
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2016

Efficient verifiable computation of linear and
quadratic functions over encrypted data
Ngoc Hieu TRAN
Singapore Management University, nhtran.2013@phdis.smu.edu.sg

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

DOI: https://doi.org/10.1145/2897845.2897892

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Information Security

Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
TRAN, Ngoc Hieu; Hwee Hwa PANG; and DENG, Robert H.. Efficient verifiable computation of linear and quadratic functions over
encrypted data. (2016). Asia CCS '16: Proceedings of the 11th ACM Asia Conference on Computer and Communications Security, Xi'an,
China, May 30 - June 3. 605-616. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3351

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111756720?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3351&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/2897845.2897892
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3351&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3351&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Efficient Verifiable Computation of

Linear and Quadratic Functions over Encrypted Data

Ngoc Hieu Tran
School of Information Systems

Singapore Management
University

nhtran.2013@smu.edu.sg

HweeHwa Pang
School of Information Systems

Singapore Management
University

hhpang@smu.edu.sg

Robert H. Deng
School of Information Systems

Singapore Management
University

robertdeng@smu.edu.sg

ABSTRACT
In data outsourcing, a client stores a large amount of data on
an untrusted server; subsequently, the client can request the
server to compute a function on any subset of the data. This
setting naturally leads to two security requirements: confi-
dentiality of input data, and authenticity of computations.
Existing approaches that satisfy both requirements simulta-
neously are built on fully homomorphic encryption, which
involves expensive computation on the server and client and
hence is impractical. In this paper, we propose two verifiable
homomorphic encryption schemes that do not rely on fully
homomorphic encryption. The first is a simple and e�cient
scheme for linear functions. The second scheme supports
the class of multivariate quadratic functions, by combining
the Paillier cryptosystem with a new homomorphic message
authentication code (MAC) scheme. Through formal security
analysis, we show that the schemes are semantically secure
and unforgeable.

Keywords
Verifiable computation; homomorphic encryption; homomor-
phic MAC; data outsourcing

1. INTRODUCTION
In a cloud scenario, a client with limited resources out-

sources a large amount of data to a powerful server, and
delegates to the server the role of performing computation on
the data. If the server is untrusted, the client must be able to
verify the correctness of computations returned by the server.
Homomorphic message authenticator schemes provide this
capability. Following Gennaro et al.’s work in [23], many
such protocols have been proposed for both private verifiable
settings (i.e., homomorphic MAC) [12, 4, 7, 14, 15] and pub-
lic verifiable settings (i.e., homomorphic signature) [9, 20,
31, 32, 18]. However, homomorphic message authenticator
by itself does not maintain the confidentiality of outsourced
data. In particular, all the protocols mentioned above store
data on the server in plaintext format.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China
c� 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897892

If the client data is sensitive, a natural concern is how to
ensure simultaneously the confidentiality of the outsourced
data and the authenticity of the server’s computations. We
want to enable the client to encrypt the data before releasing
them to the server, and for the latter to perform computation
directly on the encrypted data. One approach is to combine
data encryption and homomorphic message authenticator
(either homomorphic signature or homomorphic MAC) by the
Encrypt-and-MAC composition [6]. This approach, known as
verifiable homomorphic encryption, was first introduced by
Lai et al. [27]. It is similar to the homomorphic authenticator
encryption notions of Gennaro and Wichs [24] as well as Joo
and Yun [26].

While several solutions exist for verifiable computation of
linear functions in private settings [1] and public settings
[10, 16, 3, 17, 22], there are only a few recent studies on
verifiable computation on encrypted data. In particular, the
scheme of Libert et al. [29] works only for very small data
domains because the client must perform a discrete logarithm
operation to recover the computed result, while the scheme
of Lai et al. [27] relies on fully homomorphic encryption
(FHE). Both of the schemes require the client to perform
expensive computations and are ine�cient in practice. In
another line of work, several studies consider how to support
a larger class of computation, such as multivariate quadratic
polynomials or univariate polynomials of high degree [26, 21,
5]. These schemes guarantee confidentiality and authenticity
simultaneously, but they require fully homomorphic encryp-
tion. To the best of our knowledge, there is no scheme in the
literature for verifiable computation of multivariate quadratic
polynomials on encrypted data, without using FHE1.

1.1 Our Contribution
In this work, we propose two schemes for verifiable com-

putation on outsourced encrypted data. First, we introduce
a very e�cient scheme for linear functions. Our second
scheme for multivariate quadratic functions only needs an
additively homomorphic encryption technique such as the
Paillier cryptosystem [30], rather than FHE. The details of
our contributions are as follows.

Linear functions. We construct a practical verifiable ho-
momorphic encryption scheme for linear functions that is
provably secure under the pseudo-random function assump-
tion. The scheme employs symmetric key homomorphic

1The recent work reported in [2] proposes a verifiable com-
putation scheme that does not make use of FHE. However, it
assumes a model in which the client delegates its computation
to multiple servers, at least one of which is honest.

605

encryption, based on one-time pad, to protect the confiden-
tiality of input data, and combines it with the practical
homomorphic authenticator of [12] to verify the correctness
of computation. Compared to previous work, our scheme
has the advantages of being simple and e�cient.

Multivariate quadratic functions. We also propose a
verifiable homomorphic encryption scheme for multivariate
quadratic functions. In order to achieve the twin require-
ments of confidentiality and authenticity, we construct a new,
e�cient scheme that combines the Paillier cryptosystem and
a homomorphic MAC, following the Encrypt-and-MAC com-
position [6].

From the technique of Backes et al. in [4] for constructing
homomorphic MAC for quadratic functions, we observe that
the Paillier cryptosystem can be used in place of an FHE
scheme in computing quadratic polynomials. This idea is
generalized in [13]. However, we emphasize that our scheme
is the first that guarantees the confidentiality of input data
and authenticity of outsourced computations on multivariate
quadratic functions without using FHE.
To satisfy the authenticity requirement, existing homo-

morphic MAC schemes such as [12, 4] are not applicable in
our construction since an authenticator leaks information
about the message that it authenticates. Thus, we formulate
a new homomorphic MAC scheme for multivariate quadratic
functions. Our homomorphic MAC scheme di↵ers from the
one in [4], which is based on bilinear maps, in two ways: our
authenticator does not leak any information about the mes-
sage that it authenticates, and our scheme is more e�cient
as it does not require bilinear maps.

Although our scheme supports a limited class of computa-
tions (i.e., linear and multivariate quadratic functions), it is
versatile enough to cover a wide range of statistical compu-
tations including sum, average, variance, standard deviation,
root mean square, covariance, and linear regression [21].

1.2 Organization
The rest of this paper is organized as follows. Section

2 surveys related work. Section 3 gives some preliminary
information and our generic framework. Sections 4 and 5
present our verifiable homomorphic encryption schemes for
linear functions and quadratic functions, respectively. Section
6 then reports on an empirical evaluation of our schemes.
Finally, Section 7 concludes the paper.

2. RELATED WORK
We review prior work on non-interactive verifiable com-

putation, verifiable homomorphic encryption for linear func-
tions, and verifiable homomorphic encryption for multivariate
quadratic functions.

Non-interactive Verifiable Computation. This research
direction was initiated by Gennaro et al. [23]. Non-interactive
verifiable computation allows a client with limited resources
to outsource a set of data, and the computation of functions
on the data, to a server. The server returns the result of the
function evaluation, along with a non-interactive proof that
the result was carried out correctly.

In [12], Catalano and Fiore proposed a homomorphic MAC
that supports polynomial functions computed from arith-
metic circuits. In their construction, the authenticator of a
message is a set of polynomial coe�cients that evaluates to
the message on a public point (e.g., 0) and a randomly chosen

value on a secret point (e.g., secret key). Their construction is
e�cient, and can tolerate any number of verification queries.
Based on the scheme of Catalano and Fiore [12], Backes et
al. proposed a practical protocol in [4] for evaluating degree-
2 polynomial functions. They introduced a homomorphic
MAC scheme with e�cient verification, meaning that a client
can verify the correctness of computation in constant time,
independently of the number of inputs. This is helpful when
the client frequently needs to compute over the same data
set. Both the schemes in [12] and [4] do not protect data
confidentiality, because the authenticator leaks information
about the message that it authenticates.

Linear verifiable homomorphic encryption. To defend
against pollution attack in network coding [28], Agrawal et
al. [1] proposed linear homomorphic message authentication
code in a private setting, while Boneh et al. [8] introduced
linear homomorphic signature in a public setting. These
studies do not consider the confidentiality of input data.
Recently, Libert et al. [29] introduced the notion of lin-

early homomorphic structure-preserving signatures. Their
construction allows a client to apply additively homomor-
phic encryption on data to be stored on an untrusted remote
server, and the client is able to verify linear combinations that
the server performs over the encrypted data. This scheme
has a limitation in that the client must carry out a discrete
log operation to recover the plaintext from the encrypted
data. Thus, the construction only works for very small data
domains. In contrast, our scheme for linear functions sup-
ports large data domains. In [19], Catalano et al. introduced
the notion of linear homomorphic authenticated encryption
with public verifiability, and proposed a linear homomorphic
signature scheme for outsourced encrypted data based on the
Paillier cryptosystem. Di↵erent from that work, our scheme
is constructed for linear functions in a private verifiable set-
ting, and combines homomorphic MAC [12] and symmetric
key homomorphic encryption to achieve a highly practical
solution.

Verifiable homomorphic encryption for quadratic

functions. In [24], Gennaro and Wichs introduced a fully
homomorphic MAC scheme and extends it to verifiable ho-
momorphic encryption. Their construction relies on FHE to
preserve the confidentiality of input data and authenticity of
computations. The scheme only satisfies the weak security
model where an adversary is not allowed to issue verification
queries. In [26], Joo et al. introduced a homomorphic authen-
ticated encryption scheme for low-degree polynomials. Their
construction relies on the (error–free) approximate–GCD
assumption and the homomorphic message authentication
code proposed by Catalano et. al. [12].

