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ABSTRACT
Vehicle trajectories are one of the most important data in location-
based services. The quality of trajectories directly affects the ser-
vices. However, in the real applications, trajectory data are not
always sampled densely. In this paper, we study the problem of
recovering the entire route between two distant consecutive loca-
tions in a trajectory. Most existing works solve the problem with-
out using those informative historical data or solve it in an empirical
way. We claim that a data-driven and probabilistic approach is ac-
tually more suitable as long as data sparsity can be well handled.
We propose a novel route recovery system in a fully probabilistic
way which incorporates both temporal and spatial dynamics and
addresses all the data sparsity problem introduced by the proba-
bilistic method. It outperforms the existing works with a high ac-
curacy (over 80%) and shows a strong robustness even when the
length of routes to be recovered is very long (about 30 road seg-
ments) or the data is very sparse.

Keywords
Trajectory; route recovery; spatio-temporal; location-based services

1. INTRODUCTION
With the development of GPS devices, more and more trajectory

data are generated every day which brings the bloom of Location-
Based Services (LBSs) [21]. To improve the quality of service,
most, if not all, applications prefer a large volume of data with zero
uncertainty. However, most of the data in the real world have uncer-
tainty. Consequently, recovering the routes of uncertain trajectory
data can help enhance the utility of data and reduce the uncertainty
which can improve the performance and service quality of those
trajectory-data-driven applications.

Route recovery is an important building block for many real-
life applications, and we list two scenarios where route recovery
could make an impact. i) According to a statistical analysis on the
GPS data collected from 10,000+ taxis by [19], more than 60%
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taxi trajectories are in low sampling rate (e.g., a GPS point every
2+ minutes) and reducing the uncertainty of those low sampling
rate trajectories is an urgent issue. ii) Digital cameras and sensors
installed in the roads are able to capture certain information of ve-
hicles with high accuracy but those devices are still not universal.
Route recovery can help to recover the trajectories passing by roads
without devices installed.

In the literature, there are several works related to route recov-
ery and they can be categorized into two groups, non-data-driven
approaches without relying on historical data [5, 9, 12, 13, 19],
and data-driven approaches that are based on historical data [3,
16, 20]. Non-data-driven approaches recover the routes according
to geometric properties of digital map. They utilize certain exter-
nal properties of road networks (e.g., the turning count, length and
number of lanes) as the cost and return the optimal route having the
minimum cost. These approaches model the cost empirically with-
out any guarantee on the effectiveness as they have no historical
data to infer from. Data-driven approaches recover the routes by
leveraging historical data. A typical approach of finding the most
popular route is introduced in [3], which is applicable to the route
recovery problem, under the assumption that people tend to use the
route that most people prefer. [16] tries to calibrate trajectories to
some anchor points. If we use turning points as the anchor points,
we can also apply the complementary component of this approach
to solve route recovery problem. Another example is presented
in [20], which finds the candidate routes through dynamic program-
ming based on route popularity. To the best of our knowledge, this
approach, as the state-of-the-art solution directly designed for route
recovery problem, makes a comprehensive usage of historical data
and outperforms many existing approaches.

We also adopt a data-driven approach to tackling route recovery
problem, because data-drive approaches can draw more informa-
tive inference than geometric-based approaches, as stated in [20].
In addition, we propose to solve the problem from a probabilistic
view instead of an empirical view. Empirical approaches solve the
problem by intuition while probabilistic approaches can guarantee
the effectiveness of solutions via sound theoretical models.

However, building a probabilistic model based on historical tra-
jectory data will definitely suffer from data sparsity. It is well-
known that more than 80% of the traffic in a typical city runs on
only 10% to 20% of the roads hence the trajectory data are ex-
pected to be sparse. Besides, as mentioned before, given a set of
trajectories, the volume of high sampling rate data based on which
a probability model will be built is often much smaller than that
of low sampling rate data. Inferring the probability distribution
(e.g., the transition probability between roads) is essential for ev-



ery probability model, which can be addressed by traditional sta-
tistical frequency-based approaches. However, when the data are
sparse and the volume of data is insufficient, directly counting the
road frequency will result in a poor estimation according to the
theory of probability. Moreover, as it is guaranteed that some roads
are less frequent with insufficient trajectories passing by, missing
value problem is also expected. Thus, how to address data sparsity
issue will be the main challenge that our approach needs to address.
Note that we will explain different types of data sparsity that route
recovery has to address in details in Section 4 when we present our
solution.

We summarize the key points to the route recovery problem in
the following. 1) The approach should be data-driven. 2) The
approach should be fully based on probability. 3) The approach
should take care of the data sparsity problem. To our best knowl-
edge, none of the existing works fulfills these three conditions si-
multaneously.

Motivated by this, we propose a novel route recovery system
fully based on probabilistic models. Our system incorporates both
temporal dynamics and spatial dynamics according to the theoret-
ical probabilistic derivation and addresses all the challenges intro-
duced by the data sparsity mentioned above. We include in our sys-
tem a temporal model and a spatial model as the key components.
The temporal model aims to estimate the travel time of a candidate
route to quantify the likelihood of the candidate route being the an-
swer. Our spatial model estimates how reasonable a candidate route
is via inverse reinforcement learning that can learn the latent cost
(reward) of a road through historical data. To summarize, we make
three main contributions in this paper.

Non-Empirical Approach: We study the problem in a prob-
abilistic view and incorporate both spatial and temporal dynamic
with the theoretical probabilistic derivation.

Data Sparsity Solution: We propose multiple strategies to ad-
dress the data sparsity problem. Our temporal model includes a
new regression model to estimate the travel time of temporal-sparse
trajectories, and also proposes a static-temporal separation matrix
factorization approach to deal with data sparsity; the spatial model
adopts inverse reinforcement learning to solve the data sparsity
problem against traditional statistical frequency-based approach.

Large Improvement: We conduct extensive experiments using
real taxi trajectories to demonstrate both the effectiveness and the
robustness of our system when facing data sparsity issue. The re-
sults show that our system largely outperforms existing approaches.
It achieves a high accuracy consistently (over 80%), even when the
pair of GPS locations are far away from each other (e.g., about 30
road segments apart) while other approaches can only achieve an
accuracy about 40%.

2. RELATED WORK
Many existing works [12, 13, 22] adopt shortest path to return a

route with minimum weight. [22] is based on geometric and topo-
logical information of the road network; [12] defines the cost as
a heuristic cost function which is related with the delay of traffic
lights and left turns; [13], as an extension of [12], uses the same
cost function to build a candidate graph and finds the path with as
many straight lines as possible. These approaches fail to capture the
preference of drivers when choosing a route, as many drivers select
roads not based on whether roads are straight or not but based on
the traffic condition. Differently, our system can capture the spatial
dynamics by learning from historical trajectories. Map matching
algorithms for low-sampling rate trajectories are proposed in [8,
19]. Although these approaches have also used the concept of tran-
sition probability, they only use this probability as a factor in a
score function but the real frameworks are still empirical-based. In

brief, they are all non-data-driven approaches, and the probabilities
are empirically set.

