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Soft Confidence-Weighted Learning

JIALEI WANG, Department of Computer Science, University of Chicago, USA
PEILIN ZHAO, Institute for Infocomm Research, A*STAR, Singapore
STEVEN C. H. HOI, School of Information Systems, Singapore Management University, Singapore

Online learning plays an important role in many big data mining problems because of its high efficiency
and scalability. In the literature, many online learning algorithms using gradient information have been
applied to solve online classification problems. Recently, more effective second-order algorithms have been
proposed, where the correlation between the features is utilized to improve the learning efficiency. Among
them, Confidence-Weighted (CW) learning algorithms are very effective, which assume that the classifica-
tion model is drawn from a Gaussian distribution, which enables the model to be effectively updated with
the second-order information of the data stream. Despite being studied actively, these CW algorithms can-
not handle nonseparable datasets and noisy datasets very well. In this article, we propose a family of Soft
Confidence-Weighted (SCW) learning algorithms for both binary classification and multiclass classification
tasks, which is the first family of online classification algorithms that enjoys four salient properties simul-
taneously: (1) large margin training, (2) confidence weighting, (3) capability to handle nonseparable data,
and (4) adaptive margin. Our experimental results show that the proposed SCW algorithms significantly
outperform the original CW algorithm. When comparing with a variety of state-of-the-art algorithms (in-
cluding AROW, NAROW, and NHERD), we found that SCW in general achieves better or at least comparable
predictive performance, but enjoys considerably better efficiency advantage (i.e., using a smaller number of
updates and lower time cost). To facilitate future research, we release all the datasets and source code to the
public at http://libol.stevenhoi.org/.

CCS Concepts: � Theory of computation → Online learning algorithms; � Computing
methodologies → Supervised learning by classification; Online learning settings;

Additional Key Words and Phrases: Confidence weighted, second-order algorithms, binary classification,
multiclass classification
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1. INTRODUCTION

Online learning algorithms [Hoi et al. 2014; Rosenblatt 1958a; Crammer et al. 2006]
represent a family of fast and simple machine-learning techniques, which usually make
few statistical assumptions and can be applied to a wide range of applications, including
malicious URL detection [Zhao and Hoi 2013], anomaly detection [Wang et al. 2014a],
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image retrieval [Wu et al. 2013; Xia et al. 2014], portfolio selection [Li et al. 2012;
Li and Hoi 2014], learning to rank [Wang et al. 2015], collaborative filtering [Wang
et al. 2013; Lu et al. 2013], and so forth. Typically, an online learner processes one
instance at a time and makes simple updates with each incoming example repeatedly.
As a result, online algorithms are not only more efficient and scalable but also able
to avoid expensive retraining cost when handling new training data, making them
more favorite choices for solving large-scale machine-learning tasks toward big data
applications.

Online learning has been actively studied in the machine-learning commu-
nity [Rosenblatt 1958b; Crammer and Singer 2003; Cesa-Bianchi et al. 2004; Crammer
et al. 2006; Fink et al. 2006; Zhao et al. 2011a, 2011b; Hoi et al. 2013; Wang et al. 2014b;
Zhao et al. 2014], in which a variety of online learning algorithms have been proposed,
including a number of first-order algorithms [Rosenblatt 1958a; Crammer et al. 2006].
One of the most popular first-order online approaches is the well-known Perceptron
algorithm [Rosenblatt 1958b; Freund and Schapire 1999]. Recently a number of online
learning algorithms have been developed based on the criterion of maximum mar-
gin [Crammer and Singer 2003; Gentile 2001; Kivinen et al. 2001; Crammer et al.
2006; Li and Long 1999]. One example is the Relaxed Online Maximum Margin algo-
rithm (ROMMA) [Li and Long 1999], which repeatedly chooses the hyperplanes that
correctly classify the existing training examples with a large margin. Another repre-
sentative example is the Passive-Aggressive (PA) algorithm [Crammer et al. 2006]. It
updates the classification function when a new example is misclassified or its classifi-
cation score does not exceed the predefined margin. Empirical studies showed that the
maximum margin-based online learning algorithms are generally more effective than
the Perceptron algorithm. Despite the difference, these online learning algorithms only
update the algorithm based on the first-order information, such as the gradient of the
loss. This constraint could significantly limit the performance of online learning.

Recent years have seen a surge of studies on second-order online learning algo-
rithms [Cesa-Bianchi et al. 2005; Dredze et al. 2008; Crammer et al. 2009; Orabona
and Crammer 2010; Duchi et al. 2011], which have shown that parameter confidence
information can be explored to guide and improve online learning performance [Cesa-
Bianchi et al. 2005]. For example, Second-Order Perceptron (SOP) [Cesa-Bianchi et al.
2005] is the first second-order online learning algorithm that can be viewed as an
online variant of the whitened Perceptron algorithm by exploiting online correlation
matrices of previously seen instances. Later, other second-order online learning algo-
rithms have been proposed. For example, Confidence-Weighted (CW) learning [Dredze
et al. 2008; Crammer et al. 2009] maintains a Gaussian distribution over some linear
classifier hypotheses and applies it to control the direction and scale of parameter up-
dates [Dredze et al. 2008]. Although CW has formal guarantees in the mistake-bound
model [Crammer et al. 2008], it can overfit in certain situations due to its aggressive
update rules based on a separable data assumption. Recently, an improved online al-
gorithm, that is, Adaptive Regularization of Weights (AROW) [Crammer et al. 2009;
Orabona and Crammer 2010], relaxes such separable assumption by employing an
adaptive regularization for each training example based on its current confidence. This
regularization comes in the form of minimizing a combination of the Kullback-Leibler
divergence between Gaussian distributed weight vectors and a confidence penalty of
vectors.

Although AROW [Crammer et al. 2009] is able to improve the original CW [Crammer
et al. 2008] learning by handling noisy and nonseparable cases, it is not the exact
corresponding soft extending part of CW (like PA with PA-I and PA-II). In particular,
the directly added loss and confidence regularization makes AROW lose an important
property of Confidence-Weighted learning, that is, Adaptive Margin property [Crammer
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et al. 2008]. Following the similar idea of soft margin support vector machines, the
adaptive margin assigns different margins for different instances via a probability
formulation, which enables CW to gain extra efficiency and effectiveness.

In this work, we extend the confidence-weighted learning for soft margin learning,
which makes our Soft Confidence-Weighted (SCW) learning method more robust than
the original CW learning when handling noisy and nonseparable data, and more ef-
fective and efficient than the state-of-the-art AROW algorithm. We also extend Soft
Confidence-Weighted learning algorithms for solving online multiclass classification
problems. Finally, an extensive set of experiments show that SCW in general achieves
better or at least comparable predictive performance compared with a variety of state-
of-the-art algorithms (including AROW, NAROW, and NHERD) but enjoys a consid-
erably better efficiency advantage (i.e., using a smaller number of updates and lower
time cost).

The rest of this article is organized as follows. Section 2 proposes Soft Confidence-
Weighted (SCW) learning methods for online binary classification setting. Section 3
presents soft confidence-weighted learning methods for an online multiclass classifica-
tion setting. Section 4 analyzes the mistake bounds and properties of our algorithms.
Section 5 conducts an extensive set of empirical experiments on a large set of datasets,
and Section 6 concludes this work. Finally, we note that a short conference version of
this work appeared in the International Conference on Machine Learning [Wang et al.
2012].