Goldwasser [25] presented a generic protocol for achieving
privacy of input data and verification of outsourced compu-
tation. Their main result is the construction of a succinct
single–key functional encryption scheme for general functions.
The function encryption in this scheme is constructed from
FHE and attribute-based encryption. However, their scheme
only works for binary functions, which is not e�cient in prac-
tice. In addition, there is no formal definition and security
proof [21].
In [21], Fiore et al. proposed verifiable homomorphic en-

cryption schemes for linear functions, multivariate quadratic
functions, and univariate polynomials of high degree. There,
a data item is encrypted by the BGV homomorphic encryp-

606

tion [11], and a result returned by the server is verified
through the homomorphic MAC scheme of [4]. This work
introduced a novel homomorphic hashing technique for com-
pressing ciphertext. That helps the client to save storage
cost and reduce computation cost on the outsourced server.
All the schemes above are built on FHE. The advantage

of our work is that it requires only additively homomorphic
encryption (i.e., Paillier cryptosystem) to achieve an e�cient
scheme supporting multivariate quadratic functions.

3. GENERIC FRAMEWORK
We begin by reviewing some notations and definitions that

we use in this work. We denote x

$ S as the operation of
assigning to x an element selected uniformly at random from
a set S. The notation x A(·) denotes the operation of
running a procedure A with the given input and assigning
the output to x.

3.1 Arithmetic Circuits
This section gives an overview of arithmetic circuits. (For

more details, we refer the interested reader to [33]). An
arithmetic circuit over a field F is a directed acyclic graph.
Each node in the graph is called a gate. A gate with in-
degree 0 is an input gate. An input gate is labeled by either
a variable from a set of variables X = (x

1

, . . . , x

n

) 2 Fn or
a constant ↵ 2 F. A gate with in-degree and out-degree
greater than 0 is an internal gate. An internal gate is either
an addition gate with a + label, or a multiplication gate with
a ⇥ label. A gate with out-degree 0 is an output gate. In this
work, we allow a variable to undergo only one multiplication
with another variable, but unlimited multiplications with
constants and additions with other variables. Such a circuit
can always be transformed into one in which every internal
gate has two inputs. Therefore, we consider only circuits
with one output gate, and in which each internal gate has
in-degree 2. The final result of the circuit is the output of
the output gate.
In the following, we define a ‘level ’ for each gate, which

will be used in our proposed scheme in Section 5. An input
gate that is a variable has a level of ‘1’, whereas an input
gate that is a constant has a level of ‘0’. The level of a
multiplication gate is the sum of the levels of its two inputs.
Moreover, the level of an addition gate is the maximum of
the levels of its two inputs. The level of a circuit is the level
of its output gate. In the scheme in Section 5, the level of
the output gate is at most ‘2’.

3.2 Labeled Programs
In a cloud scenario, assume that a data owner wants to

share the outsourced data with many other clients, and the
clients are able to request di↵erent computations on various
data items. We use the notions of labeled data and labeled
program P to indicate which data is being authenticated
and how the data should be evaluated. For example, in a
collection of files, the label of a data item may be a file
name, or the date and time at which the file is created
(e.g., “2015/10/04 - 00:00:00”); a labeled program may be
the computation of the median of the values in all the files
recorded in April. With structured data such as a database
table, a labeled datum may comprise the identifier of a record
and the name of an attribute, e.g., (“id”,“salary”), while a
labeled program may compute the sum of the “salary” in all
records with “id” in the range from 1 to 100.

We adopt the formal notion of labeled program introduced
by Gennaro andWichs in [24]. A labeled program P is defined
by a tuple (f,⌧

1

, . . . , ⌧

n

) where f : Fn ! F is a circuit as
defined above, and each label ⌧

i

2 {0, 1}⇤ uniquely identifies
the i-th input node of f . Labeled programs may be composed
as follows. Given labeled programs P

1

, . . . ,P
t

and a circuit
f : Ft ! F, the composed program P⇤ = f(P

1

, . . . ,P
t

)
evaluates a circuit f on the outputs of P

1

, . . . ,P
t

. The labeled
inputs of P⇤ correspond to the distinct labeled inputs of
P

1

, . . . ,P
t

. We denote by I
⌧

= (f
id

, ⌧) the identity program
with input label ⌧ 2 {0, 1}⇤, where f

id

: F ! F is the
canonical identity function. Notice that any program P =
(f,⌧

1

, . . . , ⌧

n

) can be written as a composition of identity
programs P = f(I

⌧1 , . . . , I⌧n).

3.3 Paillier Cryptosystem
Key Generation. Let p

1

, p

2

be two large, independent
prime numbers. Set N = p

1

p

2

, and �

0 = lcm(p
1

� 1, p
2

� 1)
where lcm represents the least common multiple function.
Next, set function L(x) = (x � 1)/N and select a random

number g

0 $ Z⇤
N

2 such that the order of g0 is a non-zero
multiple of N (e.g., g0 = 1 +N satisfies the condition and
is easily calculated). Output (N, g

0) as the public key and
(p

1

, p

2

) as the private key.

Encryption. Let m 2 Z
N

be a datum to be encrypted.

Select a random number u

$ Z⇤
N

, then encrypt m as c =
E(m) = g

0m · uN mod N

2.

Decryption. Let c 2 Z⇤
N

2 be a ciphertext to be decrypted.

Compute m = D(c) = L(c

�0
mod N

2
)

L(g

0�0
mod N

2
)

mod N .

3.4 Generic Verifiable Homomorphic Encryp-
tion Scheme

We now define our verifiable homomorphic encryption sch-
eme for outsourced computation over encrypted data. Our
scheme uses homomorphic encryption (HE) to protect the
confidentiality of data, and homomorphic message authenti-
cation code (MAC) simultaneously to verify the correctness
of outsourced computations. We denote our verifiable ho-
momorphic encryption scheme as HEMAC. HEMAC works
in a cloud scenario where the data owner runs a one-time
key generation and encryption procedure to outsource a set
of encrypted data to a server. Subsequently, a client who
possesses a shared secret key with the data owner may re-
quest the server to perform computation over any subset of
data (by specifying the set of labeled data and the labeled
program), and receive the encrypted form of the result. The
client can then decrypt and verify the correctness of the
result returned by the server.
The generic HEMAC scheme is a tuple of probabilistic

polynomial time algorithms defined as follows:

• KeyGen(1�) takes as input a security parameter �, and
outputs a secret key SK and a public parameter PP.

• Enc(SK, ⌧,m) takes as input a secret key SK, a label ⌧ 2
{0, 1}⇤ and a datum m 2M. It outputs a ciphertext
C.

• Eval(PP,P,

~

C) takes as input the public parameter PP,
a labeled program P = (f,⌧

1

, . . . , ⌧

n

) and a vector

of ciphertexts ~

C = (C
1

, . . . , C

n

). It outputs a new
ciphertext C.

607

• Dec(SK,P, C) takes as input the secret key SK, a la-
beled program P = (f,⌧

1

, . . . , ⌧

n

) and a ciphertext C.
It outputs a datum m 2M or an error symbol ?.

3.5 Correctness
We require HEMAC to satisfy encryption correctness and

evaluation correctness. For a pair of secret key and public
parameter (SK,PP) produced by the KeyGen procedure, the
correctness properties are defined as follows.

Encryption correctness. For any datum m 2 M and
any label ⌧ 2 {0, 1}⇤, if C Enc(SK, ⌧ ,m), then m
Dec(SK, I

⌧

, C).
Informally, given any C computed by Enc(SK, ⌧ ,m), C

must be the ciphertext of m with respect to the identity
program PI⌧ .

Evaluation correctness. Given a fixed pair of (SK, PP),
a circuit f : Ft ! F, and any set of data/program/ciphertext
triples {(m

i

,P
i

, C

i

)}t
i=1

such that m

i

 Dec(SK,P
i

, C

i

).
If P⇤ = f(P

1

, . . . ,P
t

), m

⇤ = f(m
1

, . . . ,m

t

), and C

⇤
Eval(PP,P⇤

, (C
1

, . . . , C

t

)), then m

⇤ Dec(SK,P⇤
, C

⇤).

Informally, for a given vector of ciphertexts ~

C = (C
1

, ..., C

t

)
where each C

i

is the ciphertext of some datum m

i

as out-
put by labeled program P

i

, a ciphertext C

⇤ computed by
Eval(PP,P⇤

,

~

C) with a composed program P⇤ = f(P
1

, . . . ,P
t

)
must be the ciphertext of m⇤ = f(m

1

, . . . ,m

t

).

3.6 Security Models
The HEMAC scheme has to satisfy the requirements of

semantic security and unforgeability. Let H = (KeyGen,Enc,
Eval,Dec) denote the generic scheme as defined above.

Attack 1. The semantic security of HEMAC is defined by
the following security game between a challenger and an
adversary A.
Setup. The challenger runs KeyGen(1�) to obtain a pair

of secret key and public parameter (SK,PP). It gives public
parameter PP to adversary A, and keeps secret key SK to
itself. Next, the challenger initializes a list T = ; for tracking
the queries from A.

Queries. Adversary A adaptively issues encryption queries
to the challenger, each of the form (⌧,m) where ⌧ 2 {0, 1}⇤
and m 2M. The challenger then performs the following:

• If ⌧ does not exist in T , the challenger computes C
Enc(SK, ⌧,m), updates the list T = T [{⌧}, and gives
ciphertext C to A.

• If ⌧ is found in T , the challenger rejects the query.