On the other hand, some existing works including [5, 7, 16, 20]
adopt model-based approaches to solve the route recovery. [5] in-
fers the route between two GPS samples by a binary logit model
utilizing hidden Markov model. However, the performance of this
model deteriorates when there are more than two candidate routes.
[7] uses absorbing Markov chain model to synthesize routes for low
sampling trajectories. Although it is a probabilistic approach, it
suffers from the problem of data sparsity, as it counts the frequency
in historical data to estimate the transition probability between two
states. [16] constructs the transition matrix without considering the
destination information which is fatal in the route recovery prob-
lem. Besides, it needs to enumerate all the possible paths which
makes the computation cost extremely high when the route to be
recovered is long. [20] constructs the traverse graph from histori-
cal trajectories and finds the optimal route in the graph via dynamic
programming. This approach deals with data sparsity but the whole
framework is empirically designed. As an contrast, each compo-
nent of our system is designed with the guarantee of probability
while taking great care of data sparsity. Besides, the query process
of our system is optimized to support online search.

3. PRELIMINARY
We first present the formal definitions of road network, route and

trajectory as following.

DEFINITION 1 (ROAD NETWORK). A road network is mod-
eled as a directed graph G(V,E), where V refers to the set of
vertices (i.e., crossroads) and E refers to the set of edges (i.e., road
segments). We assume each edge r ∈ E is from a vertex v ∈ V to
another vertex v′ ∈ V , where r.s = v and r.e = v′ represent the
source and the end of the edge respectively, r.s → r.e refers to the
direction, and r.len is the length of the edge r.

DEFINITION 2 (ROUTE). A route R is a list of adjacent road
segments, r1 → r2 → · · · rm, where each two consecutive road
segments are connected in G, i.e., ri.e = ri+1.s. We use R[i] to
denote the i-th road segment in R.

DEFINITION 3 (TRAJECTORY). A trajectory Tr is a sequence
of GPS positions with timestamps, i.e, Tr = {(p1, t1), (p2, t2),
· · · , (pn, tn)}, where pi in the form of (xi, yi) captures the lati-
tude and longitude of the i-th GPS position and ti is the timestamp.

DEFINITION 4 (MAP MATCHING). Map matching is a pro-
cedure to match the trajectory Tr to a route R. R(pi) returns the
road segment to which point pi is mapped.

When the sampling rate is low, two continuous GPS sample points
p1, p2 might be mapped to two road segments r1, r2 that are not
adjacent (i.e., r1.e �= r2.s). In other words, the moving object must
pass certain unknown road segment(s) after r1 but before r2. Take
Figure 1 as an example. Given a trajectory Tr = {(ps, ts), (pe, te)},
both routes R1 and R2 are possible. In this paper, we study the
problem of route recovery defined in Problem 1, which locates the
route R∗ that has the highest possibility of being taken by a given
trajectory Tr. Note that although we focus on the recovery of the
route between two consecutive locations, the techniques developed
can be easily extended to recover the route passed by several con-
secutive locations in a sparse sampled trajectory.

PROBLEM 1 (ROUTE RECOVERY). Given a set of (high sam-
pling rate) historical trajectories T and a road network G, the
route recovery query takes two GPS positions with timestamps (i.e.,
(ps, ts) and (pe, te)) as input, and tries to recover the real route R
from ps to pe that is passed by Tr as accurate as possible. Note that
there is no restriction that ps/pe can only be the source/destination
of a trajectory, any two consecutive positions in a trajectory are le-
gal to be the input.
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Figure 1: Example route recovery problem

4. SPATIO-TEMPORAL-BASED ROUTE RE-
COVERY SYSTEM

In this section, we introduce a novel system as our solution to
perform Route Recovery, namely Spatio-Temporal-based Route Re-
covery System (STRS). STRS consists of three main components,
preprocessor, spatio-temporal model and route search engine, as
shown in Figure 2.

Candidate Route 
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Road
Network

Map Matching

Trajectories 
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Matrix Factorization
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Greedy Search
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Trajectories & Routes
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Figure 2: System architecture
Preprocessor performs preprocessing of trajectories, including

map matching and trajectory temporal partitioning. Spatio-temporal
Model, as the essential part of STRS, tries to learn and model prop-
erties of routes from historical data via a probability approach. This
component contains two separate models, i.e., the spatial model
and the temporal model. Route Search Engine computes the pos-
terior probability of a candidate route which can be regarded as the
score of a route and returns a route with the highest score.

The main objective of system STRS is to solve the route recovery
problem via a pure probabilistic approach. To facilitate following
discussion, we summarize the main notations used in this paper in
Table 1. Given a start GPS position ps with its timestamp ts and
an end GPS position pe with its timestamp te, the route recovery
problem is equivalent to find the route R∗ with the highest posterior
probability w.r.t. the input information, i.e.,

R∗ = argmax
R

P (R|ps, pe, ts, te, T )

= argmax
R

P (R|ps, pe, te,Δt, T )

where T is the set of historical trajectories and Δt = te−ts. Based
on Bayes’ theorem,

P (R|ps, pe, te,Δt, T )

= P (R, ps, pe, te,Δt, T )/P (ps, pe, te,Δt, T )

∝ P (R, ps, pe, te,Δt, T )

= P (Δt|R, ps, pe, te, T ) · P (R|ps, pe, te, T ) · P (ps, pe, te, T )

∝ P (Δt|R, ps, pe, te, T ) · P (R|ps, pe, te, T ) (1)

Since P (ps, pe, te,Δt, T ) and P (ps, pe, te, T ) are the probabil-
ities of input information, they can be regarded as constants. In
the following, we omit the notation T in all the representations of
probabilities for presentation clarity.

Based on Equation (1), we understand that the posterior consists
of two probabilities, the time interval likelihood part P (Δt|R, ps,
pe, te) and the time interval-invariant posterior part P (R|ps, pe, te).
The former describes how likely the time interval will be if R is the
route and te is the end time; the latter quantifies the existence prob-
ability of R if the route starts from ps and ends in pe at time te.

Table 1: Major notations
Notation Description

r road segment or road element (in Section 4.2.1)
R, R[i] route, i-th road segment in route R
R(p) road segment to which position p is matched
ps/pe start/end position in a route recovery query
ts/te start/end timestamp in a route recovery query
Δt time interval of a route recovery query, i.e., Δt = te − ts
T entire historical trajectory set
τ(t) time slot in which time t falls
ν interval of a time slot

4.1 Preprocessor
The preprocessor of STRS performs two processes, map match-

ing and temporal partitioning. We first adopt map matching al-
gorithm to get the ground truth of historical data, i.e., the actual
route. We consider all the trajectories that can be mapped to routes
without uncertainty as useful historical samples. E.g., according to
[10], when the sampling rate is 1 ∼ 30s per point, map matching
can achieve an accuracy about 99%, indicating that these trajecto-
ries can obtain the ground truth route without uncertainty.