2. SOFT CONFIDENCE-WEIGHTED LEARNING FOR BINARY CLASSIFICATION

2.1. Overview of Online Binary Classification

Online learning operates on a sequence of data examples with timestamps. At time
step t, the algorithm processes an incoming example xt ∈ R

d by first predicting its label
ŷt ∈ {−1,+1}. After the prediction, the true label yt ∈ {−1,+1} is revealed and then
the loss �(yt, ŷt), which is the difference between its prediction and the revealed true
label yt, is suffered. Finally, the loss is used to update the weights of the model based
on some criterion. Overall, the goal of online learning is to minimize the cumulative
mistake over the entire sequence of data examples.

Our work is closely related to several first- and second-order online learning al-
gorithms, including Passive-Aggressive learning [Crammer et al. 2006], Confidence-
Weighted learning [Dredze et al. 2008], and Adaptive Regularization of Weights learn-
ing [Crammer et al. 2009]. Next we review the basics of these algorithms.

2.2. Passive-Aggressive Learning

As the state-of-the-art first-order online learning algorithm, the optimization of
Passive-Aggressive (PA) learning is formulated as

wt+1 = arg min
w∈Rd

1
2

‖w − wt‖2, s.t. �(w; (xt, yt)) = 0, (1)

where the loss function is based on the hinge loss:

�(w; (xt, yt)) =
{

0 if yt(w · xt) ≥ 1
1 − yt(w · xt) otherwise.

The previous optimization has the closed-form solution

wt+1 = wt + ηPA
t ytxt, (2)

where ηPA
t = �(wt;(xt,yt))

‖xt‖2 . Further, to let PA be able to handle nonseparable instances and
be more robust, a slack variable ξ was introduced into the optimization (Equation (1))
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using one of two types of penalty: linear and quadratic, leading to the following two
formulations of soft-margin PA algorithms:

wPA−I
t+1 = arg min

w∈Rd

1
2

‖w − wt‖2 + C�(w; (xt, yt));

wPA−II
t+1 = arg min

w∈Rd

1
2

‖w − wt‖2 + C�(w; (xt, yt))2,

where C is a parameter to trade off between passiveness and aggressiveness. The
resulting weight updates to the soft-margin PA algorithms have the same form as that
of Equation (2), but different coefficients ηt as follows:

ηPA−I
t = min

{
C,

�(wt; (xt, yt))
‖xt‖2

}
, ηPA−II

t = �(wt; (xt, yt))

‖xt‖2 + 1
2C

.

2.3. Confidence-Weighted Learning

To better exploit the underlying structure between features, the Confidence-Weighted
(CW) learning algorithm assumes a Gaussian distribution of weights with mean vector
μμμ ∈ R

d and covariance matrix � ∈ R
d×d. The weight distribution is updated by mini-

mizing the Kullback-Leibler divergence between the new weight distribution and the
old one while ensuring that the probability of correct classification is greater than a
threshold as follows:

(μμμt+1, �t+1) = arg min
μμμ,�

DKL(N (μμμ,�),N (μμμt, �t)), s.t. Prw∼N (μμμ,�)[yt(w · xt) ≥ 0] ≥ η.

This optimization problem has a closed-form solution

μμμt+1 = μμμt + αt yt�txt, �t+1 = �t − βt�txt
T xt�t. (3)

The updating coefficients are calculated as follows:

αt = max

⎧⎨
⎩0,

1
υtζ

⎛
⎝−mtψ +

√
mt

2 φ4

4
+ υtφ2ζ

⎞
⎠

⎫⎬
⎭ , βt = αtφ√

ut + υtαtφ
,

where ut = 1
4 (−αtυtφ +

√
αt

2υt
2φ2 + 4υt)2, υt = xt

T �txt, mt = yt(μμμt · xt), φ = �−1(η) (� is

the cumulative function of the normal distribution), ψ = 1 + φ2

2 , and ζ = 1 + φ2.

2.4. Adaptive Regularization of Weights

Unlike the original CW learning algorithm, the AROW learning introduces the adaptive
regularization of the prediction function when processing each new instance in each
learning step, making it more robust than CW to sudden changes of label noise in the
learning tasks. In particular, the optimization of AROW is formulated as follows:

(μμμt+1, �t+1) = arg min
μμμ,�

DKL(N (μμμ,�),N (μμμt, �t)) + 1
2γ

�2(μμμ; (xt, yt)) + 1
2γ

xt
T �txt,

where �2(μμμ; (xt, yt)) = (max{0, 1 − yt(μμμ · xt)})2 and γ is a regularization parameter. The
optimization has a closed-form solution similar with CW of Equation (3), but different
updating coefficients:

αt = �(μμμt; (xt, yt))βt, βt = 1
xt

T �txt + γ
.

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 1, Article 15, Publication date: September 2016.



Soft Confidence-Weighted Learning 15:5

2.5. Soft Confidence Weighted Learning

In this section, we present a new online learning method that aims to address the
limitation of the CW and AROW learning.

Following the same problem settings of the Confidence-Weighted learning, we as-
sume the weight vector w follows the Gaussian distribution with the mean vector μμμ
and the covariance matrix �. Notice that the probability constraint in the CW learning,
that is, Prw∼N (μμμ,�)[yt(w · xt) ≥ 0] ≥ η, can be rewritten as yt(μμμ · xt) ≥ φ

√
x�

t �xt, where
φ = �−1(η). Further, we introduce a φ loss function as follows:

�φ(N (μμμ,�); (xt, yt)) = max
(
0, φ

√
x�

t �xt − ytμμμ · xt

)
.

It is easy to verify that satisfying the probability constraint (i.e., yt(μμμ · xt) ≥ φ
√

x�
t �xt

for any φ > 0) is equivalent to satisfying �φ
(
N (μμμ,�); (xt, yt)

) = 0. Therefore, the opti-
mization problem of the original CW can be rewritten as follows:

(μμμt+1, �t+1) = arg min
μμμ,�

DKL(N (μμμ,�)‖N (μμμt, �t)), s.t. �φ(N (μμμ,�); (xt, yt)) = 0, φ > 0.

The original CW learning method employs a very aggressive updating strategy by
changing the distribution as much as necessary to satisfy the constraint imposed by
the current example. Although it results in the rapid learning effect, it could force one
to wrongly change the parameters of the distribution dramatically when handling a
mislabeled instance. Such an undesirable property makes the original CW algorithm
perform poorly in many real-world applications with relatively large noise.

To overcome this limitation of the CW learning problem, we propose an SCW learning
method, which aims to soften the aggressiveness of the CW updating strategy. The idea
of the SCW learning is inspired by the variants of PA algorithms (PA-I and PA-II) and
the adaptive margin. In particular, we formulate the optimization of SCW for learning
the soft-margin classifiers as follows:

(μμμt+1, �t+1) = arg min
μμμ,�

DKL(N (μμμ,�)‖N (μμμt, �t)) + C�φ(N (μμμ,�); (xt, yt)), (4)

where C is a parameter to trade off the passiveness and aggressiveness. We denoted the
previous formulation of the Soft Confidence-Weighted algorithm as “SCW-I” for short.
Similar to the variant of PA, we can also modify the previous formulation by employing
a squared penalty, leading to the second formulation of SCW learning (denoted as
“SCW-II” for short):

(μμμt+1, �t+1) = arg min
μμμ,�

DKL(N (μμμ,�)‖N (μμμt, �t)) + C�φ(N (μμμ,�); (xt, yt))2. (5)

For the optimization of SCW-I, the following proposition gives the closed-form solution.