Challenge. Adversary A submits a label ⌧⇤ 2 {0, 1}⇤ and
two data items m

0

,m

1

2 M, such that ⌧

⇤ is not already
in list T . The challenger selects a random bit b 2 {0, 1},
computes C⇤ Enc(SK, ⌧⇤

,m

b

), and sends C⇤ to A.
Output. Adversary A outputs b0 representing its guess for

b. A wins the game if b0 = b.
The advantage ss-adv[A,H] of adversary A with respect

to the HEMAC scheme in this game is defined as
����Pr

⇥
b

0 = b

⇤� 1
2

���� ,

where the probability is taken over the random bits used by
the challenger and adversary A.

Definition 1. The HEMAC schemeH is semantically secure
if, for all probabilistic polynomial time adversary A, the
advantage ss-adv[A,H] is negligible.

Attack 2. The unforgeability of the HEMAC scheme is de-
fined by the following game between a challenger and an
adversary A.
Setup. The challenger runs KeyGen(1�) to obtain a pair

of secret key and public parameter (SK,PP). It gives public
parameter PP to adversary A, and keeps secret key SK to
itself. The challenger also initializes a list T = ; for tracking
the queries from A.
Ciphertext Queries. Adversary A adaptively queries for

ciphertexts on pairs of label and datum of its choice. Given
a query (⌧,m) where ⌧ 2 {0, 1}⇤ and m 2M, the challenger
performs the following:

• If ⌧ does not exist in T , the challenger computes C
Enc(SK, ⌧ ,m), updates the list T = T [{⌧}, and gives
ciphertext C to A.

• If ⌧ is found in T , the challenger rejects the query.

Verification queries. Adversary A adaptively issues verifica-
tion queries as follows: Given a query (P , C), the challenger
responds with the output of Dec(SK,P, C).

Output. Adversary A outputs a forgery tuple of ciphertext
C

⇤ and labeled program P = (f⇤
, ⌧

⇤
1

, . . . , ⌧

⇤
n

). The adver-
sary wins the game if m⇤ Dec(SK,P, C

⇤) and one of the
following conditions holds:

• Type 1 forgery: There exists some i 2 {1, . . . , n} such
that ⌧

⇤
i

/2 T , i.e., as least one label ⌧⇤
i

has not been
queried during the game.

• Type 2 forgery: List T contains all the labels ⌧⇤
1

, . . . , ⌧

⇤
n

for data items m0
1

, . . . ,m

0
n

, and m

⇤ 6= f

⇤(m0
1

, . . . ,m

0
n

),
i.e., m⇤ is not the correct output of program P when
executed on (m0

1

, . . . ,m

0
n

).

The advantage uf-cmva[A,H] of adversary A with respect
to the HEMAC scheme in this game is defined as the proba-
bility that A wins Attack 2.

Definition 2. The HEMAC scheme is existentially unforge-
able under adaptive chosen message and query verification
attack if, for all probabilistic polynomial time adversaries A,
the advantage uf-cmva[A,H] is negligible.

We note that the adversary can pose a verification query
on the tuple (P = (f⇤

, ⌧

⇤
1

, . . . , ⌧

⇤
n

), C⇤). The adversary can
also terminate the Verification Queries phase if the response
by the challenger is not ? and any of the two types of forgery
happens.

4. VERIFIABLE HOMOMORPHIC
ENCRYPTION FOR LINEAR
FUNCTIONS

In this section, we introduce a verifiable homomorphic
encryption scheme for linear functions, denoted as l-HEMAC.
The construction combines additive homomorphic encryption
with homomorphic MAC. In particular, we use symmetric
key homomorphic encryption, based on one-time pad, to
protect the confidentiality of data. The security of l-HEMAC
relies only on the assumption of pseudo-random function.
Let f : Fn ! F be an arithmetic circuit composed by

multiplication gates where one of the inputs is a constant,
and addition gates. Without loss of generality, we define
circuit f(x

1

, . . . , x

n

) =
P

n

i=1

↵

i

x

i

+ ↵ for some constants
↵

i

,↵ 2 F and x

1

, . . . , x

n

can take arbitrary values in F.

608

4.1 Construction
KeyGen(1�). Let p be a prime number of roughly � bits.

Choose a random seed K

$ Z
p

for pseudo-random function

F

K

: {0, 1}⇤ ! Z
p

, and a random number s
$ Z

p

. Output
the secret key SK = (K, s) and public parameter PP = p.
Let the data space M = Z

p

and F = Z
p

.

Enc(SK, ⌧ ,m). Given secret key SK = (K, s), proceed as
follows to encrypt a datum m 2 Z

p

with label ⌧ 2 {0, 1}⇤.
First, compute pseudo-random value r

⌧

= F

K

(⌧k1) and
one-time encryption key k

⌧

= F

K

(⌧k2), where k denotes
concatenation. Then, encrypt c = m� k

⌧

mod p and output
a ciphertext C = (y

0

, y

1

) where

y

0

= c, y

1

=
r

⌧

� c

s

mod p.

(y
0

, y

1

) are coe�cients of a degree-1 polynomial y(x) = y

0

+
y

1

x 2 Z
p

[x] with variable x. This polynomial has the special
property that it evaluates to r

⌧

on secret key s, i.e., y(s) = r

⌧

,
and it evaluates to ciphertext c on public value 0, i.e., y(0) = c.

Eval(PP,P,

~

C). Given public parameter PP = p, a pro-

gram P = (f,⌧
1

, . . . , ⌧

n

) and a vector of ciphertexts ~

C =
(C

1

, . . . , C

n

), the procedure goes through a series of gates in
a new circuit f̃ : (Z2

p

)n ! Z2

p

which has the same structure as
f , except that each input is a set of ciphertexts C = (y

0

, y

1

).
At each internal gate Gate (i.e., addition gate ‘+’ or multi-
plication by a constant gate ‘⇥

c

’), given public parameter
PP = p and ciphertexts (C

1

, C

2

) as the two input gates of
Gate, a GateEval procedure (to be defined shortly) outputs
a new ciphertext C which serves as input to the GateEval of
the next internal gate. The output of the Eval procedure is
the output of GateEval at the output gate of the circuit. We
now describe GateEval.

GateEval(PP,Gate, C

1

, C

2

). Let C
i

= (y(i)

0

, y

(i)

1

) 2 Z2

p

for
i = 1, 2.

• Gate

+

: Compute y

0

= y

(1)

0

+ y

(2)

0

and y

1

= y

(1)

1

+

y

(2)

1

. For correctness, we observe that (y
0

, y

1

) are the
coe�cients of a polynomial representing the sum of the
two polynomials defined by (y(1)

0

, y

(1)

1

) and (y(2)

0

, y

(2)

1

).

• Gate⇥c : Here, one of the two inputs is a constant

↵ 2 Z
p

. Assuming that C

2

= ↵, compute y

0

= ↵y

(1)

0

and y

1

= ↵y

(1)

1

. The correctness of the computation
stems from the fact that (y

0

, y

1

) are the coe�cients of
a polynomial representing the product of a polynomial
defined by (y(1)

0

, y

(1)

1

) and constant ↵.

Finally, return C = (y
0

, y

1

).

Dec(SK,P, C). Given secret key SK = (K, s), proceed as fol-
lows to decrypt ciphertext C = (y

0

, y

1

) with labeled program
P = (f,⌧

1

, . . . , ⌧

n

).

• For every input label ⌧
i

2 {0, 1}⇤, compute pseudo-
random value r

⌧i = F

K

(⌧
i

k1) and one-time encryption
key k

⌧i = F

K

(⌧
i

k2).

• To decrypt m = f(m
1

, . . . ,m

n

), compute the decryp-
tion key  = f(k

⌧1 , . . . , k⌧n) and recover m from y

0

:

m = f(m
1

, . . . ,m

n

) = y

0

+  mod p.

• To verify the correctness of the computation, evalu-
ate the circuit f on r

⌧1 , . . . , r⌧n by computing r =
f(r

⌧1 , . . . , r⌧n), then use secret key s to check whether
the following condition holds:

r = y

0

+ y

1

s mod p. (1)

If equation (1) is true, output m; otherwise, output ?.
4.2 Correctness
We show that l-HEMAC scheme satisfies the correctness

criteria.

Encryption correctness. Let m 2 Z
p

be a datum, ⌧ 2
{0, 1}⇤ be the label of m, and SK = (K, s) be the secret key.
Suppose that C = (y

0

, y

1

) 2 Z2

p

is a ciphertext obtained from
running Enc(SK, ⌧ ,m). We show that m Dec(SK,I

⌧

, C)
for identity program I

⌧

.
Following the Enc procedure, we know that:

y

0

= c, y

1

=
r

⌧

� c

s

mod p, r

⌧

= F

K

(⌧k1), k

⌧

= F

K

(⌧k2)

We verify equation (1) as follows:

y

0

+ y

1

s = c+
r

⌧

� c

s

· s mod p = r

⌧

.

From ciphertext c and decryption key k

⌧

, we decrypt m
as m = c+ k

⌧

mod p. It follows that m Dec(SK, I
⌧

, C).

Evaluation correctness. Given a pair of secret key and
public parameter (SK,PP), a circuit f : Zt

p

! Z
p

, and a set
of data/program/ciphertext triples {m

i

,P
i

, C

i

}t
i=1

such that
m

i

is the output of Dec(SK,P
i

, C

i

). We assume that each
program P

i

for i = 1, . . . , t is defined by a circuit f
i

and a set
of input labels (⌧

i,1

, . . . , ⌧

i,ni), and 

i

is the encryption key
used to compute ciphertext C

i

. Let r⇤ be the output circuit
f(r

1

, . . . ,r

t

) where r

i

= f

i

(r
⌧i,1 , . . . , r⌧i,ni

). Let m⇤ be the
output of circuit f(m

1

, . . . ,m

t

), P⇤ be the composed labeled
program f(P

1

, . . . ,P
t

), and C

⇤ = (y⇤
0

, y

⇤
1

) be the output of
Eval(PP,P⇤

, (C
1

, . . . , C

t

)). We show that m⇤ is the output
of Dec(SK,P⇤

, C

⇤).

