(n−m)

1
n−m

1
n

...
...

...
...

n−m n−2m
n(n−m)

1
n−m

1
n

n−m+ 1 2
n

0 1
n

...
...

...
...

n− 1 2
n

0 1
n

n 2
n

0 1
n

Proof : The verification of the claim consists of 4 steps.
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Step 1, we show ϕn,a(P
4,m) = 2

n
for all m = 1, . . . , n̄. Notice that, for all m = 1, . . . , n̄,

P 4,m and P 3,m are different merely in agent n’s preferences, i.e., P 4,m
n = P̄i and P 3,m

n = Pi in
Table 1. By sd-strategy-proofness, we have ϕn,a(P 4,m) = ϕn,a(P

3,m) = 2
n

. This completes the
verification of step 1.

Step 2, we show ϕn,b(P
4,m) = 0 and ϕn,c(P 4,m) = 1

n
for all m = 1, . . . , n̄. The verification

of this step follows from the same verification of Step 2 in the proof of Claim 3.

Step 3, we show ϕic(P
4,m) = 1

n
for all i ∈ I and m = 1, . . . , n̄. First, since ϕn,c(P 4,1) = 1

n

by Step 2, feasibility and equal treatment of equals imply ϕic(P 4,1) = 1
n

for all i = 1, . . . , n−1.
Therefore, ϕic(P 4,1) = 1

n
for all i ∈ I .

Next, we specify an induction hypothesis: given 2 6 m 6 n̄, for all 1 6 l < m, ϕic(P 4,l) =
1
n

for all i ∈ I . We will show ϕic(P
4,m) = 1

n
for all i ∈ I . Notice that, P 4,m and P 4,m−1

are different merely in agent (n − m + 1)’s preferences, i.e., P 4,m
n−m+1 = Pi and P 4,m−1

n−m+1 =

P̂i in Table 1. Then sd-strategy-proofness and induction hypothesis imply ϕn−m+1,c(P
4,m) =

ϕn−m+1,c(P
4,m−1) = 1

n
. Then, by equal treatment of equals, we know ϕic(P

4,m) = 1
n

for all
i = n−m+ 1, . . . , n− 1. Moreover, by Step 2 and feasibility, we have ϕjc(P 4,m) = 1

n
for all

j = 1, . . . , n −m. Therefore, ϕic(P 4,m) = 1
n

for all i ∈ I . This completes the verification of
induction hypothesis and hence step 3.

Step 4, we show ϕi,b(P
4,m) = 0 for all i = n − m + 1, . . . , n − 1 and m = 2, . . . , n̄.

Given m ∈ {2, . . . , n̄}, suppose ϕi,b(P 4,m) = α > 0 for some i ∈ {n − m + 1, . . . , n − 1}.
Then equal treatment of equals and Step 4 imply ϕi,b(P 4,m) = α and ϕi,a(P 4,m) = 2

n
−α for all

i = n−m+1, . . . , n−1. Moreover, by sd-efficiency, it must be the case that ϕi,a(P 4,m) = 0 for
all i = 1, . . . , n−m. Then, Lemma 10 and Step 3 imply ϕi,b(P 4,m) = 2

n
for all i = 1, . . . , n−m

Thus, the feasibility of a implies α = 1
m−1

2
n
(m− n

2
) 6 0 since m 6 n̄ 6 n

2
. Contradiction!

Finally, Lemma 10, feasibility and equal treatment of equals give the rest of characteriza-
tions in the claim. �

Now we have the contradiction for the case of even number of agents. Let n be even.
Notice that P 2,n̄ and P 4,n̄ are different merely in agent n̄’s preference, i.e., P 2,n̄

n̄ = Pi and
P 4,n̄
n̄ = P̂i where Pi and P̂i are from Table 1. Then sd-strategy-proofness requires ϕn̄,c(P 2,n̄) =

ϕn̄,c(P
4,n̄). Thus, we have

1− [ 3
n
− 1

n−(n
2
−1)

]− (n
2
− 1)

n2−(n
2

+1)n+(3×n
2
−4)

n(n−1)[n−(n
2
−1)]

n− n
2

=
1

n
⇔ n2 − n− 2 = n2 − n. Contradiction!

When n is odd, profiles P 2,n̄+1 and P 4,n̄ are different merely in agent (n̄+ 1)’s preferences,
i.e., P 2,n̄+1

n̄+1 = Pi and P 4,n̄
n̄+1 = P̂i in Table 1. However, we cannot induce a contradiction similar

to that above since we can verify that ϕn̄+1,c(P
2,n̄+1) = 1

n
= ϕn̄+1,c(P

4,n̄). Henceforth, we
assume that n is an odd number. Hence, n > 5. We proceed the verification on profile groups
V and VI.
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Claim 6 In profile group V, the random assignment ϕ(P 5,1) over a, b and c is specified below

a b c

1 1
n

1
n−2

2
n
− 1

n−2

...
...