PROPOSITION 1. The closed-form solution of the optimization problem (Equation (4))
is expressed as follows:

μμμt+1 = μμμt + αt yt�txt, �t+1 = �t − βt�txt
T xt�t,

where the updating coefficients are as follows:

αt = min

⎧⎨
⎩C, max

⎧⎨
⎩0,

1
υtζ

⎛
⎝−mtψ +

√
mt

2 φ4

4
+ υtφ2ζ

⎞
⎠

⎫⎬
⎭

⎫⎬
⎭ , βt = αtφ√

ut + υtαtφ
,

where ut = 1
4 (−αtυtφ +

√
αt

2υt
2φ2 + 4υt)2, υt = xt

T �txt, mt = yt(μμμt · xt), φ = �−1(η),

ψ = 1 + φ2

2 , and ζ = 1 + φ2.
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Similarly, the following proposition gives the closed-form solution to the optimization
of SCW-II.

PROPOSITION 2. The closed-form solution of the optimization problem (Equation (5))
is

μμμt+1 = μμμt + αt yt�txt, �t+1 = �t − βt�txt
T xt�t,

where the coefficients are as follows:

αt = max
{

0,
−(2mtnt + φ2mtυt) + γt

2(n2
t + ntυtφ2)

}
, βt = αtφ√

ut + υtαtφ
,

where γt = φ
√

φ2m2
t υ

2
t + 4ntυt(nt + υtφ2) and nt = υt + 1

2C .

The detailed proofs of Propositions 1 and 2 can be found in the appendix section.
Finally, Algorithm 1 summarizes the proposed SCW-I and SCW-II algorithms.

ALGORITHM 1: SCW Learning Algorithms (SCW)
INPUT: parameters C > 0, η > 0.
INITIALIZATION: μ1 = (0, . . . , 0)�, �1 = I.
for t = 1, . . . , T do

Receive an example xt ∈ R
d;

Make prediction: ŷt = sgn(μt · xt);
Receive true label yt;
suffer loss �φ(N (μt, �t); (xt, yt));
if �φ(N (μt, �t); (xt, yt)) > 0 then

μt+1 = μt + αt yt�txt, �t+1 = �t − βt�txt
T xt�t

where αt and βt are computed by either Proposition 1 (SCW-I) or Proposition 2 (SCW-II);
end if

end for

3. MULTICLASS SOFT CONFIDENCE-WEIGHTED LEARNING

3.1. Overview of Online Multiclass Learning

Similar to online binary classification, online multiclass learning is performed over a
sequence of training examples (x1, Y1), . . . , (xT , YT ). Unlike binary classification, where
yt ∈ {−1,+1}, in multiclass learning, each class assignment Yt ⊆ Y could contain
multiple class labels, making it a more challenging problem. We use Ŷt to represent the
class set predicted by the online learning algorithm. Before presenting our algorithm,
we first review online multiclass learning [Crammer and Singer 2003; Fink et al. 2006;
Shalev-Shwartz and Singer 2007] based on the framework of label ranking [Crammer
and Singer 2005].

3.2. Label Ranking for Multiclass Learning

Given an instance x, the label ranking approach first computes a score for every class
label in Y and ranks the classes in descending order of their scores. The predicted
class set Ŷt is formed by the classes with the highest scores. The objective of label
ranking is to ensure that the score of class r is significantly larger than that of class s
if r ∈ Yt is a true class assignment while s ∈ Y \ Yt is not. The multiclass learning algo-
rithms can be divided into two categories: single-prototype model and multiprototype
model. The single-vector model assumes that there exists the class-dependent feature

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 1, Article 15, Publication date: September 2016.
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mapping and maintains a single hypothesis shared by all the classes. The single-
prototype model is generally used in some structured prediction problems [Collins
2002]. Confidence-Weighted learning has also been extended to online multiclass learn-
ing in the single-prototype model scenario and has shown promising performance in
Natural Language Processing applications [Crammer et al. 2009]. The multiprototype
model can be applied to a more general multiclass learning problem since there might
be a single natural representation for every instance rather than multiple feature rep-
resentations for each individual class, such as the digit recognition problems. Besides,
as shown in Crammer et al. [2006], the multiprototype model could be easily reduced
to a single-prototype model. In this article, we focus on the protocol of the multiproto-
type model [Crammer and Singer 2001, 2003; Crammer et al. 2006] for the design of
a multiclass learning algorithm. It learns multiple hypotheses/classifiers w1, . . . , wk,
one hypothesis for each class in Y, leading to a total of k vectors that are trained for
the classification task. Specifically, for trial t, upon receiving an instance xt, the scores
of k classes output by the set of k hypotheses are given by

(wt,1 · xt, . . . , wt,k · xt)�.

We introduce two variables rt and st that are defined as follows:

rt = arg min
r∈Yt

wt,r · xt, st = arg max
s/∈Yt

wt,s · xt,

where rt and st represent the class of the smallest score among all relevant classes
and the class of the largest score among the irrelevant classes, respectively. Using the
notation of rt and st, the margin with respect to the hypothesis set at trial t is defined
as follows:

�((wt,1, . . . , wt,k); (xt, Yt)) = wt,rt · xt − wt,st · xt.

Based on the multiprototype model, several online multiclass learning algorithms have
been proposed. Representive work includes three kinds of additive updating methods
based on Perceptron [Crammer and Singer 2003] and Multiclass Passive Aggressive
Learning [Crammer et al. 2006]. Also, the Multiclass Confidence-Weighted Learning
in the single-prototype model [Crammer et al. 2009] also can be extended to the mul-
tiprototype model easily.

3.3. Multiclass Soft Confidence Weighted Learning

In this section, we present a new online multiclass learning method based on the
previously described soft confidence-weighted learning idea.

In Multiclass Soft Confidence-Weighted learning, we assume the each prototype
vector wi follows the Gaussian distribution with the mean vector μμμi and the covariance
matrix �i. For simplicity, we assume each prototype i ∈ {1, . . . , k} shares the same
covariance matrix �. In a multiclass classification setting, we want to ensure that the
lowest prediction score of all the relevant classes is higher than the highest prediction
score of all the irrelevant classes, with a high probability which is not lower than a
threshold η. In mathematical form, the constraint can be expressed as follows:

Prwt,rt ∼N (μμμt,rt ,�t),wt,st ∼N (μμμt,st ,�t)[(wt,rt · xt) ≥ (wt,st · xt)] ≥ η,

where

rt = arg min
r∈Yt

μμμt,r · xt, st = arg max
s/∈Yt

μμμt,s · xt.

It is easy to see that this probabilistic constraint can be rewritten as (μμμt,rt · xt−μμμt,st · xt) ≥
φ
√

2x�
t �txt, where φ = �−1(η).