Claim 1. Let Q
poly

= Z
p

[x] be the ring of polynomials over
Z
p

with variable x. Given an arithmetic circuit f : Zt

p

! Z
p

,

there exists another circuit f̂ : Qt

poly

! Q
poly

and function
�

x

: Q
poly

! Z
p

such that

�

a

(f̂(y(1), . . . , y(t))) = f(�
a

(y(1)), . . . ,�
a

(y(t)))

where a 2 Z
p

and y

(1)

, . . . , y

(t) 2 Q
poly

.

Proof. We define the function �

a

: Q
poly

! Z
p

as �
a

(y) =
y(a) for any polynomial y(x) 2 Q

poly

and a 2 Z
p

is the
value of variable x. Observe that �

a

is a homomorphism
from Q

poly

= Z
p

[x] to Z
p

, i.e., 8y(1)

, y

(2) 2 Q
poly

, we have
�

a

(y(1) + y

(2)) = �

a

(y(1)) + �

a

(y(2)) and �

a

(y(1) · y(2)) =
�

a

(y(1)) · �(y(2)).
Let f̂ : Qn

poly

! Q
poly

be an arithmetic circuit similar to
f except that the operation in Z

p

at each gate is replaced
by the corresponding operation over polynomials in Z

p

[x].
For any a 2 Z

p

, a homomorphism �

a

defined as above, any
circuit f and y

(1)

, ..., y

(t) 2 Q
poly

, the following property
holds: �

a

(f̂(y(1)

, ..., y

(t))) = f(�
a

(y(1)), ...,�
a

(y(t))) There-
fore, Claim 1 is proved.

Let C
i

= (y(i)
0

, y

(i)

1

) be the ciphertext obtained by running
the Eval procedure with program P

i

= (f
i

, ⌧

i,1

, . . . , ⌧

i,ni). As

609

m

i

is the output of Dec(SK,P
i

, C

i

), we have the following

conditions: c
i

= y

(i)

0

,r

i

= y

(i)

0

+ y

(i)

1

s mod p.

Let (y(i)

0

, y

(i)

1

) be the coe�cients of degree-1 polynomial
y

(i)(x) 2 Q
poly

for all i = 1, . . . , t. Consider the output
C

⇤ = (y⇤
0

, y

⇤
1

) of Eval(PK,P⇤
, (C

1

, . . . , C

t

)). Following Claim
1, there exists another circuit f̂ : Qt

poly

! Q
poly

with the same
structure as f , and (y⇤

0

, y

⇤
1

) are the coe�cients of degree-1
polynomial y⇤ such that y⇤ = f̂(y(1), . . . , y(t)).
As in Claim 1, we show that (1) is satisfied with a = s:

y

⇤(s) = �

s

(f̂(y(1), . . . , y(t))) = f(�
s

(y(1)), ..,�
s

(y(t)))

= f(r
1

, . . . ,r

t

) = r

⇤

Similarly, with a = 0, we have:

y

⇤(0) = �

0

(f̂(y(1), . . . , y(t))) = f(�
0

(y(1)), ..,�
0

(y(t)))

= f(m
1

� 

1

, . . . ,m

t

� 

t

)

= m

⇤ � 

⇤

In addition, we have y

⇤
0

= y

⇤(0), so m

⇤ = y

⇤
0

+ 

⇤ mod p.
It follows that m⇤ Dec(SK,P⇤

, C

⇤).

4.3 Security
Let H

l

= (KeyGen,Enc,Eval,Dec) denote the linear verifi-
able homomorphic encryption l-HEMAC scheme as defined
in Section 4.1. We formally state and prove the semantic
security and unforgeability of l-HEMAC.

Theorem 1. Suppose that F is a secure pseudo-random
function (PRF). The proposed l-HEMAC scheme is semanti-
cally secure according to Definition 1.

Proof. We prove the theorem using two games Game 0
and Game 1. Let W

0

and W

1

be the events that adversary
A wins the semantic security game in Game 0 and Game 1,
respectively.

Game 0 is identical to Attack 1 applied to the H
l

scheme.
We have:

Pr[W
0

] = Pr[b = b

0] (2)

Game 1 is the same as Game 0, except that the PRF is
replaced by a truly random function. That is, the challenger

generates r

⌧

, k

⌧

$ Z
p

instead of r
⌧

= F

K

(⌧k1) and k

⌧

=
F

K

(⌧k2) in the Enc procedure. Then there is a PRF adversary
B such that:

|Pr[W
0

]� Pr[W
1

]|  prf-adv[B, F] (3)

In the adversary’s view, ciphertext C

⇤ = (y⇤
0

, y

⇤
1

) where

y

⇤
0

= m

b

� k

⌧

⇤ mod p and y

⇤
1

= r⌧⇤�(mb�k⌧⇤)

s

mod p. Since
r

⌧

⇤
, k

⌧

⇤ are random values in Z
p

, y⇤
0

, y

⇤
1

are uniformly dis-
tributed over Z

p

. Hence, the probability that A guesses
b = b

0 correctly is exactly 1/2 and:

Pr[W
1

] = 1/2 (4)

Putting together equations (2), (3), and (4),

Pr[b = b

0]  prf-adv[B, F] +
1
2

This means advantage ss-adv[A,H
l

] of A in Attack 1 is
negligible, thus completing the proof of Theorem 1.

Theorem 2. Suppose that F is a PRF. The proposed
l-HEMAC scheme is unforgeable. Specifically, for all H

l

adversaries A, there exists a PRF adversary B such that:

uf-cmva[A,H
l

]  prf-adv[B, F] +
Q+ 1
p�Q

where prf-adv[B, F] is the advantage of adversary B winning
the PRF security game with respect to function F , and Q is
an upper bound on the number of verification queries made
by A during Attack 2.

Proof. The proof is fashioned after the one by Agrawal
and Boneh in [1]. We prove the theorem using a sequence of
two games Game 0 and Game 1. Let W

0

, W
1

be the events
that A wins Attack 2 in Game 0 and Game 1, respectively.

Game 0 is identical to Attack 2 applied to the H
l

scheme.
Therefore,

Pr[W
0

] = uf-cmva[A,H
l

] (5)

Game 1 is the same as Game 0, but the PRF is replaced
by a truly random function. That is, the challenger generates

r

⌧

, k

⌧

$ Z
p

instead of r
⌧

= F

K

(⌧k1) and k

⌧

= F

K

(⌧k2) in
the Enc procedure for ciphertext queries. Then there is a
PRF adversary B such that:

|Pr[W
1

]� Pr[W
0

]|  prf-adv[B, F] (6)

The challenger in Game 1 works as follows.

Ciphertext Queries. The adversary submits queries (⌧
i

,m

i

)
where ⌧

i

is the label of datum m

i

. The challenger creates
a new list T for tracking the queries from A in the game.
For the i-th query, if T does not contain a tuple (⌧

i

, ·, ·), i.e.,
the label ⌧

i

was never queried, the challenger responds as
follows:

• Generate r

⌧i , k⌧i

$ Z
p

• Compute y

i,0

= m

i

� k

⌧i mod p, y

i,1

=
r⌧i�yi,0

s

mod p.

• Send (y
i,0

, y

i,1

) to A and update T = T [{(⌧
i

, r

⌧i , k⌧i)}.
If (⌧

i

, ·, ·) 2 T , i.e., label ⌧
i

was previous queried, the chal-
lenger rejects the query.

Verification Queries. The adversary submits queries (P
i

, C

i

)
where program P

i

= (f
i

, (⌧
i,1

, . . . , ⌧

i,ni)) and C

i

= (y
i,0

, y

i,1

).
The challenger responds to the i-th verification query as
follows:

• If (⌧
i,j

, ·, ·) 2 T for all j = 1, . . . , n
i

, the challenger
retrieves the random values r

⌧i,j , k⌧i,j corresponding to
⌧

i,j

from T , then returns the output of Dec(SK,P
i

, C

i

).

• If there exists some j 2 {1, . . . , n
i

} such that (⌧
i,j

, ·, ·) /2
T , the challenger generates random values r

⌧i,j , k⌧i,j

$
Z

p

and returns the output of Dec(SK,P
i

, C

i

).

Eventually the adversary outputs (P, C

⇤) where P = (f⇤
,

⌧

⇤
1

, . . . , ⌧

⇤
n

⇤) and C

⇤ = (y⇤
0

, y

⇤
1

). The adversary wins the game
if any of the two following types of forgery occurs.

• Type 1 forgery: If there exists j 2 {1, . . . , n⇤} such that

(⌧⇤
j

, ·, ·) /2 T , the challenger generates r

⌧

⇤
j
, k

⌧

⇤
j

$ Z
p

.
The random values corresponding to the remaining
labels are retrieved from list T . Let r

⇤ = f

⇤(r
⌧

⇤
1
,

. . . r

⌧

⇤
n⇤). The adversary wins the game if:

r

⇤ = y

⇤
0

+ y

⇤
1

· s mod p (7)

610

• Type 2 forgery: If (⌧⇤
j

, ·, ·) 2 T for all j = 1, . . . , n⇤,
the challenger retrieves (r

⌧

⇤
j
, k

⌧

⇤
j
) from list T . Let

{(r0
⌧

⇤
j
, k

0
⌧

⇤
j
,m

0
j

)}n⇤
j=1

be the random values and data

corresponding to the labels ⌧

⇤
1

, . . . , ⌧

⇤
n

⇤ . Let 

⇤ =
f

⇤(k0
⌧

⇤
1
, . . . , k

0
⌧

⇤
n⇤

) and r

⇤ = f

⇤(r0
⌧

⇤
1
, . . . , r

0
⌧

⇤
n⇤

). Let

m

⇤ = y

⇤
0

+ 

⇤ mod p. The adversary wins the game if:

r

⇤ = y

⇤
0

+ y

⇤
1

· s mod p (8)

and m

⇤ 6= m

0 = f

⇤(m0
1

, . . . ,m

0
n

⇤).