It is known that the properties of historical trajectory data may
vary over time [1]. This observation motivates us to partition the
trajectories based on the temporal dimension. We then introduce a
parameter ν which determines the temporal duration within when
the trajectories shall be gathered into one class. By default, we set
ν to 60 minutes in our experiments. Accordingly, there are 48 parti-
tions T1, T2, · · · , T48 with T1, T2, · · · , T24 corresponding to work-
ing day and T25, T26, · · · , T48 corresponding to weekends. For
those trajectories crossing multiple time slots, we distribute them
according to the time slot which te is in. The effects of different
time slot granularity will be studied in Section 5.3.1.

4.2 Spatio-Temporal Model
As introduced previously, spatio-temporal model is the essential

component of STRS. Recall that Equation (1) consists of two prob-
abilities, i.e., P (Δt|R, ps, pe, te), and P (R|ps, pe, te). The for-
mer is to model the likelihood of the time interval that is taken care
by the temporal model and the latter is the posterior of a route re-
gardless of time information Δt which accounts for a spatial model
to model existence of the route.

4.2.1 Temporal Model
In the following, we introduce our temporal model to model the

likelihood P (Δt|R, ps, pe, te). The key is to model the distribu-
tion of the observed time interval Δt, conditioned by a candidate
route R, given ps and pe under time slot τ(te), where τ(te) refers
to the time slot that end time stamp te falls in. Intuitively, the dis-
tribution will be strongly correlated with the expected time of R in
τ(te), i.e., the closer Δt and the expected time of R are, the higher
the likelihood will be. The connection between the expected time
and the distribution will be further demonstrated in Section 4.3.
To be more comprehensive, we call the expected time as estimated
time (denoted as ΔtE) to emphasize that we want to perform esti-
mation on the time cost of a candidate route R, which is achieved
by two steps, including Regression Estimation Model and Static-
dynamic-separation Matrix Factorization, as detailed below.
Regression Estimation Model. This step is to estimate the time
taken by a given R in time slot τ(te) through historical trajectories.
There are several existing works on solving the travel time estima-
tion. Most of them can be categorized into road segment-based and
route-based. However, both categories face some problems in sup-
porting route recovery. Road segment-based approaches, e.g., [4,
15], first estimate the average speed and then get the time cost of
individual road segment. The travel time of a route is the summa-
tion of the time cost of road segments passed by the route. These



approaches face issues when the speed is not available or the sam-
pling rate is not high enough. Take p1 and p2 in Figure 3 as an
example. The ratio of the total travel distance between p1 and p2
to the time interval does not provide a good estimation of the travel
speed as the route passes two junctions and it is very likely that the
speed varies. However, this sample is a useful historical trajectory.
Although the corresponding road segment of p1 and p2, i.e.,r1 and
r3, are not adjacent, it is still easy to infer that r2 should be in-
cluded in the route. On the other hand, route-based approaches,
e.g., [1, 11], collect the same routes in the historical dataset and
return their mean time cost as the answer. This kind of approaches
can avoid estimating the speed thus they can address the problem
faced by road segment-based approaches. However, they face sig-
nificant data sparsity problem. Note that data sparsity is severe in
route recovery as the number of historical routes that are same as
R presented in τ(te) could be very small or even zero. In other
words, although route-based approaches have better performance,
they are not applicable in route recovery due to the small number
of historical routes that are same as R presented in τ(te). A hy-
brid approach that combines both road segment-based and route-
based approaches is proposed in [18]. It estimates the time cost
of individual driver which is over-grained and will deteriorate the
data sparsity problem. Hence, we propose an approach to combine
these two types of approaches by a regression model to solve the
data sparsity problem.

Figure 3: Example showing the sampling rate problem
The main idea of our solution is that we adopt a road segment-

based approach to estimate the total time cost of a route and employ
a route-based approach to train the time cost of each road segment
by minimizing the error of the estimation in historical data. As we
intend to consider the time spent on the crossroads, notation r de-
notes not only road segments but also crossroads, which is different
from its original meaning used in Definition 2. For simplicity, we
name rs as road elements.

In detail, we first construct a matrix H ∈ R
|Tτ |×(m+n), where

m and n refer to the total number of road segments and crossroads
respectively. Hi∗ ∈ R

m+n denotes the ith row of H and Hi∗ rep-
resents each historical training sample. For each historical route
R(i) processed from Tτ (for simplicity, in this section we use τ to
indicate τ(te)), we construct each training sample based on follow-
ing criteria. We use superscript with parentheses, e.g., (i), to index

the training sample. Note that R(i)[1] and R(i)[k(i)] represent the

first and the last road segment of R(i) with corresponding length
k(i) = |R(i)|.

Hij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if rj ∈ R(i) & rj �= R(i)[1] & rj �= R(i)[k(i)]
distG

(
proj

(
p
(i)
s ,R(i)[1]

)
,R(i)[1].e

)
R(i)[1].len

if rj = R(i)[1]

distG

(
R(i)[k(i)].s,proj(p

(i)
e ,R(i)[k(i)])

)
R(i)[k(i)].len

if rj = R(i)[k(i)]

0 otherwise

(2)

Here, distG(a, b) refers to the network distance from a to b via
road network G, and proj(p, r) refers to the projection position of
a point p on the road segment r. We represent a historical route
R(i) by setting the element of Hi∗ to 1 corresponding to the road
segments passed by R(i). Note that although a route is represented
by a set of complete road segments, the training input representa-

tion Hi∗ is different. As the start position p
(i)
s and the end position

p
(i)
e may lay on the middle of the road segment, elements in Hi∗

corresponding to R(i)[1] and R(i)[k(i)] are set to the ratio in terms
of length within the road segment passed by the trajectory. Equa-
tion (2) gives out the criteria for road segments and for crossroads
we set corresponding elements in H to 1 if the crossroad is passed
by R(i).

For all of the training data, we set the cost function as the squared
error between the estimated travel time and the observed time in-
terval as Equation (3). The first component represents the error in
a matrix form, where ΔT = (Δt(1),Δt(2), · · · ,Δt(|Tτ |))� and
φτ ∈ R

m+n. Note that φτ (j) is the estimated time cost spent on
rj in time slot τ . Because the value of φτ may be odd in some
road segments as it can be set to any value to fit the training data,
we add the second component to restrict the solution so it can only
vary around a given value, i.e., φ′

τ . φ′
τ denotes a rough estimation

of the time cost, which is estimated by the road segment-based ap-
proach. Although this estimation is not accurate, we can infer that
the actual time cost of each road segment shall be not too far from
this estimation. Moreover, we also exert a regularization on φτ to
further avoid over-fitting.