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 1, Article 15, Publication date: September 2016.
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We introduce a φ loss function as follows:

�φ
(
N (μμμt,rt ,μμμt,st , �t); (xt, Yt)

) = max
(
0, φ

√
2x�

t �xt − (μμμt,rt · xt − μμμt,st · xt)
)
.

Then, it is easy to verify that satisfying the probability constraint (i.e., (μμμt,rt · xt −μμμt,st ·
xt) ≥ φ

√
2x�

t �txt for any φ > 0) is equivalent to satisfying �φ(N (μμμt,rt ,μμμt,st , �t); (xt, Yt)) =
0. Therefore, the optimization problem of the original CW can be rewritten as follows:

(μμμt+1,rt ,μμμt+1,st , �t+1)
= arg min

μμμr ,μμμs,�
DKL

(
N (μμμr, �)‖N (μμμt,rt , �t)

) + DKL
(
N (μμμs, �)‖N (μμμt,st , �t)

)
,

s.t. �φ(N (μμμr,μμμs, �t); (xt, Yt)) = 0, φ > 0.

The original multiclass CW learning method employs a very aggressive updating strat-
egy by changing the distribution as much as necessary to satisfy the constraint imposed
by the current example. Although it results in the rapid learning effect, it could force
one to wrongly change the parameters of the distribution dramatically when handling
a mislabeled instance. Such an undesirable property makes the original multiclass CW
algorithm perform poorly in many real-world applications with relatively large noise.

To overcome this limitation of the CW learning problem, we propose an SCW learning
method, which aims to soften the aggressiveness of the CW updating strategy. The idea
of SCW learning is inspired by the variants of PA algorithms (PA-I and PA-II) and the
adaptive margin. In particular, we formulate the optimization of SCW for learning the
soft-margin classifiers as follows:

(μμμt+1,rt ,μμμt+1,st , �t+1)
= arg min

μμμr ,μμμs,�
DKL

(
N (μμμr, �)‖N (μμμt,rt , �t)

) + DKL
(
N (μμμs, �)‖N (μμμt,st , �t)

)
+ C�φ

(
N (μμμr,μμμs, �t); (xt, Yt)

)
, (6)

where C is a parameter to trade off the passiveness and aggressiveness. We denoted
the previous formulation of the Multiclass Soft Confidence-Weighted algorithm as
“MSCW1” for short. Similar to the variant of PA, we can also modify the previous
formulation by employing a squared penalty, leading to the second formulation of Mul-
ticlass SCW learning (denoted as “MSCW2” for short):

(μμμt+1,rt ,μμμt+1,st , �t+1)
= arg min

μμμr ,μμμs,�
DKL

(
N (μμμr, �)‖N (μμμt,rt , �t)

) + DKL
(
N (μμμs, �)‖N (μμμt,st , �t)

)
+ C�φ

(
N (μμμr,μμμs, �t); (xt, Yt)

)2
. (7)

For the optimization of MSCW1, the following proposition gives the closed-form
solution.

PROPOSITION 3. The closed-form solution of the optimization problem (Equation (6))
is expressed as follows:

μμμt+1,rt = μμμt,rt + αt yt�txt, μμμt+1,st = μμμt,st − αt yt�txt, �t+1 = �t − βt�txt
T xt�t,

where the updating coefficients are as follows:

αt = min
{
C, max

{
0,

1
2υtψ

(
−mtψ +

√
mt

2ψ2 − mt
2ψ + 2ψφ2υt

)}}
, βt = αtφ√

2ut + υtαtφ
,

where ut = 1
8 (−αtυtφ +

√
αt

2υt
2φ2 + 8υt)2, υt = xt

T �txt, mt = μμμt,rt · xt − μμμt,st · xt, φ =
�−1(η), ψ = 1 + φ2

2 .
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Similarly, the following proposition gives the closed-form solution to the optimization
of MSCW2.

PROPOSITION 4. The closed-form solution of the optimization problem (Equation (7))
is

μμμt+1,rt = μμμt,rt + αt yt�txt, μμμt+1,st = μμμt,st − αt yt�txt, �t+1 = �t − βt�txt
T xt�t.

The updating coefficients are as follows:

αt = max
{

0,
−(2mtρt + φ2mtυt) + γt

2(ρ2
t + ρtυtφ2)

}
, βt = αtφ√

2ut + υtαtφ
,

where γt = φ
√

φ2m2
t υ

2
t + 8ρtυt(ρt + υtφ2) and ρt = 2υt + 1

2C .

The details of the proofs for Propositions 3 and 4 are in the appendix. Finally, Algo-
rithm 2 summarizes the proposed MSCW1 and MSCW2 algorithms.

ALGORITHM 2: Multiclass SCW Learning Algorithms (MSCW)
INPUT: parameters C > 0, η > 0.
INITIALIZATION: μμμ1,1, . . . ,μμμ1,k = (0, . . . , 0)�, �1 = I.
for t = 1, . . . , T do

Receive an example xt ∈ R
d;

Make prediction: Ŷt = arg maxr(μμμt,r · xt), r ∈ [1, k];
Receive true label Yt;
suffer loss �φ(N (μμμt,rt ,μμμt,st , �t); (xt, Yt));
if �φ(N (μμμt,rt ,μμμt,st , �t); (xt, Yt)) > 0 then

μμμt+1,rt = μμμt,rt + αt yt�txt, μμμt+1,st = μμμt,st − αt yt�txt, �t+1 = �t − βt�txt
T xt�t,

where αt and βt are computed by either Proposition 3 (MSCW1) or Proposition 4
(MSCW2);

end if
end for

4. ANALYSIS AND DISCUSSIONS

We first give an overview of the comparison of the proposed SCW methods with respect
to several existing first-order and second-order online learning algorithms, followed by
the discussions on the nonlinear extension and the bound analysis.

4.1. Comparison with the Existing Methods

Following the study of AROW, we qualitatively examine the properties of different
algorithms in Table I. Unlike the previous second-order algorithms, the proposed SCW
algorithm enjoys all four salient properties. In particular, SCW improves over the
original CW algorithm by adding the capability to handle the nonseparable cases and
improves over AROW by adding the adaptive margin property. To the best of our
knowledge, SCW is the first second-order online learning method that holds all four
properties.

4.2. Extension to Nonlinear Cases

Similar to other linear online learning methods, the proposed SCW learning can be
extended to nonlinear cases. The following lemma shows the possibility of extending
the proposed SCW algorithms to nonlinear cases using kernel tricks.
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Table I. Property Comparison of Online Algorithms

Large Confi- Non Adaptive
Algorithm Margin dence separable Margin

PA Yes No Yes No
SOP No Yes Yes No
IELLIP No Yes Yes No
CW Yes Yes No Yes
AROW Yes Yes Yes No
NHERD Yes Yes Yes No
NAROW Yes Yes Yes No
SCW Yes Yes Yes Yes

LEMMA 4.1 (REPRESENTER THEOREM). The mean μμμi and covariance �i parameters com-
puted by the soft confidence-weighted algorithm can be written as linear combinations
of the input vectors with coefficients that depend only on inner products of input vectors,
that is,

�i =
i−1∑

p,q=1

π (i)
p,qxpxq

� + aI, μμμi =
i−1∑

p

νp
(i)xp,

where νi
(i) = 1 and νp

(i+1) = νp
(i) + αi yi

∑i−1
q πp,q

(i)xq
T xi for p < i, and πp,q

(i+1) =
−βi

∑
r,s πp,r

(i)πs,q
(i)xr

T xs +πp,q
(i), πp,i

(i) = πi,p
(i) = −βi

∑i−1
p,r πp,r

(i)(xr
T xi), πi,i

(i+1) = −βi .