We now compute the probability of adversary A winning
Game 1. Let B

i

be the event that the adversary wins the
game after i verification queries. LetQ be the upper bound on
the number of verification queries requested by the adversary.
We have:

Pr[W
1

] = Pr

"
Q_

i=0

B

i

#


QX

i=0

Pr[B
i

].

Let V,¬V be the events that the adversary outputs a type 1
forgery and type 2 forgery, respectively.

• Event V happens (type 1 forgery): The left hand side
of (7) is a random value in Z

p

that is independent of
the adversary’s view. In addition, since s is a secret
key, the probability that equation (7) holds is exactly
1/p. Hence,

Pr[B
i

^ V] =
1
p

· Pr[V] (9)

• Event ¬V happens (type 2 forgery): In this case, ad-
versary A uses program P = (f⇤

, ⌧

⇤
1

, . . . , ⌧

⇤
n

⇤) in which
all the labels are posed in previous ciphertext queries.
Event B

i

happens if m⇤ 6= f

⇤(m0
1

, . . . ,m

0
n

⇤) and equa-
tion (8) holds.

Let C0
j

be the ciphertext corresponding to label ⌧⇤
j

in a
previous ciphertext query, for all j = 1, . . . , n⇤. Define
C

0 = (y0
0

, y

0
1

) Eval(PP,P, (C0
1

, . . . , C

0
n

⇤)). Since C

0

is a valid ciphertext for m

0 = f

⇤(m0
1

, . . . ,m

0
n

⇤), the
following relation holds:

r

⇤ = f

⇤(r0
⌧

⇤
1
, . . . , r

0
⌧

⇤
n⇤) = y

0
0

+ y

0
1

· s mod p (10)

Subtracting (10) from (8), we obtain:

(y⇤
0

� y

0
0

) + (y⇤
1

� y

0
1

) · s mod p = 0 (11)

Since m

⇤ 6= f(m0
1

, . . . ,m

0
n

⇤), we know that C

⇤ 6= C

0,
implying that y⇤

0

6= y

0
0

and y

⇤
1

6= y

0
1

. Hence, in produc-
ing a valid forgery, A must guess secret key s.

As s is uniformly distributed over Z
p

, we have Pr[B
0

^
¬V] = 1/p · Pr[¬V]. After the first verification query,
since there is only one value of s that satisfies equation
(11), the number of possible values for s becomes p� 1.
Therefore, after i queries, the adversary can exclude
i possible values of s, meaning that the number of
possible values for s is (p� i). Thus,

Pr[(B
i

^ ¬V]  1
p� i

· Pr[¬V] (12)

From equations (9) and (12), we obtain:

Pr[B
i

]  1
p� i

· (Pr[V] + Pr[¬V])  1
p� i

Finally, we have:

Pr[W
1

] 
QX

i=0

Pr[B
i

]  Q+ 1
p�Q

(13)

Putting together equations (5), (6) and (13),

uf-cmva[A,H
l

]  prf-adv[B, F] +
Q+ 1
p�Q

Since p ⇡ 2�, Q+1

p�Q

= negl(�) thus completing the proof of
Theorem 2.

5. VERIFIABLE HOMOMORPHIC
ENCRYPTION FOR QUADRATIC
FUNCTIONS

In this section, we present a verifiable homomorphic encryp-
tion scheme for multivariate quadratic functions, denoted as
q-HEMAC. The construction combines the Paillier cryptosys-
tem [30] with a homomorphic MAC scheme. For q-HEMAC,
we formulate a new homomorphic MAC scheme in which the
authenticator does not leak any information about the mes-
sage, without using bilinear maps. The correctness proof for
q-HEMACis similar to the one in Section 4.2, and is omitted.
Let f : Fn ! F be an arithmetic circuit with addition

gates and multiplication gates such that any multiplication
gate, for which none of its two inputs are constants, can only
be followed by addition gates or multiplication gates with as
least one constant as input. Without loss of generality, we
define circuit f as a quadratic multivariate polynomial:

f(x
1

, . . . , x

n

) =
X

i,j2[1,n]

↵

i,j

x

i

x

j

+
X

l2[1,n]

↵

l

x

l

+ ↵ 2 F

for some constants ↵
i,j

,↵

l

,↵ 2 F and x

i

, x

j

, x

l

taking arbi-
trary values in F.

5.1 Construction
KeyGen(1�). Let p

1

, p

2

be prime numbers with roughly �/2
bits, where � is a security parameter. Run the Paillier key
generation algorithm as defined in Section 3.3 to generate
public parameters N = p

1

p

2

and g

0. Choose a random seed

K

$ Z
N

for the pseudo-random function F

0
K

: {0, 1}⇤ ! Z
N

.
Next, let q be a large safe prime number with roughly �

bits such that q < N . Let Z⇤
q

be a multiplicative cyclic
group of order q � 1 on which the discrete logarithm prob-
lem is hard, and let g be a generator of Z⇤

q

. Choose a

random seed R

$ Z
q�1

for the pseudo-random function

F

R

: {0, 1}⇤ ! Z
q�1

, and a random number s

$ Z⇤
q�1

. Pub-
lish the public key PK = (N, g

0
, g, q), and retain the secret

key SK = (p
1

, p

2

, K,R, s). The data space is M = Z
q�1

and
F = Z

q�1

.

Enc(SK, ⌧ ,m). Given secret key SK = (p
1

, p

2

,K,R, s), pro-
ceed as follows to encrypt a datum m 2 Z

q�1

with label
⌧ 2 {0, 1}⇤. First, compute an encryption key k

⌧

= F

0
K

(⌧)
and a pseudo-random value r

⌧

= F

R

(⌧). Then, choose a

random number u

$ Z⇤
N

, and output a level-1 ciphertext
C = (c

0

, c

1

, y

0

, Y

1

) 2 Z⇤
N

2 ⇥ Z
N

⇥ Z
q�1

⇥ Z⇤
q

where:

c

0

= E(m) = g

0m · uN mod N

2

, c

1

= m� k

⌧

mod N,

y

0

=
m� r

⌧

s

mod (q � 1), Y

1

= g

r⌧ mod q

611

Eval(PK,P,

~

C). Given public key PK = (N, g

0
, g, q), a la-

beled program P = (f,⌧
1

, . . . , ⌧

n

), and a vector of cipher-

texts ~

C = (C
1

, . . . , C

n

) where C

i

= (c(i)
0

, c

(i)

1

, y

(i)

0

, Y

(i)

1

) 2
Z⇤

N

2 ⇥ Z
N

⇥ Z
q�1

⇥ Z⇤
p

for all i = 1, . . . , n. The procedure

goes through a series of gates in a new circuit f̃ with the
same structure as f , except that the input is the vector
of ciphertexts ~

C. The output of the Eval procedure is the
output of GateEval at the output gate of the new circuit f̃ .
GateEval is defined below.

GateEval(PK,Gate, C

1

, C

2

). Let C
i

= (c(i)
0

, c

(i)

1

, y

(i)

0

, Y

(i)

1

)
for i = 1, 2 be the ciphertext of m

i

2 Z
q�1

. Proceed gate-by-
gate as follows.

• Gate

+

: On input of two level-1 ciphertexts: The out-
put of the gate is a level-1 ciphertext C = (c

0

, c

1

, y

0

, Y

1

) 2
Z⇤

N

2 ⇥ Z
N

⇥ Z
q�1

⇥ Z⇤
q

where

c

0

= c

(1)

0

· c(2)
0

mod N

2

, c

1

= c

(1)

1

+ c

(2)

1

mod N,

y

0

= y

(1)

0

+ y

(2)

0

mod (q � 1), Y

1

= Y

(1)

1

· Y (2)

1

mod q.

On input of two level-2 ciphertexts: The output of the
gate is a level-2 ciphertext C = (c

0

, y

0

, Y

1

) 2 Z⇤
N

2 ⇥
Z

q�1

⇥ Z⇤
q

where:

c

0

= c

(1)

0

· c(2)
0

mod N

2

,

y

0

= y

(1)

0

+ y

(2)

0

mod (q � 1), Y

1

= Y

(1)

1

· Y (2)

1

mod q.

On input of a level-1 and a level-2 ciphertexts: We
assume that the level of ciphertext C

1

is ‘1’ and the
level of ciphertext C

2

is ‘2’. The output of the gate is
a level-2 ciphertext C = (c

0

, y

0

, Y

1

) 2 Z⇤
N

2 ⇥Z
q�1

⇥Z⇤
q

where:

c

0

= g

0c(1)1 · c(2)
0

mod N

2

, y

0

= y

(2)

0

,

Y

1

= g

y

(1)
0 · Y (2)

1

mod q.

• Gate⇥ : On input of two level-1 ciphertexts: The out-
put of the gate is a level-2 ciphertext C = (c

0

, y

0

, Y

1

) 2
Z⇤

N

2 ⇥ Z
q�1

⇥ Z⇤
q

where:

c

0

= c

(1)

0

c

(2)
1 · c(2)

0

c

(1)
1

/g

0c(1)1 ·c(2)1 mod N

2

,

y

0

= y

(1)

0

y

(2)

0

mod (q � 1), Y
1

= Y

(1)

1

y

(2)
0

Y

(2)

1

y

(1)
0 mod q.

• Gate⇥c

: On input of a constant ↵ and a level-1 ci-
phertext: We assume that C

1

= ↵. The output of
the gate is a level-1 ciphertext C = (c

0

, c

1

, y

0

, Y

1

) 2
Z⇤

N

2 ⇥ Z
N

⇥ Z
q�1

⇥ Z⇤
q

where:

c

0

= c

(2)

0

↵

mod N

2

, c

1

= ↵ · c(2)
1

mod N,

y

0

= ↵ · y(2)
0

mod (q � 1), Y

1

= Y

(2)

1

↵

mod q.