C(φτ ) =
1

2
‖Hφτ −ΔT‖22 +

λ1

2
‖φτ − φ′

τ‖22 +
λ2

2
‖φτ‖22 (3)

We use stochastic gradient decent (SGD) [2] to train the model
and the gradient can be computed by:

∇C =
(
Hi∗φτ −Δt(i)

)
Hi∗ + λ1

(
φτ − φ′

τ

)
+ λ2φτ

After training φτ for each individual time slot, we combine them
together in column-wise, i.e., Φ = (φ1 φ2 · · · φ48) ∈ R

(m+n)×48.
Note that in order to achieve low variance, we train the road ele-
ments with the number of historical trajectories passing by larger
than certain support count (5 in our experiment). Besides, as the
dataset will further be partitioned into 48 time slots and we under-
stand that 80% of the traffic in a typical city runs on only 10% to
20% of the roads, a new data sparsity problem emerges. Actually,
after the training, an incomplete time cost matrix Φ̃ with some el-
ements being null is generated and we will visualize the missing
elements in Section 5.3.2.
Static-dynamic-separation Matrix Factorization. This step is to
infer the value of missing elements in the cost matrix Φ̃ according
to other elements. We assume the time cost of a road element con-
sists of two costs, including a static cost and a temporal-dynamic
cost, as presented in Equation (4). Static cost models the time cost
that is influenced by the explicit features of the road element, such
as the length of the road, the degree of a crossroad and so on. This
cost is invariant over time. The temporal-dynamic cost captures the
dynamic cost which varies over time.

Φ = Φs +Φt = FW +RΓ�
(4)

where Φs,Φt ∈ R
(m+n)×48. Φs is the static time cost ma-

trix and (Φs)ij denotes the static time cost of road element i in
time slot j. As the static time cost matrix is temporal-invariant,
(Φs)i1 = (Φs)i2 = · · · (Φs)i48. We factorize it into FW where

F ∈ R
(m+n)×η is the feature matrix of all road elements and η

denotes the number of explicit features. The ith row Fi∗ represents
the features of ri. The road segment features used in our system
include i) the length of a road segment; ii) the level of the road seg-
ment (e.g., highways, parkways); and iii) the number of POIs near
the road segment; while the features of crossroads used in our sys-
tem are i) the degree of the crossroad; ii) the number of POIs near
the crossroad; and iii) the average level of the road segments that
are connected to the crossroad. W ∈ R

η×48 is the weight matrix
which is to be trained, with stacking 48 equivalent weight vectors
ws in the column-wise, i.e., W = (w,w, · · · , w).



Φt ∈ R
(m+n)×48 is the temporal-dynamic cost matrix and (Φt)ij

denotes the temporal-dynamic cost of ri in time slot j. We factor-
ize Φt into two low rank matrices, i.e.,Φt = RΓ�. We propose
a latent road element factor matrix R ∈ R

(m+n)×�, where each
row of R, i.e., Ri∗ ∈ R

�×1, represents the latent factors of road
segment ri and � denotes the dimension of latent factors. Similarly,
we introduce a latent temporal factor matrix Γ ∈ R

48×� with each
row Γj∗ ∈ R

�×1 representing the latent factors w.r.t. time slot j.
Figure 4 illustrates the factorization.

Figure 4: Illustration of matrix factorization
By approximating the incomplete matrix Φ̃ based on Equation (4)

and reconstructing the cost matrix according to learned W , R and
Γ, we can fill in the missing elements in Φ̃. The cost function is the
square error between the reconstructed elements and the elements.
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Here, M indicates not-null elements in Φ̃ and it is a 0-1 matrix
satisfying that Mij = 0 if Φ̃ij is null and 1 otherwise. The gradient
is computed as follows:

∂J

∂w
= Fi∗F

�
i∗w + (R�

i∗Γj∗ − Φ̃ij)Fi∗ + λ3w

∂J

∂Ri∗
= (Γ�

j∗Γj∗ + λ3)Ri∗ + (w�Fi∗ − Φ̃ij + λ3)Γj∗

∂J

∂Γj∗
= (R�

i∗Ri∗ + λ3)Γj∗ + (w�Fi∗ − Φ̃ij + λ3)Ri∗

We can optimize the cost function by gradient-based optimization
methods [2]. After learning the weight matrix W and two latent
factor matrices R and Γ, we can reconstruct the complete time cost
matrix according to Equation (4) and estimate the travel time of a
route by constructing Hi∗ according to Equation (2) and perform
inner product to the τ th column of Φ, i.e., ΔtE = Hi∗Φ∗τ . The
detail of how to use the estimated time to model the probability
P (Δt|R, ps, pe, te) will be introduced in Section 4.3.
Why data sparsity can be solved. i) For those sparse-sampled his-
torical trajectories, although the route segment-based estimation is
inaccurate, our regression model can leverage the time information
of the entire path to adjust the cost of road elements to minimize the
estimation error of routes. ii) For the sparsity of identical routes,
we perform the final estimation through a road segment-based view
to avoid the sparsity of historical routes. iii) For the sparsity of
missing values in the matrix, matrix factorization enables the infer-
ring of the missing value based on other values, and we separate
the static cost which can even work for the roads without any car
passed by in any time slot.

4.2.2 Spatial Model
The spatial model is to model P (R|ps, pe, te) without consid-

ering the time interval Δt. Since this probability is only relevant
to the start position ps and the end position pe with respect to the
time slot τ(te), we can observe that it only depends on the spa-
tial influence under the dataset of Tτ(te). For clarity of formulas,
we omit the conditional variable te or Tτ(te) in the following dis-
cussion. Recall that in Section 4.2.1 notation r denotes both road
segments and crossroads, here we just change back the notation,
i.e., r refers to only road segments now. Suppose R consists of k

road segments, P (R|ps, pe) can be equally represented as

P (R|ps, pe) = P (R[1]|ps, pe)
k∏

i=2

P (R[i]|R[i− 1], ps, pe) (5)

Markov assumption is often adopted on the driving behavior to
facilitate the modeling [7, 10, 21]. A straightforward approach to
model the transition probability is to perform the statistic.

P (R[i]|R[i− 1], ps, pe) =
N ′

N
(6)

where N ′ is the count of historical trajectories starting from R(ps)
and ending in R(pe) while passing R[i−1] → R[i]. N is the count
of trajectories starting from R(ps) and ending in R(pe) while pass-
ing R[i− 1]. However, this naive method suffers from a data spar-
sity problem. To be more specific, for some R(pe), we might not
be able to find many trips that pass R[i−1] and are ended in R(pe).
If N is not large enough, the estimation of the transition probability
can be largely affected by randomness. The effects of data sparsity
when using this frequency-based approach to compute the transi-
tion probability will be illustrated in Section 5.3.3.
Markov Decision Process and Reinforcement Learning. In our
system, we adopt a better model to address the data sparsity prob-
lem. The decision process that makes each decision based on Markov
property can be modeled as a Markov Decision Process (MDP)
[17]. An (deterministic) MDP is a tuple (S,A, γ,
), where S is
state set of the system, A is the action set, γ ∈ [0, 1] is a discount
factor, and 
 is the reward function where 
(s) denotes the re-
ward at state s. An MDP works as following. It starts at some state
s0 with reward 
(s0) and performs an action and the state of sys-
tem transits to s1 with collecting reward 
(s1). It continues until
it reaches the goal. Making decision at certain state is irrelevant
to all of the previous states, i.e., Markov property. Reinforcement
learning is a learning algorithm in AI to make an optimal decision
with maximized expected rewards in the future [17] in an MDP.
This model is similar to making decision in the crossroads when
driving. We can regard each road segment r as a state and the tran-
sition ri → rj between two adjacent road segments as action. The
reward of each state is the negative latent cost of each road as the
larger the cost is, the smaller the reward will be. Specifically, given
an MDP, reinforcement learning can be performed to figure out the
best policy of each state. Optimal Value function V ∗(s) defines the
maximum reward the agent can get in the future if the current state
is s, i.e., V ∗(s) = arg max

s→s1→s2···

(s)+γ
(s1)+γ2
(s2)+· · · .