The previous lemma can be proved by induction similar to the proof in Crammer et al.
[2008].

4.3. Analysis of the Loss Bound

Our analysis begins with the definition of confidence loss, which is used in Crammer
et al. [2008]. The loss is a function of the margin mi normalized by

√
v, that is, m̃i = mi√

vi
.

We modified the confidence loss in Crammer et al. [2008] as an upper-bounded loss by

�φi (m̃i) =
{

0 m̃i ≥ φ

min
{

fφ(m̃i), C2(1+φ2)υi
φ2

}
m̃i < φ,

where fφ(m̃) = (−m̃ψ+
√

m̃2 φ4
4 +φ2ζ )2

φ2ζ
. It is easy to see that the loss �φ(m̃) holds the properties

of Lemma 5 in Crammer et al. [2008] for SCW-I.
We have the following loss bound.

THEOREM 1. Let (x1, y1) . . . (xn, yn) be an input sequence for SCW-I. Assume there exist
μμμ∗ and �∗ such that for all i for which the algorithm made an update(αi > 0),

μμμ∗T xi yi ≥ μμμi+1
T xi yi, xi

��∗xi ≤ xi
��i+1xi.

Then the following bound holds:

∑
i

�φi (m̃i) ≤
∑

i

(αi)2υi ≤ (1 + φ2)
φ2 (− log det �∗ + Tr(�∗) + μμμ∗T

�n+1
−1μμμ∗ − d).

The previous theorem can be proved by applying Lemma 7 and property 6 in Lemma 5
in Crammer et al. [2008]. If we let �φi (m̃i) upper bound the 0 − 1 loss by choosing an
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Table II. List of Datasets Used in the Experiments

Dataset # Training Examples # Features

splice 1,000 60
svmguide3 1,243 21
Synthetic data 5,000 20
MITface 6,977 361
usps1vsall 7,291 256
mushrooms 8,124 112
mnist1vs2 14,867 784
w7a 24,692 300
codrna 59,535 8
ijcnn1 141,691 22
covtype 581,012 54

appropriate C, then our mistake number is also bounded by

(1 + φ2)
φ2 (− log det �∗ + Tr(�∗) + μμμ∗T

�n+1
−1μμμ∗ − d).

5. EMPIRICAL EVALUATION

5.1. Empirical Evaluation on Online Binary Classification

5.1.1. Datasets and Compared Algorithms. We adopt a variety of datasets from different
domains:

—Synthetic data: We generated this dataset by the method described in Crammer
et al. [2008], which is used to examine the effectiveness of second-order algorithms.
More specifically, we first generate 5,000 data points in R

20, where the first two
coordinates were drawn from bivariate normal distribution with rotation of 45◦, and
the remaining 18 coordinates were drawn from independent normal distribution with
mean 0 and variance 2. Following Crammer et al. [2009], we also generated another
version with 0.1 noise to examine the robustness of second-order algorithms.

—Digital recognition: We use two benchmarks: “USPS”1 and “MNIST.”2 For binary
classification, we choose “1” versus “all” for “USPS,” and “1” versus “2” for “MNIST.”

—Face data: We use the MIT-CBCL face images.3
—Machine-learning datasets: We randomly choose several public machine-learning

datasets from LIBSVM.4

Table II shows the statistics of the list of datasets used.
We compare the empirical performance of the following online binary class learning

algorithms:

—Perceptron: the Perceptron algorithm in Rosenblatt [1958a]
—ROMMA, agg-ROMMA: the Relaxed Online Maximum Margin Algorithm and its

aggressive version agg-ROMMA [Li and Long 2002]
—PA-I, PA-II: the Passive Aggressive Online Learning algorithms [Crammer et al.

2006]

1http://www-i6.informatik.rwth-aachen.de/∼keysers/usps.html.
2http://yann.lecun.com/exdb/mnist/.
3http://cbcl.mit.edu/software-datasets/FaceData2.html.
4http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
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—SOP: the Second-Order Perceptron algorithms [Cesa-Bianchi et al. 2005]
—CW: the Confidence-Weighted Learning algorithm [Crammer et al. 2008]
—IELLIP: the Improved Ellipsoid Method for Online Learning [Yang et al. 2009]
—AROW: the Adaptive Regularization of Weights algorithm [Crammer et al. 2009]
—NHERD: the Normal HERD algorithm [Crammer and Lee 2010]
—NAROW: the New AROW algorithm described in Orabona and Crammer [2010]

Following the similar parameter setting methods in Dredze et al. [2008] and
Crammer et al. [2009], the parameter r in AROW, parameter b in NAROW, and
parameters C in PA-I, PA-II, NHERD, SCW-I, and SCW-II are all determined by
cross-validation to select the best one from {2−4, 2−3, . . . , 23, 24}; the parameters η in
CW, SCW-I, and SCW-II are determined by cross-validation to select the best one
from {0.5, 0.55, . . . , 0.9, 0.95}; and the parameter b in IELLIP is determined by cross-
validation to select the best one from {0.1, 0.2, . . . , 0.9}. After the best parameters are
determined, all the experiments were conducted over 20 random permutations for each
dataset. All the results were reported by averaging over these 20 runs, and the source
codes of all the algorithms are available at Hoi et al. [2014]. We evaluate the perfor-
mance by three metrics: (1) online cumulative mistake rate (OCMR), where the OCMR
at time t is defined as

OCMR(t) =
∑t

i=1 I(sign(μμμi ·xi ) =yi )

t
;

(2) number of updates (which would be closely related to the potential number of
support vectors in kernel extension), and (3) running time cost.

5.1.2. Experimental Results. Tables III and IV summarize the results of our empirical
evaluation, where we only show margin-based second-order learning algorithms due
to space limitations. For a more complete comparison, please refer to our supplemental
material. The bold elements indicate the best performance with paired t-test at the
95% significance level. We have several observations as follows.

First of all, by examining the overall mistakes, we found that second-order algorithms
usually outperform first-order algorithms, and margin-based algorithms usually out-
perform non-margin-based methods. This shows the efficacy of “Large Margin” and
“Confidence” properties for learning better classifiers.

Second, by examining the original CW algorithm, we found that it significantly
outperforms the first-order algorithms (e.g., Perceptron, ROMMA, and PA algorithms)
on the synthetic data without noise, but fails to outperform the first-order algorithms
on some real-world datasets that often have noisy data. This empirical result verifies
the importance of the “Handling Nonseparable” property in producing robust classifiers
when dealing with noisy data.

Further, we found that AROW significantly outperforms CW in many real-world
datasets (except mnist). However, AROW usually produces considerably more updates
and spends more running time than CW. This verifies the importance of the “adaptive
margin” property of both CW and SCW to reduce the number of updates as well as the
running time.