On input of a constant ↵ and a level-2 ciphertext: We
assume that C

1

= ↵. The output of the gate is a level-2
ciphertext C = (c

0

, y

0

, Y

1

) 2 Z⇤
N

2 ⇥ Z
q�1

⇥ Z⇤
q

where:

c

0

= c

(2)

0

↵

mod N

2

,

y

0

= ↵ · y(2)
0

mod (q � 1), Y

1

= Y

(2)

1

↵

mod q.

Finally, return C = (c
0

, c

1

, y

0

, Y

1

) 2 Z⇤
N

2⇥Z
N

⇥Z
q�1

⇥Z⇤
q

if the level of circuit f is ‘1’, or return C = (c
0

, y

0

, Y

1

) 2
Z⇤

N

2 ⇥ Z
q�1

⇥ Z⇤
q

if the level of circuit f is ‘2’.

Dec(SK,P, C). Given secret key SK = (p
1

, p

2

,K,R, s), a
labeled program P = (f,⌧

1

, . . . , ⌧

n

), and ciphertext C. For
every input label ⌧

i

2 {0, 1}⇤ of circuit f , first compute
one-time encryption key k

⌧i = F

0
K

(⌧
i

) and pseudo-random
value r

⌧i = F

R

(⌧
i

). Then, compute decryption key  =
f

0(k
⌧1 , . . . , k⌧n) and r = f(r

⌧1 , . . . , r⌧n) where f

0 is a new
circuit which has the same structure as f , except that the
input and output space are Z

N

. Consider two di↵erent cases
depending on the level of ciphertext C.

• Level-1 ciphertext. Let C = (c
0

, c

1

, y

0

, Y

1

) 2 Z⇤
N

2 ⇥
Z
N

⇥ Z
q�1

⇥ Z⇤
q

. Decrypt m = f(m
1

, . . . ,m

n

) with
decryption key  as:

m = c

1

+  mod N (14)

To verify the correctness of m, use secret value s to
check for the following condition:

m = y

0

· s+ r mod (q � 1) (15)

If the condition holds, return m; otherwise, return ?.
• Level-2 ciphertext. Let C = (c

0

, y

0

, Y

1

) 2 Z⇤
N

2 ⇥
Z
q�1

⇥ Z⇤
q

. Decrypt m = f(m
1

, . . . ,m

n

) with secret
values p

1

, p

2

and decryption key  as:

m = D(c
0

) +  mod N (16)

where D(c
0

) =
L(c

�0
0 mod N

2
)

L(g

0�0
mod N

2
)

mod N as defined in Sec-

tion 3.3.

To verify the correctness of m, use secret value s to
check for the following condition:

g

m+r mod q = g

y0·s2 · Y s

1

mod q (17)

If the condition holds, return m; otherwise, return ?.
5.2 Security
Let H

q

= (KeyGen,Enc,Eval,Dec) denote q-HEMAC, the
verifiable homomorphic encryption scheme for multivariate
quadratic functions defined in Section 5.1. We now formally
state and prove the semantic security and unforgeability
assurances of q-HEMAC. We omit the unforgeability proof
for level-1 circuit, which is similar to the proof for Theorem
2.

Theorem 3. Suppose that F and F

0 are secure PRFs, the
additively homomorphic Paillier encryption is semantically
secure, and the discrete logarithm problem is hard in Z⇤

q

.
Then, the proposed q-HEMAC scheme is semantically secure
according to Definition 1.

Proof. We prove the theorem using two games, Game 0
and Game 1. Let W

0

and W

1

be the events that adversary
A wins the semantic security game in Game 0 and Game 1,
respectively.

Game 0 is identical to Attack 1 applied to the H
q

scheme.
We have:

Pr[W
0

] = Pr[b = b

0] (18)

Game 1 is the same as Game 0, except that the PRFs are
replaced by truly random functions. That is, the challenger

generates k

⌧

$ Z
N

, r

⌧

$ Z
q�1

instead of k

⌧

= F

0
K

(⌧),
r

⌧

= F

R

(⌧) in the Enc procedure. Then there is a PRF
adversary B such that:

|Pr[W
0

]� Pr[W
1

]|  ✏

F

+ ✏

F

0 (19)

612

where ✏

F

and ✏

F

0 are the negligible advantages of B in break-
ing the security of F and F

0, respectively.
In Game 1, ciphertext C

⇤ = (c⇤
0

, c

⇤
1

, y

⇤
0

, Y

⇤
1

) where c

⇤
0

is
the output of Paillier encryption, c

⇤
1

= m

b

� k

⌧

⇤ mod N ,
y

⇤
0

= mb�r⌧⇤
s

mod (q � 1), and Y

⇤
1

= g

k⌧⇤ mod q. In the ad-
versary’s view, k

⌧

⇤
, r

⌧

⇤ are random values in Z
N

and Z
q�1

,
so c

⇤
1

, y

⇤
0

are uniformly distributed over Z
N

, Z
q�1

respectively,
and Y

⇤
1

is also uniformly distributed over Z⇤
q

. In addition,
since the Paillier cryptosystem is semantically secure and dis-
crete logarithm assumption holds in Z⇤

q

, there are adversaries
PA and D such that:

Pr[W
1

] =
1
2
+ ✏

pa

+ ✏

dlog

(20)

where ✏

pa

is the negligible advantages of PA in breaking the
security of Paillier cryptosystem, and ✏

dlog

is the negligible
advantages of D in breaking the discrete logarithm problem.

Putting together equations (18), (19) and (20),

Pr[b = b

0]  1
2
+ ✏

F

+ ✏

F

0 + ✏

pa

+ ✏

dlog

This means advantage ss-adv[A,H
f

] of A in Attack 1 is
negligible, thus completing the proof of Theorem 3.

Theorem 4. Suppose that F and F

0 are secure PRFs and
the discrete logarithm problem is hard in Z⇤

q

. The proposed
q-HEMAC scheme is unforgeable according to Definition 2.

Proof. The proof is fashioned after the one given by
Agrawal and Boneh in [1]. We prove the theorem using a
sequence of two games, Game 0 and Game 1. Let W

0

and
W

1

be the events that A wins Attack 2 in Game 0 and Game
1, respectively.

Game 0 is identical to Attack 2 applied to the H
q

scheme.
Therefore,

Pr[W
0

] = uf-cmva[A,H
q

] (21)

Game 1 is the same as Game 0, but the PRFs are replaced
by truly random functions. That is, the challenger generates

k

⌧

$ Z
N

, r
⌧

$ Z
q�1

instead of k
⌧

= F

0
K

(⌧), r
⌧

= F

R

(⌧) in
the Enc procedure for ciphertext queries. Then there is a
PRF adversary B such that:

|Pr[W
1

]� Pr[W
0

]|  ✏

F

+ ✏

F

0 (22)

where ✏

F

and ✏

F

0 are the negligible advantages of B in break-
ing the security of F and F

0, respectively.
The complete challenger in Game 1 is described below.
Ciphertext Queries. The adversary submits queries (⌧

i

,m

i

)
where ⌧

i

is the label of datum m

i

. The challenger creates
a new list T for tracking the queries from A in this game.
For the i-th query, if T does not contain a tuple (⌧

i

, ·, ·), the
challenger responds as follows:

• Generate k

⌧i

$ Z
N

, r
⌧i

$ Z
q�1

.

• Compute c

i,0

= E(m
i

), c
i,1

= m

i

� k

⌧i mod N , y
i,0

=
mi�r⌧i

s

mod (q � 1), and Y

i,1

= g

r⌧i mod q.

• Send (c
i,0

, c

i,1

, y

i,0

, Y

i,1

) to A, and update list T =
T [{(⌧

i

, r

⌧i , k⌧i)}.
If (⌧

i

, ·, ·) 2 T , i.e., label ⌧
i

was queried previously, the
challenger rejects the query.

Verification queries. The adversary submits queries (P
i

, C

i

)
where P

i

= (f
i

, ⌧

i,1

, . . . , ⌧

i,ni) and C

i

= (c
i,0

, y

i,0

, Y

i,1

). The
challenger responds to the i-th verification query as follows.

• If (⌧
i,j

, ·, ·) 2 T for all j = 1, . . . , n
i

, the challenger
retrieves k

⌧i,j , r⌧i,j from list T , and returns the output
of Dec(SK,P

i

, C

i

).

• If there exists some j 2 {1, . . . , n
i

} such that (⌧
i,j

, ·, ·) /2
T , the challenger generates k

⌧i,j

$ Z
N

and r

⌧i,j

$
Z

q�1

, and returns the output of Dec(SK,P
i

, C

i

).

Eventually, the adversary outputs (P, C

⇤) where P =
(f⇤

, ⌧

⇤
1

, . . . , ⌧

⇤
n

⇤) and C

⇤ = (c⇤
0

, y

⇤
0

, Y

⇤
1

). The adversary wins
the game if any of the two types of forgery happens.

• Type 1 forgery: If there exists some j 2 {1, . . . , n⇤}
such that (⌧⇤

j

, ·, ·) /2 T , the challenger generates k

⌧

⇤
j

$
Z

N

and r

⌧

⇤
j

$ Z
q�1

. The random values corresponding
to the remaining labels are retrieved from list T . Let


⇤ = f

⇤0(k
⌧

⇤
1
, . . . , k

⌧

⇤
n⇤) and r

⇤ = f

⇤(r
⌧

⇤
1
, . . . , r

⌧

⇤
n⇤).