...
...

n− 2 1
n

1
n−2

2
n
− 1

n−2

n− 1 1
n

0 2
n

n 1
n

0 2
n

Proof : The verification is routine and we hence omit it. �

Claim 7 In profile group V, for eachm = 2, . . . , n̄, n̄+1, the random assignment ϕ(P 5,m) over
a, b and c is specified below14

a b c

1 − − γ(m)

...
...

...
...

m− 1 − − γ(m)

m − −
1−2×( 3

n
− 1
n−(m−1)

)−(m−1)γ(m)

n−(m+1)

...
...

...
...

n− 2 − −
1−2×( 3

n
− 1
n−(m−1)

)−(m−1)γ(m)

n−(m+1)

n− 1 1
n−(m−1)

0 3
n
− 1

n−(m−1)

n 1
n−(m−1)

0 3
n
− 1

n−(m−1)

where γ(m) = n4−2(m+2)n3+(m2+11m−5)n2−(7m2+m−8)n+(6m2−6m−4)
n(n−1)(n−2)(n−(m−1))(n−m)

.

Proof : The verification of this claim consists of 3 steps.

Step 1, we show ϕia(P
5,m) = 1

n−(m−1)
for i = n− 1, n and all m = 2, . . . , n̄, n̄+ 1. Notice

that P 5,m and P 2,m are different merely in agent (n − 1)’s preferences, i.e., P 5,m
n−1 = P̄i and

P 2,m
n−1 = Pi in Table 1. Then sd-strategy-proofness implies ϕn−1,a(P

5,m) = ϕn−1,a(P
2,m) =

1
n−(m−1)

. This completes the verification of step 1.

Step 2, we show ϕib(P
5,m) = 0 and ϕic(P 5,m) = 3

n
− 1

n−(m−1)
for i = n − 1, n and all

m = 2, . . . , n̄, n̄+1. The verification simply follows from an application of sd-efficiency, equal
treatment of equals, feasibility and Lemma 10. Therefore, we omit the details.

Step 3, we show ϕic(P
5,m) = γ(m) for all i = 1, . . . ,m − 1 and m = 2, . . . , n̄, n̄ + 1. By

equal treatment of equals, it suffices to show ϕm−1,c(P
5,m) = γ(m) for all m = 2, . . . , n̄, n̄+1.

14A dash “−” in the random assignment matrix represents that the probability of assigning one object to a
corresponding agent is not specified.
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First, notice that for all m = 2, . . . , n̄, n̄ + 1, profiles P 5,m and P 5,m−1 are different merely
in agent m− 1’s preferences, i.e., P 5,m−1

m−1 = Pi and P 5,m
m−1 = P̂i in Table 1.

Now, we prove Step 3 by an induction argument on m = 2, . . . , n̄, n̄+ 1.
Initial statement: for m = 2, by sd-strategy-proofness and Claim 6, we have

ϕ1,c(P
5,2) = ϕ1,c(P

5,1)

=
2

n
− 1

n− 2

=
n4 − 2× (2 + 2)n3 + (22 + 11× 2− 5)n2 − (7× 22 + 2− 8)n+ (6× 22 − 6× 2− 4)

n(n− 1)(n− 2)(n− (2− 1))(n− (2 + 1))

= γ(2).

Induction Hypothesis: Given 2 6 m 6 n̄, for all 2 6 l < m+ 1, we have ϕl−1,c(P
5,l) = γ(l).

We show ϕm,c(P
5,m+1) = γ(m+ 1) by the following elaboration.

ϕm,c(P
5,m+1) = ϕm,c(P

5,m) by sd-strategy-proofness

=
1−ϕn−1,c(P 5,m)−ϕnc(P 5,m)−

∑m−1
i=1 ϕic(P

5,m)

n−(m+1)
by equal treatment of equals and feasibility

=
1−2×[ 3

n
− 1
n−(m−1)

]−(m−1)ϕm−1,c(P 5,m)

n−(m+1)
by Step 2 and equal treatment of equals

=
1−2×[ 3

n
− 1
n−(m−1)

]−(m−1)γ(m)

n−(m+1)
by induction hypothesis

= γ(m+ 1) by simplifying the expression

This completes the verification of induction hypothesis and hence step 3.