Moreover, among all the compared algorithms, SCW often achieves the best or close
to the best performance in terms of accuracy, number of updates, and running time
cost. Finally, Figures 1, 2, and 3 show the online results of 13 algorithms with respect
to varied numbers of samples in online learning processes. The results again validate
the advantages of SCW in both efficacy and efficiency among all of the state-of-the-art
algorithms.
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Table III. Evaluation of the Classification Performance of SCW

svmguide3 codrna
Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

Perceptron 0.331 ± 0.009 411 ± 10 0.00 ± 0.00 0.200 ± 0.001 11,902 ± 73 0.51 ± 0.02
ROMMA 0.333 ± 0.014 414 ± 17 0.01 ± 0.00 0.161 ± 0.011 9,614 ± 646 0.70 ± 0.03
agg-ROMMA 0.329 ± 0.014 511 ± 26 0.01 ± 0.00 0.161 ± 0.011 9,565 ± 682 0.74 ±0.03
PA-I 0.236 ± 0.002 770 ± 8 0.01 ± 0.00 0.228 ± 0.001 29,741 ± 176 2.23 ± 0.26
PA-II 0.255 ± 0.007 1137 ± 13 0.01 ± 0.00 0.228 ± 0.001 29,741 ± 176 2.05 ± 0.12
SOP 0.295 ± 0.008 366 ± 9 0.04 ± 0.00 0.106 ± 0.001 6,298 ± 39 1.04 ± 0.01
CW 0.294 ± 0.011 702 ± 13 0.03 ± 0.00 0.157 ± 0.040 9,278 ± 62 1.08 ± 0.01
IELLIP 0.329 ± 0.008 409 ± 9 0.02 ± 0.00 0.221 ± 0.010 13,156 ± 603 1.22 ± 0.04
NHERD 0.224 ± 0.012 1170 ± 21 0.05 ± 0.00 0.089 ± 0.032 32,232 ± 8,679 3.08 ± 1.18
AROW 0.218 ± 0.005 1174 ± 15 0.04 ± 0.00 0.066 ± 0.000 26,055 ± 328 2.04 ± 0.21
NAROW 0.308 ± 0.096 1229 ± 8 0.05 ± 0.00 0.182 ± 0.054 54,557 ± 4,935 6.97 ± 1.42
SCW-I 0.209 ± 0.007 540 ± 13 0.03 ± 0.00 0.065 ± 0.000 7,328 ± 326 0.95 ± 0.02
SCW-II 0.213 ± 0.008 954 ± 50 0.04 ± 0.00 0.066 ± 0.000 12,070 ± 438 1.18 ± 0.04

splice usps “1” Versus “all”
Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

Perceptron 0.345 ± 0.014 345 ± 14 0.00 ± 0.00 0.028 ± 0.002 205 ± 11 0.06 ± 0.00
ROMMA 0.365 ± 0.025 364 ± 25 0.01 ± 0.00 0.028 ± 0.003 205 ± 19 0.09 ± 0.00
agg-ROMMA 0.365 ± 0.018 370 ± 16 0.01 ± 0.00 0.028 ± 0.002 227 ± 19 0.10 ± 0.00
PA-I 0.342 ± 0.012 681 ± 11 0.01 ± 0.00 0.020 ± 0.001 676 ± 10 0.07 ± 0.00
PA-II 0.342 ± 0.012 681 ± 11 0.01 ± 0.00 0.020 ± 0.001 676 ± 10 0.07 ± 0.00
SOP 0.280 ± 0.009 279 ± 9 0.19 ± 0.02 0.023 ± 0.001 167 ± 8 33.32 ± 0.13
CW 0.271 ± 0.009 555 ± 9 0.06 ± 0.00 0.013 ± 0.001 493 ± 21 2.72 ± 0.10
IELLIP 0.310 ± 0.013 310 ± 13 0.04 ± 0.00 0.027 ± 0.002 199 ± 12 2.39 ± 0.46
NHERD 0.245 ± 0.010 805 ± 22 0.09 ± 0.01 0.014 ± 0.002 2421 ± 225 11.55 ± 1.00
AROW 0.241 ± 0.006 741 ± 24 0.07 ± 0.00 0.012 ± 0.001 1449 ± 132 7.00 ± 0.56
NAROW 0.269 ± 0.015 717 ± 35 0.08 ± 0.01 0.018 ± 0.003 2153 ± 251 10.29 ± 1.18
SCW-I 0.229 ± 0.006 541 ± 8 0.06 ± 0.00 0.012 ± 0.001 385 ± 9 2.22 ± 0.04
SCW-II 0.240 ± 0.010 479 ± 12 0.05 ± 0.00 0.011 ± 0.001 385 ± 10 2.22 ± 0.05

ijcnn1 w7a
Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

Perceptron 0.106 ± 0.001 15,052 ± 71 1.09 ± 0.03 0.117 ± 0.001 2,884 ± 14 0.28 ± 0.00
ROMMA 0.101 ± 0.001 14,291 ± 72 1.70 ± 0.04 0.111 ± 0.001 2,741 ± 15 0.38 ± 0.00
agg-ROMMA 0.101 ± 0.001 14,806 ± 98 1.81 ± 0.05 0.106 ± 0.000 3,575 ± 78 0.41 ± 0.00
PA-I 0.077 ± 0.000 28,398 ± 83 2.53 ± 0.18 0.101 ± 0.000 4,750 ± 20 0.33 ± 0.00
PA-II 0.081 ± 0.000 61,085 ± 154 8.19 ± 0.52 0.102 ± 0.000 5,575 ± 17 0.34 ± 0.00
SOP 0.102 ± 0.001 14,478 ± 93 4.79 ± 0.11 0.111 ± 0.000 2,747 ± 7 164.93 ± 0.12
CW 0.093 ± 0.001 30,678 ± 146 4.84 ± 0.14 0.104 ± 0.000 2,432 ± 48 17.16 ± 0.39
IELLIP 0.117 ± 0.002 16,570 ± 352 3.01 ± 0.07 0.114 ± 0.001 836 ± 19 14.90 ± 2.77
NHERD 0.084 ± 0.001 85,104 ± 4,283 25.01 ± 3.07 0.101 ± 0.001 12,348 ± 378 79.16 ± 2.38
AROW 0.081 ± 0.000 73,082 ± 1,272 16.95 ± 1.19 0.099 ± 0.001 10,233 ± 246 65.26 ± 1.50
NAROW 0.099 ± 0.020 105,937 ± 8,231 39.64 ± 6.89 0.108 ± 0.001 23,666 ± 179 150.37 ± 1.17
SCW-I 0.058 ± 0.002 10,561 ± 704 2.45 ± 0.07 0.097 ± 0.000 4,118 ± 23 14.85 ± 0.19
SCW-II 0.072 ± 0.003 21,792 ± 3,840 3.823 ± 0.568 0.099 ± 0.001 5,634 ± 78 24.55 ± 0.49
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Table IV. Evaluation of the Classification Performance of SCW