Let m⇤ = D(c⇤
0

) + 

⇤ mod N . The adversary wins the
game if:

g

m

⇤
+r

⇤
mod q = g

y

⇤
0 ·s2 · (Y ⇤

1

)s mod q (23)

• Type 2 forgery: If (⌧⇤
j

, ·, ·) 2 T for all j = 1, . . . , n⇤,
the challenger retrieves (k

⌧

⇤
j
, r

⌧

⇤
j
) from list T . Let

{(k0
⌧

⇤
j
, r

0
⌧

⇤
j
,m

0
j

)}n⇤
j=1

be the random values and data cor-

responding to the labels {⌧⇤
j

}n⇤
j=1

. Let 

⇤ = f

⇤0(k0
⌧

⇤
1
,

. . . , k

0
⌧

⇤
n⇤

) and r

⇤ = f

⇤(r0
⌧

⇤
1
, . . . , r

0
⌧

⇤
n⇤

). Let m

⇤ =

D(c⇤
0

) + 

⇤ mod N . The adversary wins the game if:

g

m

⇤
+r

⇤
mod q = g

y

⇤
0 ·s2 · (Y ⇤

1

)s mod q (24)

and m

⇤ 6= m

0 = f

⇤(m0
1

, . . . ,m

0
n

⇤).

We now compute the winning probability of adversary A
in Game 1. Let B

i

be the event that the adversary wins
the game after i verification queries. Let Q be the upper
bound on the number of verification queries requested by the
adversary. We have:

Pr[W
1

] = Pr

"
Q_

i=0

B

i

#


QX

i=0

Pr[B
i

]

Let V,¬V be the events that the adversary outputs a type
1 forgery and type 2 forgery, respectively.

• Event V (type 1 forgery) happens: The left hand side
of equation (23) is a random element in G that is
independent of the adversary’s view. In addition, since
s is a secret key, the probability that equation (23)
holds is exactly 2/(q � 1). Hence,

Pr[B
i

^ V] =
2

q � 1
· Pr[V] (25)

• Event ¬V (type 2 forgery) happens: In this case, ad-
versary A outputs program P = (f⇤

, ⌧

⇤
1

, . . . , ⌧

⇤
n

⇤) in
which all the labels were used in previous ciphertext
queries. Event B

i

happens if m⇤ 6= f

⇤(m0
1

, . . . ,m

0
n

⇤)
and equation (24) holds.

Let C0
j

be the ciphertext corresponding to label ⌧⇤
j

in a
previous ciphertext query, for all j = 1, . . . , n⇤. Define
C

0 Eval(PK,P, (C0
1

, . . . , C

0
n

⇤)). Since C

0 is a valid

613

ciphertext for m

0 = f

⇤(m0
1

, . . . ,m

0
n

⇤), the following
relation holds:

g

m

0
+r

⇤
mod q = g

y

0
0·s

2 · (Y 0
1

)
s

mod q (26)

Dividing equation (26) by equation (24),

g

m

0�m

⇤
mod q = g

(y

0
0�y

⇤
0)·s2 · (Y 0

1

/Y

⇤
1

)s mod q (27)

Since m

⇤ 6= m

0 = f(m0
1

, . . . ,m

0
n

⇤), in producing a valid
forgery, the adversary must guess the value of secret
key s or solve the discrete logarithm problem.

Let S be a set of possible values for s. Since s is
uniformly distributed over Z

q�1

and there are most two
values of s satisfying equation (27), we have Pr[B

0

^
¬V] = (2/(q � 1) + ✏

dlog

) · Pr[¬V] where ✏

dlog

is the
negligible advantage of an adversary D in breaking the
discrete logarithm problem. After the first verification
query, the number of values in S becomes as least
(q�1)�2. Therefore, after i queries, the adversary can
exclude at most 2i possible values of s from S. That
means the number of values in S is (q � 1)� 2i. Thus,

Pr[B
i

^ ¬V] 
✓

2
q � 1� 2i

+ ✏

dlog

◆
· Pr[¬V] (28)

From equations (25) and (28), we obtain:

Pr[B
i

] 
✓

2
q � 1� 2i

+ ✏

dlog

◆
(Pr[V] + Pr[¬V])

 2
q � 1� 2i

+ ✏

dlog

Finally,

Pr[W
1

] 
QX

i=0

Pr[B
i

]  2(Q+ 1)
q � 1� 2Q

+ (Q+ 1) · ✏
dlog

(29)

Putting together equations (21), (22) and (29),

uf-cmva[A,H
q

]  ✏

F

+ ✏

F

0 +
2(Q+ 1)
q � 1� 2Q

+ (Q+ 1) · ✏
dlog

Since q ⇡ 2� and Q is an upper bound on the number of
verification queries, 2(Q+1)

q�1�2Q

= negl(�) thus completing the
proof of Theorem 4.

6. EMPIRICAL EVALUATION
In this section, we report on a series of experiments de-

signed to evaluate our l-HEMAC and q-HEMAC schemes.

6.1 Set-up
Schemes to be investigated. We implemented l-HEMAC
and q-HEMAC in C++, using the GMP library2 for large
integer arithmetic, and the OpenSSL library3 for AES encryp-
tion to simulate pseudo-random functions. The parameter
settings for the schemes, corresponding to various security
levels, are given below:

• Linear functions: For 128-bit security, we choose log p =
128.

2https://gmplib.org
3https://www.openssl.org

Table 1: Execution time (msec) of l-HEMAC on linear func-
tions

Enc Eval Dec

Gate

+

Gate⇥c

128-bit 0.0045 0.00073 0.0014 0.0035

Table 2: Execution time (msec) of q-HEMAC on quadratic
functions

Enc Eval Dec

Gate

+

Gate⇥c Gate⇥

80-bit 2.89 0.006 0.04 5.67 2.12
112-bit 16.11 0.018 0.13 39.21 15.93
128-bit 47.48 0.033 0.33 116.45 46.11

• Multivariate quadratic functions: For 80-bit (respec-
tively 112-bit and 128-bit) security, we choose log p

1

=
log p

2

= 512 (log p
1

= log p
2

= 1024, log p
1

= log p
2

=
1536), log q = 1024 (log q = 2048, log q = 3072) and
q < N = p

1

p

2

.

As a baseline for comparison, we use the VC
quad

scheme for
multivariate quadratic polynomials of Fiore et al. in [21].
Since there is no available code for the scheme, we implement
its ProbGen, Compute and Verify (corresponding to Enc, Eval
and Dec in our schemes) procedures with the PBC library4

for bilinear group and pairing operations, and HElib library5

for the BGV [11] cryptosystem.

Experiment platform. We execute the schemes on a ran-
domly generated table with one million records, in which
each record has two attributes – a label and a datum. The
experiments are carried out on a MacBook Air with a 1.33
GHz Intel Core i5 processor and 4 GB of memory, running
Mac OS X version 10.10.2.

Performance metric. We evaluate the schemes on (a) the
time taken by the data owner to encrypt data (with the Enc
procedure), (b) the time for the server to evaluate a function
(with the Eval procedure), and (c) the time for the client
to decrypt a result provided by the server (with the Dec
procedure). Every reported timing is averaged over 10, 000
trials.

6.2 Experiments
We begin with l-HEMAC on linear functions. The execution

times of the procedures in this scheme, for 128-bit security,
are tabulated in Table 1. The Enc procedure requires only
4.5 µ sec for encryption, while the Dec procedure requires 3.5
µ sec to decrypt and verify a record. At only 0.73 µ sec and
1.4 µ sec, the overheads incurred by the Eval procedure to add
(Gate

+

) and multiply by a constant (Gate⇥c) are also very
low. Figure 1(a) plots the execution times of the Enc, Eval,

4https://crypto.stanford.edu/pbc
5https://github.com/shaih/HElib

Table 3: Comparative execution time (msec) for operations
in the evaluation procedure

q-HEMAC VC
quad

[21]
80-bit 128-bit 80-bit 128-bit

Gate

+

0.006 0.033 0.05 0.13
Gate⇥c 0.047 0.331 1.92 3.03
Gate⇥ 5.670 116.45 216.06 353.76

614

●

●

●

●

●

●

●
● Enc

Eval
Dec

Data Size (n)

Ti
m

in
g

(m
se

c)

100 101 102 103 104 105 106

10−3

10−2

10−1

100

101

102

103

104

(a) l-HEMAC on linear
functions

●

●

●

●

●

●

●
● Enc

Eval
Dec

Data Size (n)

Ti
m

in
g

(m
se

c)

100 101 102 103 104 105 106

10−2

10−1

100

101

102

103

104

105

106

107

(b) q-HEMAC on quadratic
functions

Figure 1: Execution times of our proposed schemes on linear
functions and multivariate quadratic functions, with 80-bit
security

q−HEMAC Dec
q−HEMAC Eval & Dec
VCquad Dec
VCquad Eval & Dec

Data Size (n)

Ti
m

in
g

(m
se

c)

100 101 102 103 104 105 106

10−3

10−2

10−1

100

101

102

103

104

105

(a) Evaluation on function
f(~m) =

P
n

i=1

m

i

q−HEMAC Dec
q−HEMAC Eval & Dec
VCquad Dec
VCquad Eval & Dec

Data Size (n)

Ti
m

in
g

(m
se

c)

100 101 102 103 104 105 106

100

101

102

103

104

105

106

107

108

109

(b) Evaluation on function
f(~x, ~y) =

P
n

i=1

x

i

y

i

Figure 2: Comparison the decryption time and total execu-
tion time which is the sum of the evaluation and decryption
time of q-HEMAC and VC

quad

, with 80-bit security

Dec procedures of l-HEMAC to encrypt n records, evaluate
the circuit f(m

1

, . . . ,m

n

) =
P

n

i=1

↵

i

m

i

(where ↵

1

, . . . ,↵

n

are constants) on their ciphertexts, then decrypt and verify
the result. While all the three procedures have execution
times that are linear to the number of input data, they are
very fast. In particular, the Dec procedure incurs only 3.28
sec for n = 106 data values.