Note that the reward of each state is often set to a negative value
and the reward of the destination/goal is set to 0 to avoid perform-
ing MDP infinitely through a ring. Besides, γ is often empirically
set between 0.95 to 1.0 (0.95 in our experiments) to exert an dis-
count on the future. Q-function is a function S × S �→ R with the
definition that Q(〈ri → rj〉|
) = 
(ri) + γV ∗(rj). It is not hard
to find that Q(〈ri → rj〉|
) means that the reward can be received
in the future if the agent makes the decision by transferring from
current state ri to another state rj . According to [14], the transition
probability from ri to rj can be modeled as:

P (〈ri → rj〉|
) =
1

Zi
eQ(〈ri→rj〉|�)

(7)

The larger the future reward is if the agent decides to drive from ri
to rj , the larger the probability to make a decision from ri to rj will
be. Zi is the normalization coefficient to ensure it is a probability.

As the reward 
 (negative latent cost) is unavailable, if we can
learn 
 through historical routes by maximizing the likelihood or
posterior using Equation (7), we can derive all the transition proba-
bilities between any two adjacent road segments. This draws our
attention to inverse reinforcement learning (IRL). Therefore, we



adopt Bayesian inverse reinforcement learning (BIRL) [14] to han-
dle this task, because BIRL has fewer hyper-parameters, easy im-
plementation, and quick convergence. The main idea of BIRL is
to compute the mean of the posterior distribution of the reward 

as the answer, given observations O which is the set of historical
routes.

P (
|O) ∝ P (O|
)P (
) = P (
)
∏

R(i)∈O

P (R(i)|
) (8)

The likelihood part P (R(i)|
) is the simple production of Equa-
tion (7) w.r.t. each two adjacent road segments in a historical route
R(i). We choose uniform distribution to be the prior of 
. [14]
proposes PolicyWalk to get 
, which is a Markov Chain Monte
Carlo method designed for high dimension parameters. Briefly
speaking, the sampler first starts from a random initial value of 

and then samples a new 
′ drawn uniformly at random from the
neighbors of current 
 with distance no more than the step δ, i.e.,

′ ∼ Uniform(
 − δ,
 + δ). The new 
′ will be accepted

with probability min
{
1, P (�′|O)

P (�|O)

}
. The mean of last few samples

drawn from the Markov chain will be returned as the answer when
the Markov chain converges. Please refer to [14] for the details of
PolicyWalk and BIRL.
Why Data Sparsity Can Be Solved: Unlike frequency-based ap-
proaches, IRL aims to fit the whole historical routes by assigning
rewards of each state (road segments). The likelihood of each ob-
servation is not only based on the reward of the next status but
also considers the whole rewards towards the destination, i.e., the
Q-function. Consequently, the entire preference towards the desti-
nation will be taken into consideration which is different from the
edge-centric approaches that only count the ratio of transition be-
tween two consecutive edges. Thus, for those roads that are passed
by a very small number of historical trajectories, IRL will assign
the feasible rewards to those roads so the model can generate the
historical data as likely as possible.

4.3 Route Search Engine
The last component accounts for locating the result of a route

recovery query. It searches the routes that start from ps and end in
pe in the road network. For each candidate route R, it computes
the posterior probability of R according to Equation (1). The route
with the highest posterior is returned as the answer. In the follow-
ing, we first explain how to compute the temporal and spatial proba-
bility in Equation (1) by our novel spatio-temporal model proposed
in Section 4.2, and then present how to perform the search.
Compute P (Δt|R, ps, pe, te). At the first glance, one may
tend to assume the distribution of the time interval of a route P (Δt|
R, ps, pe, te) follows a Gaussian. However, [6] claims that the dis-
tribution of the time does not follow a Gaussian. Instead, the distri-
bution of the speed does follow a Gaussian. i.e., v ∼ N (μv, 1/λv),
where λv = 1/σ2

v is the precision of the Gaussian. Thus, according
to [2], given the distribution of v, the distribution of Δt = R.len/v
can be derived by

PΔt(Δt) = Pv(v) ·
∣∣∣∣
dv

dΔt

∣∣∣∣ =
ξ
√
λv

Δt2
√
2π

e
− 1

2

(
ξ
√

λv
Δt

−μv
√
λv

)2

(9)

For better representation, we denote R.len as ξ. Equation (9)
implies that the distribution of Δt has two parameters ξ

√
λv and

μv

√
λv and these two parameters vary when the route is different

as ξ is the length of the route and μv is the average speed of the
route. Note that till now, we only have obtained the expected time
ΔtE of a route according to our temporal model. Thus, we next
study the correlation between ΔtE and ξ

√
λv as well as μv

√
λv .

Figure 5 plots the relation between ΔtE and the parameter ξ
√
λv

as well as μv

√
λv estimated from the historical routes which are

(a) Scatters of (ΔtE , ξ
√
λv) (b) Scatters of (ΔtE , μv

√
λv)

Figure 5: Statistics for parameter estimation
frequently passed to ensure that the estimation is accurate enough.
From Figure 5(a) we can find a strong linear correlation between
ξ
√
λv and ΔtE thus ξ

√
λv can be represented by aΔtE + b. As

μv is the mean of the distribution of v of a certain route R, we
can approximate μv by the division of the length of R and the
corresponding expected time cost ΔtE , i.e., μv ≈ ξ/ΔtE and
μv

√
λv = a + b/ΔtE . Parameters a, b can be estimated by lin-

ear regression. In summary, for a candidate route R, we can get
μv

√
λv and ξ

√
λv and further get the distribution of Δt by Equa-

tion (9), using the corresponding ΔtE computed in our temporal
model and parameters a and b.
Compute P (R|ps, pe, te). We construct the MDP with the re-
ward 
τ(te) learned by our spatial model in time slot τ(te). We set
the reward of destination to zero. Then we perform value iteration
[17] on the MDP to get the optimal value function and Q-function
of each state. According to Equation (5) and Equation (7), the prob-
ability of R given ps and pe can be derived as

P (R|ps, pe, te) = P (R[1]|ps, pe)
1

Z
e
∑

i Q(〈R[i]→R[i+1]〉|�τ(te))

Route Search. After explaining how to compute the posterior of
a candidate route R, we now discuss how to find a route as the
answer, including a simple greedy search algorithm and an exact
search algorithm. Recall that we have computed the Q-function of
each state by value iteration before. Accordingly, the greedy algo-
rithm starts from the start state R[1] and then selects an transition
action 〈R[1] → r〉 among the road segments adjacent to R[1] with
the highest transition probability, i.e., r = argmaxr′ P (〈R[1] →
r′〉|
) = 1

Z
eQ(〈R[1]→r′|�). It then transits to state r, selects the

next road segment with the highest transition probability and so on.
It performs state transition based on the transition probability un-
til the destination state re is reached. The state sequence traversed
is returned as the answer of greedy search. Note that the greedy
search algorithm, in short GreedyIRL, is simple and fast, but the
returned route might not be the optimal one as it does not consider
the temporal dynamics.