mnist “1” vs “2” MITface
Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

Perceptron 0.017 ± 0.001 259 ± 11 0.29 ± 0.01 0.064 ± 0.003 443 ± 22 0.08 ± 0.00
ROMMA 0.023 ± 0.002 335 ± 24 0.34 ± 0.00 0.064 ± 0.006 446 ± 41 0.11 ± 0.00
agg-ROMMA 0.023 ± 0.002 343 ± 24 0.35 ± 0.00 0.062 ± 0.005 487 ± 41 0.12 ± 0.00
PA-I 0.013 ± 0.001 988 ± 24 0.31 ± 0.01 0.050 ± 0.002 1,323 ± 15 0.10 ± 0.00
PA-II 0.013 ± 0.001 988 ± 24 0.31 ± 0.00 0.049 ± 0.002 1,375 ± 18 0.10 ± 0.00
SOP 0.055 ± 0.004 813 ± 55 935.17 ± 3.68 0.044 ± 0.002 307 ± 11 70.32 ± 0.17
CW 0.012 ± 0.000 856 ± 26 67.80 ± 1.64 0.028 ± 0.001 835 ± 19 8.94 ± 0.20
IELLIP 0.019 ± 0.001 285 ± 13 46.98 ± 5.53 0.048 ± 0.002 334 ± 11 14.17 ± 2.75
NHERD 0.108 ± 0.010 5258 ± 415 335.36 ± 24.02 0.025 ± 0.001 3,316 ± 201 33.25 ± 1.99
AROW 0.036 ± 0.001 4519 ± 241 288.43 ± 14.28 0.027 ± 0.001 1,884 ± 134 19.03 ± 1.34
NAROW 0.038 ± 0.002 5819 ± 356 372.04 ± 21.92 0.031 ± 0.002 2,389 ± 215 24.18 ± 2.15
SCW-I 0.011 ± 0.001 868 ± 22 68.50 ± 1.39 0.025 ± 0.001 756 ± 14 8.13 ± 0.17
SCW-II 0.011 ± 0.001 742 ± 34 60.90 ± 2.08 0.024 ± 0.001 774 ± 20 8.32 ± 0.20

mushrooms covtype
Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

Perceptron 0.014 ± 0.001 112 ± 8 0.04 ± 0.00 0.470 ± 0.000 273,185 ± 193 234.81 ± 0.88
ROMMA 0.015 ± 0.002 123 ± 14 0.08 ± 0.01 0.472 ± 0.005 274,049 ± 3,147 239.12 ± 7.65
agg-ROMMA 0.011 ± 0.002 327 ± 32 0.09 ± 0.00 0.469 ± 0.006 272,272 ± 3195 237.18 ± 6.89
PA-I 0.006 ± 0.001 689 ± 19 0.06 ± 0.00 0.483 ± 0.001 417,224 ± 113 568.36 ± 2.23
PA-II 0.006 ± 0.001 723 ± 18 0.06 ± 0.00 0.483 ± 0.001 417,224 ± 113 568.62 ± 1.74
SOP 0.004 ± 0.000 36 ± 2 2.09 ± 0.06 0.337 ± 0.001 195,880 ± 427 241.29 ± 1.19
CW 0.002 ± 0.000 315 ± 18 0.289 ± 0.005 0.405 ± 0.001 389,870 ± 2,278 879.78 ± 9.01
IELLIP 0.009 ± 0.001 70 ± 4 0.23 ± 0.02 0.482 ± 0.002 280,320 ± 1,148 362.67 ± 5.66
NHERD 0.002 ± 0.001 3724 ± 448 1.24 ± 0.12 0.259 ± 0.002 521,225 ± 12,1041,166.93 ± 34.72
AROW 0.002 ± 0.000 1815 ± 185 0.66 ± 0.05 0.243 ± 0.000 531,187 ± 455 1,193.21 ± 4.85
NAROW 0.002 ± 0.000 3340 ± 386 1.13 ± 0.10 0.367 ± 0.009 546,704 ± 8,814 1,269.77 ± 45.75
SCW-I 0.002 ± 0.000 327 ± 21 0.28 ± 0.06 0.233 ± 0.000 238,415 ± 1,917 264.84 ± 2.50
SCW-II 0.002 ± 0.000 152 ± 5 0.24 ± 0.01 0.239 ± 0.000 451,193 ± 3,783 881.01 ± 9.47

Synthetic Data Synthetic Data with 0.1 Noise
Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

Perceptron 0.293 ± 0.005 1,467 ± 24 0.02 ± 0.00 0.368 ± 0.005 1,840 ± 23 0.02 ± 0.00
ROMMA 0.048 ± 0.003 240 ± 17 0.04 ± 0.00 0.251 ± 0.005 1,256 ± 23 0.05 ± 0.00
agg-ROMMA 0.047 ± 0.003 243 ± 15 0.04 ± 0.00 0.251 ± 0.005 1,261 ± 23 0.05 ± 0.00
PA-I 0.251 ± 0.006 3,268 ± 23 0.05 ± 0.00 0.355 ± 0.006 3,463 ± 20 0.05 ± 0.00
PA-II 0.251 ± 0.006 3,268 ± 23 0.05 ± 0.00 0.355 ± 0.006 3,463 ± 20 0.05 ± 0.00
SOP 0.031 ± 0.003 156 ± 12 0.10 ± 0.00 0.256 ± 0.004 1,281 ± 20 0.12 ± 0.00
CW 0.017 ± 0.001 262 ± 6 0.07 ± 0.00 0.293 ± 0.005 2,811 ± 33 0.12 ± 0.00
IELLIP 0.256 ± 0.006 1,278 ± 31 0.09 ± 0.00 0.367 ± 0.006 1,835 ± 31 0.15 ± 0.00
NHERD 0.120 ± 0.016 3,202 ± 292 0.13 ± 0.00 0.208 ± 0.017 4,114 ± 150 0.15 ± 0.00
AROW 0.026 ± 0.003 2,128 ± 167 0.08 ± 0.00 0.133 ± 0.003 4,122 ± 60 0.13 ± 0.00
NAROW 0.101 ± 0.019 3,302 ± 315 0.12 ± 0.00 0.236 ± 0.024 4,242 ± 171 0.15 ± 0.00
SCW-I 0.018 ± 0.001 317 ± 8 0.07 ± 0.00 0.135 ± 0.002 1,373 ± 38 0.09 ± 0.00
SCW-II 0.020 ± 0.001 326 ± 6 0.07 ± 0.00 0.145 ± 0.005 2,138 ± 211 0.11 ± 0.00
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Fig. 1. Evaluation of SCW.
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Fig. 2. Evaluation of SCW.
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Fig. 3. Evaluation of SCW.
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Table V. List of Datasets for Online Multiclass Learning Used
in the Experiments

Dataset # Training Examples # Classes # Features

glass 214 6 9
svmguide2 391 3 20
vowel 528 11 10
ucidigits 1,797 10 64
dna 2,000 3 180
segment 2,130 7 19
satimage 4,335 6 36
usps 7,291 10 256
letter 15,000 26 16
protein 17,766 3 357
poker 25,010 10 10
shuttle 43,500 7 9

5.2. Empirical Evaluation on Online Multiclass Learning

5.2.1. Datasets and Compared Algorithms. We adopt a variety of datasets from different
domains:

—Digital recognition: We use two benchmarks: “USPS”5 and “UCI digits.”6

—Machine-learning datasets: We randomly choose several public machine learning
datasets from LIBSVM.7

Table V shows the statistics of the list of datasets used.
We compare the empirical performance of the following online multiclass learning

algorithms:

—PerceptronM: The Perceptron method based on the max-score multiclass up-
date [Crammer and Singer 2003]

—PerceptronU: The Perceptron method based on the uniform multiclass up-
date [Crammer and Singer 2003]

—PerceptronS: The Perceptron method based on the similarity-score multiclass up-
date [Crammer and Singer 2003]

—MROMMA, MaROMMA: The Multiclass ROMMA algorithm and its aggressive
version [Li and Long 2002]

—MOGD: The Multiclass Online Gradient Descent algorithm [Zinkevich 2003]
—PAM, PAM1, PAM2: The Multiclass Passive Aggressive algorithms [Crammer et al.