Turning to the q-HEMAC scheme for multivariate quadratic
functions, Table 2 summarizes the execution times of its
procedures for 80-bit, 112-bit and 128-bit security levels.
Figure 1(b) plots the performance of the Enc, Eval, Dec
procedures in q-HEMAC at 80-bit security, against the number
of records n in evaluating the function f(~x, ~y) =

P
n

i=1

x

i

y

i

where ~x = (x
1

, . . . , x

n

) and ~y = (y
1

, . . . , y

n

) are data vectors.
While the q-HEMAC procedures are slower than those in
l-HEMAC, they are still e�cient. For example, the Dec
procedure completes in 5.2 sec for n = 106 data items.

6.3 Comparison
Next, we compare our proposed q-HEMAC with the existing

VC
quad

scheme. Both schemes require expensive computations
to encrypt the data. However, q-HEMAC needs only 2,898 sec
to encrypt the data set of 1 million records; that is 12 times
faster than the encryption in VC

quad

which ran for 36,711 sec.
Table 3 compares the execution times of the evaluation

procedure in q-HEMAC and VC
quad

. All the operations in
our scheme are faster than their counterparts in VC

quad

. In
particular, for 80-bit security, q-HEMAC performs multiplica-
tion and multiplication by a constant at least 38 times faster
than VC

quad

, whereas addition in q-HEMAC is 8 times faster
than in VC

quad

.

Ultimately, the usability of the schemes hinges on their
total turnaround time, the sum of server evaluation time and
client decryption time. To compute a function over n records,
the circuit needs to have at least n�1 gates. Among the three
types of gates, Gate

+

, Gate⇥c and Gate⇥, q-HEMAC has
the smallest gain over VC

quad

for Gate

+

. To be conservative
in quantifying the performance advantage of q-HEMAC, we
run the two schemes on a circuit with n � 1 Gate

+

gates.
Figure 2 plots the decryption time and total turnaround time
of the competing schemes. Even though the decryption time
in q-HEMAC increases linearly with the data size whereas
VC

quad

has constant decryption time, q-HEMAC’s much faster
server evaluation helps it to achieve overall turnaround times
that are at least 5 times and 30 times faster than VC

quad

’s
for linear and quadratic functions respectively.

7. CONCLUSION
Existing studies on verifiable computation on encrypted

data are built on fully homomorphic encryption, which re-
quire expensive computations on the server and the client.
In this paper, we present the first schemes that guarantee the
confidentiality of input data and authenticity of outsourced
computations, while avoiding the need for fully homomor-
phic encryption. The first is l-HEMAC, a simple and e�cient
scheme for linear functions that integrates symmetric key ho-
momorphic encryption with homomorphic MAC. The second
scheme, q-HEMAC, supports multivariate quadratic func-
tions and combines the Paillier cryptosystem with a new
homomorphic MAC scheme. We provide security analysis
to prove that our schemes achieve the desired confidentiality
and authenticity requirements. Through empirical evalua-
tions and comparison with the scheme in [21], we confirm
the practicality of our schemes.

8. ACKNOWLEDGMENTS
This material is based on research supported by the Sin-

gapore National Research Foundation under NCR award
number NRF2014NCR-NCR001-012.

9. REFERENCES
[1] S. Agrawal and D. Boneh. Homomorphic macs:

Mac-based integrity for network coding. In Applied
Cryptography and Network Security, pages 292–305.
Springer, 2009.

[2] P. Ananth, N. Chandran, V. Goyal, B. Kanukurthi, and
R. Ostrovsky. Achieving privacy in verifiable
computation with multiple servers–without fhe and
without pre-processing. In Public-Key
Cryptography–PKC 2014, pages 149–166. Springer,
2014.

[3] N. Attrapadung and B. Libert. Homomorphic network
coding signatures in the standard model. In Public Key
Cryptography–PKC 2011, pages 17–34. Springer, 2011.

[4] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable
delegation of computation on outsourced data. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 863–874.
ACM, 2013.

[5] M. Barbosa and P. Farshim. Delegatable homomorphic
encryption with applications to secure outsourcing of
computation. In Topics in Cryptology–CT-RSA 2012,
pages 296–312. Springer, 2012.

615

[6] M. Bellare and C. Namprempre. Authenticated
encryption: Relations among notions and analysis of
the generic composition paradigm. In Advances in
Cryptology–ASIACRYPT 2000, pages 531–545.
Springer, 2000.

[7] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable
delegation of computation over large datasets. In
Advances in Cryptology–CRYPTO 2011, pages 111–131.
Springer, 2011.

[8] D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing
a linear subspace: Signature schemes for network
coding. In Public Key Cryptography–PKC 2009, pages
68–87. Springer, 2009.

[9] D. Boneh and D. M. Freeman. Homomorphic
signatures for polynomial functions. In Advances in
Cryptology–EUROCRYPT 2011, pages 149–168.
Springer, 2011.

[10] D. Boneh and D. M. Freeman. Linearly homomorphic
signatures over binary fields and new tools for
lattice-based signatures. In Public Key
Cryptography–PKC 2011, pages 1–16. Springer, 2011.

[11] Z. Brakerski, C. Gentry, and V. Vaikuntanathan.
(leveled) fully homomorphic encryption without
bootstrapping. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, pages
309–325. ACM, 2012.

[12] D. Catalano and D. Fiore. Practical homomorphic
macs for arithmetic circuits. In EUROCRYPT, volume
7881, pages 336–352. Springer, 2013.

[13] D. Catalano and D. Fiore. Boosting
linearly-homomorphic encryption to evaluate degree-2
functions on encrypted data. Cryptology ePrint
Archive, Report 2014/813, 2014.

[14] D. Catalano, D. Fiore, R. Gennaro, and L. Nizzardo.
Generalizing homomorphic macs for arithmetic circuits.
In Public-Key Cryptography–PKC 2014, pages 538–555.
Springer, 2014.

[15] D. Catalano, D. Fiore, R. Gennaro, and
K. Vamvourellis. Algebraic (trapdoor) one-way
functions and their applications. In Theory of
Cryptography, pages 680–699. Springer, 2013.

[16] D. Catalano, D. Fiore, and B. Warinschi. Adaptive
pseudo-free groups and applications. In Advances in
Cryptology–EUROCRYPT 2011, pages 207–223.
Springer, 2011.

[17] D. Catalano, D. Fiore, and B. Warinschi. E�cient
network coding signatures in the standard model. In
Public Key Cryptography–PKC 2012, pages 680–696.
Springer, 2012.

[18] D. Catalano, D. Fiore, and B. Warinschi. Homomorphic
signatures with e�cient verification for polynomial
functions. In Advances in Cryptology–CRYPTO 2014,
pages 371–389. Springer, 2014.

[19] D. Catalano, A. Marcedone, and O. Puglisi.
Authenticating computation on groups: New
homomorphic primitives and applications. In Advances
in Cryptology–ASIACRYPT 2014, pages 193–212.
Springer, 2014.

[20] D. Fiore and R. Gennaro. Publicly verifiable delegation
of large polynomials and matrix computations, with
applications. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 501–512. ACM, 2012.

[21] D. Fiore, R. Gennaro, and V. Pastro. E�ciently
verifiable computation on encrypted data. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages
844–855. ACM, 2014.

[22] D. M. Freeman. Improved security for linearly
homomorphic signatures: A generic framework. In
Public Key Cryptography–PKC 2012, pages 697–714.
Springer, 2012.

[23] R. Gennaro, C. Gentry, and B. Parno. Non-interactive
verifiable computing: Outsourcing computation to
untrusted workers. In Advances in
Cryptology–CRYPTO 2010, pages 465–482. Springer,
2010.

[24] R. Gennaro and D. Wichs. Fully homomorphic message
authenticators. In Advances in
Cryptology–ASIACRYPT 2013, pages 301–320.
Springer, 2013.

[25] S. Goldwasser, Y. Kalai, R. A. Popa,
V. Vaikuntanathan, and N. Zeldovich. Reusable garbled
circuits and succinct functional encryption. In
Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, pages 555–564. ACM, 2013.

[26] C. Joo and A. Yun. Homomorphic authenticated
encryption secure against chosen-ciphertext attack. In
Advances in Cryptology–ASIACRYPT 2014, pages
173–192. Springer, 2014.

[27] J. Lai, R. H. Deng, H. Pang, and J. Weng. Verifiable
computation on outsourced encrypted data. In
Computer Security–ESORICS 2014, pages 273–291.
Springer, 2014.

[28] S.-Y. Li, R. W. Yeung, and N. Cai. Linear network
coding. Information Theory, IEEE Transactions on,
49(2):371–381, 2003.

[29] B. Libert, T. Peters, M. Joye, and M. Yung. Linearly
homomorphic structure-preserving signatures and their
applications. In Advances in Cryptology–CRYPTO
2013, pages 289–307. Springer, 2013.

[30] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Advances in
cryptology–EUROCRYPTâĂŹ99, pages 223–238.
Springer, 1999.

[31] C. Papamanthou, E. Shi, and R. Tamassia. Signatures
of correct computation. In Theory of Cryptography,
pages 222–242. Springer, 2013.

[32] B. Parno, M. Raykova, and V. Vaikuntanathan. How to
delegate and verify in public: Verifiable computation
from attribute-based encryption. In Theory of
Cryptography, pages 422–439. Springer, 2012.

[33] A. Shpilka and A. Yehudayo↵. Arithmetic circuits: A
survey of recent results and open questions.
Foundations and Trends R� in Theoretical Computer
Science, 5(3–4):207–388, 2010.

616

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2016

	Efficient verifiable computation of linear and quadratic functions over encrypted data
	Ngoc Hieu TRAN
	Hwee Hwa PANG
	Robert H. DENG
	Citation

	asia148