Alternatively, we also propose an exact search algorithm to re-
turn the route with the highest posterior probability P (R|ps, pe,Δt,
te) based on dynamic programming. We first discretize the domain
of time which is real number into integer. Assuming Tmax is the
maximum time duration of route, we construct the status matrix
used in dynamic programming which is denoted as S ∈ R

m×Tmax .
The status S[ri, tj ] refers to the log maximum route probability
with constraint that the route should start from R[1] and end in ri
with expected time cost tj , i.e., S[ri, tj ] = maxR′ logP (R′|Ω),
where R′.first = R[1], R′.last = ri and tj ≤ Δt(R′) < tj+1.
Here, for simplicity, we denote the notation Ω to the input obser-
vations {ps, pe, te}. Thus, the optimal substructure can be derived
as:

S[ri, tj ] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log(1) if ri = R[1] & tj = Φ(ri)
inf if ri = R[1] & tj �= Φ(ri)
max

ri∈adj(rk) =tj
{S[rk, tl]+logP (ri|rk, ps, pe)} o.w.

& tl+Φiτ(te)

where adj(r) = {r′|r.e = r′.s}. We use a Dijkstra-like algo-



rithm to find the route with the highest posterior probability which
is detailed in Algorithm 1.

Directly performing the above algorithm will suffer from great
computation cost as the algorithm will not stop until all the statuses
have been updated. To address this problem we maintain a lower
bound SLB of the result to prune the states which are impossible
to have the final probability higher than SLB . Notice that the prob-
ability value is always smaller than 1, which implies that the log-
probability value is negative. Thus, for the status popped from the
priority queue, the final log-probability of this status is definitely
smaller than current status value as it will be added several log-
probabilities that decrease the value. According to this property, if
the value of the top status in the priority queue is already smaller
than SLB , we can safely confirm that all the statuses in the prior-
ity queue are impossible to be extended as the answer, as listed in
Line 6-7 in Algorithm 1. We first perform the greedy route search
algorithm GreedyIRL() to return an approximate optimal route as
the lower bound (Line 1) and update the lower bound when the
states are extended to re (Lines 12-14). Note that the complexity
of the algorithm without pruning is O(CmTmax × log(mTmax)).

Algorithm 1 Exact Route Search

1: Rans ← GreedyIRL(), SLB ← logP (Rans|Ω);
2: S[, ] ← −inf , S[R[1],Φ(R[1])] ← 0,R[, ] ← empty array;
3: pq.push(S[R[1],Φ(R[1])]);
4: while !pq.empty do
5: pq.pop(S[rk, tl]);
6: if S[rk, tl] < SLB then
7: break;
8: for each ri ∈ adjrk do
9: tj ← tl +Φiτ(te)

10: S[ri, tj ] ← max{S[ri, tj ], S[ri, tl] + logP (ri|rk, pe)};
11: R[ri, tj ] ← [rk, tl];
12: if ri = re & SLB < S[ri, tj ] + logP (Δt(R[ri, tj ])|Ω)

then
13: SLB ← S[ri, tj ] + logP (Δt(R[ri, tj ])|Ω);
14: Rans ← getRoute(ri, tj )
15: else
16: pq.push(S[ri, tj ])
17: return Rans;

5. EVALUATION
In order to evaluate the performance of our STRS system, we

conduct a comprehensive evaluation study and report the results
and our findings in this section.
Dataset Description. We employ the real dataset generated by
taxis from Porto as the main dataset, and select the central of the
city which contains 2, 412 edges and 1, 410 crossroads where his-
torical trajectories are densely distributed. The road network data
is processed from OpenStreetMap. The whole dataset contains
785, 705 trajectories. As mentioned in Section 4.1, we set ν to
60 minutes in our experiments and there are accordingly 48 time
units T1, T2, · · · , T48. In average, there are 16, 368 trajectories in
each time unit Ti. The average sampling rate of the original dataset
is 15s per point. We split the dataset into two equal subsets, one for
training and the other for testing; while we do study the impact of
the size of training set in our experimental study.
Ground Truth. For the ground truth of a trajectory, we use the
map matching algorithm of [10] to get the route in the form of
a sequence of edges. For the sampling rate of 15s, it is enough
to accurately (≈ 99%) map a series of GPS positions to a road
network. Thus, we use the result of map matching as the ground
truth route.
Test Cases. For a complete trip generated by a taxi, we subsample
it by different scales (1 ∼ 30 segments) between two consecutive

GPS positions in the subsampled trajectory. We use consecutive
points in a subsampled trajectory as the input of the query. For
each scale, we randomly generate 1,000 test samples. We conduct
our experiments to see how the performance changes over differ-
ent scales of route recovery queries, while the scale of a query is
set to the total number of road segments passed by the route. Ac-
cordingly, we partition the test data based on different scales and
evaluate all the approaches under different scales.
Evaluation Criteria. We adopt accuracy of route recovery as the
main performance metric. It is defined as the ratio of the length
of correctly inferred road segments to the length of the ground
truth route RG or the inferred route RI whichever is longer, i.e.,

accuracy = (RG∩RI ).len
max{RG.len,RI .len} . We use max{RG.len,RI .len}

to penalize a long inferred route as the longer the route, the higher
the chance that it contains the correct road segments.

5.1 Overall Evaluation
First, we compare the performance of STRS with its competitors.

To have a better demonstration of the effectiveness of STRS, we
implement five approaches as competitors, including HRIS, MPR,
calibration, SP, FP and GreedyIRL.

History based Route Inference System (HRIS) is a typical data-
driven route recovery approach [20]. It first locates k candidate
routes between two consecutive GPS samples and then uses dy-
namic programming to find out the global route by picking up one
route from top-k routes w.r.t. each two consecutive GPS samples.
As HRIS is designed to return a series of candidate routes, we con-
duct the evaluation on HRIS by returning different top-k candidate
routes, denoted as HRIS@k with k set to 1, 5 and 10. Most Pop-
ular Route (MPR) [3] is a data-driven approach which returns the
route between two locations by observing the traveling behavior
of many previous users. Trajectory calibration [16] is also a data-
driven approach which matches the trajectory points to the anchor
points and complements the missing anchor points which are very
likely to be passed by the trajectory. By selecting crossroads as
the anchor points, the approach can be trivially modified to solve
the route recovery problem. Shortest Path (SP) uses the shortest
path to recover the route between two locations which is commonly
adopted by many applications because of its simplicity. Similar
as SP, Fastest Path (FP) returns the route with the minimum time
cost. Last but not the least, we include greedy search algorithm
(GreedyIRL), introduced in Section 4.3, as our final competitor.
Note that GreedyIRL is a simplified version of STRS which does
not take temporal dynamics into consideration.