Finally, by feasibility and equal treatment of equals, we haveϕic(P 5,m) =
1−2×[ 3

n
− 1
n−(m−1)

]−(m−1)γ(m)

n−(m+1)

for all i = m, . . . , n− 2 and m = 2, . . . , n̄, n̄+ 1. This completes the verification of the claim.
�

Claim 8 In profile group VI, for each m = 2, . . . , n̄, the random assignment ϕ(P 6,m) over a, b
and c is specified below

a b c

1 − − 1
n

...
...

...
...

n−m − − 1
n

n−m+ 1 − − 1
n

...
...

...
...

n− 2 − − 1
n

n− 1 2
n

0 1
n

n 2
n

0 1
n

Proof : The verification of this claim consists of 3 steps.

Step 1, we show ϕia(P
6,m) = 2

n
for i = n − 1, n and all m = 2, . . . , n̄. For each m =

2, . . . , n̄, notice that P 6,m and P 4,m are different merely in agent (n − 1)’s preferences, i.e.,
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P 6,m
n−1 = Pi and P 4,m

n−1 = P̄i in Table 1. Then, sd-strategy-proofness implies ϕn−1,a(P
6,m) =

ϕn−1,a(P
4,m) = 2

n
. Then, equal treatment of equals implies ϕna(P 6,m) = 2

n
. This completes

the verification of step 1.

Step 2, we show ϕib(P
6,m) = 0 and ϕic(P 6,m) = 1

n
for i = n− 1, n and all m = 2, . . . , n̄.

The verification simply follows from an application of sd-efficiency, equal treatment of equals,
feasibility and Lemma 10. Therefore, we omit the details.

Step 3, we show ϕic(P
6,m) = 1

n
for all i = 1, . . . , n − 2 and m = 3, . . . , n̄. First, in P 6,2,

according to Step 2, by feasibility and equal treatment of equals, we have ϕic(P 6,2) = 1
n

for all
i = 1, . . . , n− 2.

Next, notice that P 6,3 and P 6,2 are different merely in agent n−2’s preferences, i.e., P 6,3
n−2 =

Pi and P 6,2
n−2 = P̂i where Pi and P̂i are from Table 1. Then, sd-strategy-proofness implies

ϕn−2,c(P
6,3) = ϕn−2,c(P

6,2) = 1
n

. Last, by feasibility, equal treatment of equals and Step 2, we
know ϕic(P

6,3) = 1
n

for all i = 1, . . . , n− 3. Next, we provide an induction argument.

Induction Hypothesis: Given 4 6 m 6 n̄, for all 3 6 l < m, ϕic(P 6,l) = 1
n

for all i =

1, . . . , n− 2.

We will show ϕic(P
6,m) = 1

n
for all i = 1, . . . , n − 2. Notice that P 6,m and P 6,m−1

are different merely in agent n − m + 1’s preference, i.e., P 6,m
n−m+1 = Pi and P 6,m−1

n−m+1 = P̂i
in Table 1. Then, sd-strategy-proofness and induction hypothesis imply ϕn−m+1,c(P

6,m) =

ϕn−m+1,c(P
6,m−1) = 1

n
. Furthermore, equal treatment of equals implies ϕi,c(P 6,m) = 1

n
for all

i = n −m + 1, . . . , n − 2. Last, by feasibility, equal treatment of equals and Step 2, we have
ϕic(P

6,m) = 1
n

for all i = 1, . . . , n−m. This completes the verification of induction hypothesis,
hence Step 3 and the claim. �

Now we have the contradiction for the case of odd number of agents. Now, n̄ = n−1
2

.
Notice that P 5,n̄+1 and P 6,n̄ are different only in agent (n̄ + 1)’s preference, i.e., P 5,n̄+1

n̄+1 =

Pi and P 6,n̄
n̄+1 = P̂i where Pi and P̂i are from Table 1. Then sd-strategy-proofness requires

ϕn̄+1,c(P
5,n̄+1) = ϕn̄+1,c(P

6,n̄). Thus, we have

1− 2×
[

3
n −

1
n−[(n̄+1)−1]

]
− [(n̄+ 1)− 1]γ(n̄+ 1)

n− [(n̄+ 1) + 1]
=

1

n
⇔ n3 − 6n2 + 11n− 2

n(n3 − 6n2 + 11n− 6)
=

1

n
. Contradiction!

In conclusion, a domain satisfying the elevating property admits no sd-strategy-proof, sd-
efficient and equal-treatment-of-equals rule. Therefore, the connected domain D in Theorem 3
must violate the elevating property. Last, applying Lemmas 5 - 7, we show that domain D is a
restricted tier domain. This completes the verification of Theorem 3.
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