We evaluate the accuracy of different algorithms under various
query scales from 1 to 30 segments. It is observed from Figure 6
that with the increase of the length (scale) of the query route, the ac-
curacy of all the approaches drops. This is because, as query scale
increases, the number of the possible routes between two locations
increases which makes route recovery more difficult. However,
among all approaches, STRS demonstrates the most robust accu-
racy, especially when the scale of query route is large. To be spe-
cific, when scale is 30, STRS still achieves an accuracy over 80%
while others (except GreedyIRL) have their accuracy below 50%.
This justifies the fact that a full probabilistic approach that can
deal with data sparsity is essential. In addition, GreedyIRL, a sim-
plified version of STRS, also demonstrates a stable performance.
As the query scale becomes larger, the performance gap between
GreedyIRL and STRS shrinks. This is because when the query
route is short, the relative difference of time interval of different
routes is large. Hence, the temporal probability P (Δt|R, ps, pe, te)
has influence on route selection. Accordingly, the advantage of
STRS over GreedyIRL by considering the temporal dynamics be-
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Figure 6: Overall evaluation

comes more significant. When the query route contains more seg-
ments, the relative difference of time interval of different routes is
shorter. Accordingly, the temporal probability of different routes
becomes more similar. In other words, the temporal influence is
weakened which explains the reason that the performance gap shrinks.

Calibration performs the worst among all approaches. The main
reason is that it constructs the transition matrix, i.e., the matrix de-
noting the transition probability from one anchor point to another
one, without considering the destination. It is intuitive that the de-
cision of turning left or right is largely depended on where the des-
tination is. Consequently, we can utilize MDP to model the driving
decision process as we also consider the destination. Besides, as
calibration will enumerate all the possible routes from ps to pe, the
computation cost scales up exponentially. Thus, when the missing
route is longer than 22 road segments, we can not even get the result
as the estimation of the time cost of each test sample will exceed
104 seconds.

When a query route contains less than 9 segments, all the ap-
proaches except GreedyIRL and calibration can achieve almost 100%
accuracy. This is because when the query route is not too long, the
ground truth of the missing route is often a direct connection of
several road segments. For GreedyIRL, when the route is short,
the Q-values of states for each action near the terminal do not dif-
fer much, which results in the similar transition probabilities. This
explains why GreedyIRL does not achieve 100% accuracy.

HRIS recoveries the route by constructing traverse graph and
finding the shortest path in the traverse graph. Most of roads in
the dense area are passed by historical trajectories which makes
the traverse graph almost equivalent to the original road network.
Thus, HRIS@1 will be reduced to SP. Our experimental results also
prove this, as the accuracy difference between SP and HRIS@1 is
bounded by 3%. When the route is not too long (<18), HRIS@10
performs best among all the competitors as it leverages the infor-
mation of historical data. When the length of the route becomes
longer, HRIS becomes inferior to MPR. This is because HRIS is
designed to recover the whole low sampling rate trajectory with
GPS positions in the middle of the trajectory given; while MPR is
designed to return the most popular route between two positions.
Therefore, when the length of route increases, the advantage of
MPR gradually emerges and finally outperforms HRIS.

MPR performs similar to FP in most of cases which indicates
that popular routes are mostly fastest which is consistent with intu-
ition. When the query route contains not too many segments (e.g. <
18), SP has a higher accuracy, as compared with FP and MPR. The
reason is that when the trip is not too long, the time cost of different
routes could be similar. When the query route is long, FP and MPR
outperform SP since the difference of time cost of different routes
becomes innegligible which affects the route selection.

5.2 Case Study
We next present two cases of route recovery to show how and

why STRS performs better. In the first case shown in Figure 7(a),
the route recovered by SP or HRIS is greatly different from that
of STRS and calibration while the route recovered by STRS is the
same as the ground truth. We also present the street view of some
places in each route. From the photos we can figure out that the

road of the route recovered by STRS is quite wide while the road
is extremely narrow in the route of SP/HRIS. STRS can capture
the fact that people are reluctant to drive the route generated by
SP/HRIS as it is more dangerous and unpleasant. This is because
IRL can capture the reward of the road through the tendency of
historical data and the reward of road segment in the dashed blue
route will be assigned a relatively low value as most of drivers tend
to drive the red solid route. Note that although calibration can re-
cover the route, it takes about half an hour to return the answer.

In the second case shown in Figure 7(b), FP and MPR recover a
route which seems to be reasonable and the street view also shows
that the road condition of the route returned by FP/MPR is also bet-
ter than STRS. However, only STRS returns a route that is the same
as the ground truth. The reason is that the duration (i.e., Δt) of this
query is actually much longer than the estimated time of the route
recovered by FP/MPR since FP always returns the route with mini-
mum time cost. As analyzed in Section 5.1, MPR performs similar
to FP in most of time thus MPR also returns the same route as FP.
From the ground truth , we intend to infer that this test sample may
be generated by a driver who is unfamiliar with the road network.
This case shows that the temporal model of STRS can correct the
route according to the information of time duration even though the
route is not efficient and natural.

SP, HRIS

STRS,
Calibration

(a) Real case 1

STRS

FP, MPR

(b) Real case 2

Figure 7: Case study

5.3 Component Study
5.3.1 Experiments of Preprocessor

Experiments of Time Slot Granularity First, we study the im-
pact of time slot granularity in the preprocessor component. As
explained in Section 4.1, parameter ν determines the temporal du-
ration. In our study, we set ν to half an hour, 1 hour, 2 hours, 8
hours, 12 hours, and 24 hours. Accordingly, there are in total of
24h
ν

× 2 time slots, half of them w.r.t. weekdays and the other half
w.r.t. weekends. We also test a special case where there is only
one time slot, denoted as ν = 48h. The results are shown in Fig-
ure 8(a). We can find that with the decrease of ν, the performance
of STRS improves. As mentioned previously, information of histor-
ical data with regard to different time slots is very different. When
ν becomes larger, the time span of each time slot is enlarged and



more data are distributed into the same slot. This causes a high
variance of data, which has a negative impact on STRS. When ν is
small enough, the performance starts to converge as the variance of
data does not decrease any longer.
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Figure 8: Results of different time spans and sampling intervals

5.3.2 Experiments of Temporal Model
Recall that STRS proposes a temporal model to approximate the

likelihood of time duration Δt. In this set of experiments, we first
study the effectiveness of our temporal model.
Robustness of Time Estimation approach. First, we conduct the
experiments to show the performance of our time cost estimation
approach. As route-based approaches will inevitably face the data
sparsity problem in route recovery and sometimes they even cannot
find any answer, we compare our approach only with road segment-
based approaches and the speed of a GPS sample is estimated by
the ratio of the network distance between this GPS sample and the
previous one to the sampling rate. We employ the relative time
cost error of a given testing route as the main metric. To be more
specific, for a set of testing routes R(i) having time interval Δt(i),

the relative time cost error is ε =
∑
i

|Δt(i)−Δt
(i)
E

|
Δt(i)

. Figure 8(b)

depicts the results. Our temporal model has its error rate around
20% and it consistently outperforms its competitor. This is because
we adopt a regression model to adjust the cost of each road element
through minimizing the error for the whole route which is invariant
to the sampling rate. The road segment-based approach has a large
error rate as the sampling interval becomes longer. Accordingly,
the quality of the speed estimation drops significantly which affects
the accuracy of road segment-based approach.
Visualization of Time Cost Matrix. Recall that to avoid high vari-
ance, STRS tries to avoid training those road segments with no or
very few historical trajectories passing by. Figure 9(a) visualizes
the missing value in Φ̃. Elements in black are the missing values,
i.e., those road segments in corresponding time slots have very few
or even zero historical trajectories passing by. We can observe that
data sparsity problems do exist. For example, people travel more
frequently during the daytime (9:00 to 20:00) of weekdays. Ac-
cordingly, there are less missing values between 9:00 to 20:00, as
compared with other time slots. In weekends, many people may
stay at home which leads to the increase of missing values. Note
that road segment IDs in the range of [0, 2412] represent road seg-
ments, and the IDs larger than 2,412 represent the crossroads.

After filling the missing elements in Φ̃ using static-dynamic sep-
aration matrix factorization, we have the entire time cost matrix Φ.
Here, we visualize the elements of Φ via heatmap. For each row
Φi· ∈ R

1×48 of Φ, which represents the time cost of road element
i in different time slots, we normalize the elements of Φi·, i.e.,
Φ′

ij =
Φij−minΦi·

maxΦi·−minΦi· , in order to visualize the relative trend of
time cost of the same road element in different time slots, with the
normalized time cost matrix Φ′ shown in Figure 9(b). The intenser
the color, the smaller the time cost and vise versa. For example,
we can observe that between 0:00 to 8:00 of a weekday, the color
remains dark; when it reaches 9 a.m, the rush hour, the time cost in-
creases until 20:00, which further demonstrates that our time model
works and the influence of time slots can not be ignored.

(a) Elements with null value (b) Φ′

Figure 9: Visualizations of time cost matrix

5.3.3 Experiments of Spatial Model
Effects of Data Sparsity. We have pointed out in Section 4.2.2
that the key problem of spatial model is how to model the transi-
tion probability P (R[i]|R[i−1], ps, pe). Simply using frequency-
based estimation (i.e., Equation (6)) does not work, as it inevitably
suffers from data sparsity problem. In the following, we conduct
experiments under different degrees of data sparsity to show that
our spatial model can handle the data sparsity while traditional
frequency-based estimation will have problems. In detail, we use
the subset of the training dataset as the sparse training dataset, with
the size set to 1/2, 1/5 and 1/10 of the original training dataset.

Figure 10(a) shows when training data become sparser, the ac-
curacy of frequency-based estimation drops drastically which jus-
tifies our analysis on data sparsity problem. On the other hand,
STRS maintains a high accuracy regardless of data sparsity, which
demonstrates its robustness under various quality of historical data.
As explained in Section 4.2.2, performing IRL on MDP model can
avoid the data sparsity problem as it is based on fitting the histor-
ical data by assigning rewards to each road and it will assign the
feasible reward to those roads with no/few trajectories passed by.
Convergence of IRL. Next, we conduct experiments to demon-
strate how an IRL model can be trained. Recall that when using
PolicyWalk sampling algorithm, the step δ is involved. We vary
the parameter δ to see how fast the Markov chain converges. We
compute the posterior probability according to Equation (8) over
training data to observe how IRL model fits the data. We vary the
update step δ from 0.05 to 51.2, as shown in Figure 10(b).

With the increase of the number of training iterations, the pos-
teriors P (
|O) on the training data also increases w.r.t all the set-
tings of δ which means the model increasingly fits the training data.
When δ = 0.8, the Markov chain converges fastest and when δ
becomes smaller, the convergence slows down. This is consistent
with our expectation. When δ is very small, 
 is moved slightly in
each iteration, which makes it slower to reach the position near the
maximum posterior. When δ becomes larger, it also increases the
hardness of convergence. This is because 
t+1 is drawn uniformly
from the neighbours of previous reward 
t and most of the sam-
ples 
t+1 drawn may be very far away from the optimal 
 which
results in a very low acceptance ratio. Thus, many samples are
rejected which directly results in the poor convergency.
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Figure 10: Evaluation on spatial model

5.3.4 Experiment of Route Search Engine
Effects of Pruning Strategy Note that we have adopted pruning
strategies in the exact route search algorithm. Here, we study the



efficiency of our exact route search algorithm. To have a better
illustration of the pruning strategy, we plot the query time using
the exact route searching without pruning, in short ERSNoPrune.
Recall that the result of GreedyIRL serves as the initial value of
the lower bound SLB . We also plot the execution time of IRL
by initializing SLB to the result of shortest path. We set Tmax

to 2000 in our experiment. In Figure 11(a), both search algorithms
with pruning take less time, in average about 10 times faster than
ERSNoPrune. The significant improvement on search time justi-
fies the effectiveness of the pruning strategies. As ERSNoPrune

updates the whole status matrix S[, ], query scale has a less sig-
nificant impact on the computation time. For ERSGreedyIRL and
ERSSP , their search time changes w.r.t. the query scale. The rea-
son is that when the query route contains many segments, it is very
likely that the start road and the end road are far away from each
other. Accordingly, the number of status that need extension or up-
date will also increase. From the observation that ERSGreedyIRL

performs faster than ERSSP , we can further conclude that the re-
sult of GreedyIRL does provide a better lower bound than SP and
our MDP model trained by IRL is more effective.
Efficiency Comparison We conduct the experiment to show the
time cost of online part of STRS (the route search engine) in order
to see whether it can be applied in the real scenarios. The competi-
tors are three data-driven approaches mentioned above, i.e., HRIS,
MPR and calibration. As non-data-driven approaches do not re-
quire data processing and can be transfered to a shortest path algo-
rithm, they have very small time cost (in several milliseconds) and
hence are skipped in this set of experiments. Figure 11(b) depicts
the result. We can see when the query scale is small, calibration is
the fastest as the number of possible routes is small. However, with
the query scale increases, the number of possible routes drastically
increases. Thus, the cost increases exponentially, as stated in Sec-
tion 5.1. MPR stays consistent with the query scale. The reason
is that MPR needs a data preprocessing step for each query which
costs much more than the query phase. STRS performs similar as
HRIS. When scale is too large the scalability of STRS reduces for
the reason that the sizes of discretized time and the states both in-
crease. For the sake of the high accuracy STRS brings, we claim
that the additional cost is worth to spend.
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Figure 11: Evaluation on route search engine

6. CONCLUSION
In this paper, we study the problem of recovering the missing

route of a trajectory using historical data in a probabilistic way. We
propose a system based on fully probabilistic derivation showing
that what kind of temporal and spatial dynamics should be taken
into consideration theoretically. We have addressed all the data
sparsity problems brought by the probabilistic view and thus we can
take full advantages of probabilistic methods. Evaluation results
show that our system outperforms all of the competitors and main-
tains the accuracy over 80% even when the route contains 28 ∼ 30
road segments. The results also show that our system is robust for
the data sparsity. In the future work, we plan to extend the route
recovery to not only vehicles but also other transportations such as
buses, bikes and walking to make route recovery more general.
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