2006]
—MCW: The Multiprototype modification version of the Multiclass Confidence Weight

Learning algorithm [Crammer et al. 2009]
—MAROW: The Multiclass Adaptive Regularization of Weight algorithm [Crammer

et al. 2013]
—MSCW1, MSCW2: The proposed Multiprototype modification version of the Multi-

class Soft Confidence Weight Learning algorithms

The parameters C in PAM1, PAM2, MSCW1, and MSCW2 are all determined by
cross-validation to select the best one from {2−4, 2−3, . . . , 23, 24}; the parameters η in

5http://www-i6.informatik.rwth-aachen.de/∼keysers/usps.html.
6http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits.
7http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
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MSCW1 and MSCW2 are determined by cross-validation to select the best one from
{0.5, 0.55, . . . , 0.9, 0.95}. After the best parameters were determined, all the experi-
ments were conducted over 20 random permutations for each dataset. All the results
were reported by averaging over these 20 runs, and the source codes of all the algo-
rithms are available at Hoi et al. [2014]. We evaluate the performance by three metrics:
(1) online cumulative mistake rate, (2) number of updates (which would be closely re-
lated to the potential number of support vectors in kernel extension), and (3) running
time cost.

5.2.2. Experimental Results. Tables VI and VII summarize the results of our empirical
evaluation for various kinds of online multiclass learning algorithms. The bold ele-
ments indicate the best performance with paired t-test at the 95% significance level.
We can draw several observations as follows.

First of all, by examining the overall mistakes, we found that second-order algorithms
usually outperform first-order algorithms (e.g., MCW, MSCW vs. PAM, and Perceptron-
based algorithms), and margin-based algorithms usually outperform non-margin-based
methods(e.g., PAM vs. Perceptron-based algorithms). This again shows the efficacy
of “Large Margin” and “Confidence” properties for learning better classifiers in the
multiclass setting.

Second, by examining the original CW algorithm, we found that it significantly
outperforms the first-order algorithms (e.g., PAM and Perceptron-based algorithms)
on the datasets without noise (e.g., segment) but fails to outperform the first-order
algorithms on some real-world datasets that often have noisy data (e.g., letter and
poker). This empirical result verifies the importance of the “Handling Nonseparable”
property in producing robust classifiers when dealing with noisy data.

Moreover, MSCW often achieves significantly better accuracy performance than the
other algorithms, and the number of updates and running time cost of MSCW are
comparable with the MCW algorithm.

Finally, Figures 4, 5, and 6 show the online results of eight algorithms with respect
to varied numbers of samples in the online learning process. The results again validate
the advantages of MSCW in both efficacy and efficiency among all of the state-of-the-art
algorithms. We also observe an interesting phenomenon of the MCW algorithm on the
letter dataset: the online mistake rate first decreases and then increases during the
online learning process, which might be due to the letter dataset being hard to separate
and the hard constraint on the MCW algorithm making it update too aggressively
so that the classification accuracy drops during part of the online learning process.
This again verifies the necessity of developing the soft confidence-weighted learning
algorithms.

6. CONCLUSION

This article proposed Soft Confidence-Weighted (SCW) learning, a new second-order
online learning method with state-of-the-art empirical performance. Unlike the exist-
ing second-order algorithms, SCW enjoys the following four properties: (1) large margin
training, (2) confidence weighting, (3) adaptive margin, and (4) capability of handling
nonseparable data. Empirically, we found that the proposed SCW algorithms perform
significantly better than the original CW algorithm and outperform the state-of-the-art
AROW algorithm for most cases in terms of both accuracy and efficiency. Future work
will conduct more in-depth analysis of the mistake bounds and its extension to other
problems, such as multidomain learning [Dredze et al. 2010].
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Table VI. Evaluation of the Classification Performance of Multiclass SCW

glass svmguide2
Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

PerceptronM 0.595 ± 0.025 127.3 ± 5.3 0.009 ± 0.001 0.401 ± 0.022 156.8 ± 8.6 0.017 ± 0.005
PerceptronU 0.561 ± 0.025 120.1 ± 5.3 0.010 ± 0.001 0.406 ± 0.017 158.7 ± 6.5 0.019 ± 0.005
PerceptronS 0.573 ± 0.027 122.7 ± 5.7 0.011 ± 0.001 0.417 ± 0.023 163.2 ± 8.9 0.019 ± 0.004
MROMMA 0.588 ± 0.027 125.9 ± 5.9 0.009 ± 0.001 0.373 ± 0.021 146.0 ± 8.1 0.016 ± 0.004
MaROMMA 0.578 ± 0.035 168.2 ± 11.0 0.011 ± 0.001 0.354 ± 0.016 258.3 ± 8.6 0.019 ± 0.003
MOGD 0.547 ± 0.027 182.4 ± 4.3 0.012 ± 0.001 0.440 ± 0.005 391.0 ± 0.0 0.024 ± 0.004
PAM 0.586 ± 0.027 189.3 ± 4.6 0.013 ± 0.001 0.402 ± 0.016 295.4 ± 8.1 0.023 ± 0.005
PAM1 0.561 ± 0.016 208.5 ± 1.7 0.014 ± 0.001 0.376 ± 0.020 311.5 ± 7.8 0.022 ± 0.000
PAM2 0.563 ± 0.034 212.9 ± 1.1 0.014 ± 0.001 0.375 ± 0.021 361.3 ± 4.1 0.023 ± 0.001
MCW 0.520 ± 0.023 160.2 ± 5.6 0.026 ± 0.002 0.308 ± 0.015 207.7 ± 7.2 0.038 ± 0.001
MAROW 0.486 ± 0.019 213.9 ± 0.3 0.021 ± 0.002 0.230 ± 0.011 369.8 ± 4.1 0.038 ± 0.001
MSCW1 0.487 ± 0.025 146.7 ± 5.7 0.026 ± 0.002 0.221 ± 0.014 172.7 ± 3.6 0.036 ± 0.001
MSCW2 0.477 ± 0.024 180.0 ± 4.5 0.033 ± 0.003 0.222 ± 0.013 257.7 ± 10.9 0.051 ± 0.001

vowel ucidigits
Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

PerceptronM 0.781 ± 0.016 412.3 ± 8.4 0.023 ± 0.005 0.203 ± 0.007 364.8 ± 11.8 0.065 ± 0.007
PerceptronU 0.768 ± 0.012 405.4 ± 6.5 0.031 ± 0.009 0.196 ± 0.005 353.1 ± 9.5 0.070 ± 0.008
PerceptronS 0.769 ± 0.013 406.1 ± 6.7 0.033 ± 0.005 0.198 ± 0.006 356.2 ± 10.7 0.075 ± 0.007
MROMMA 0.844 ± 0.053 445.5 ± 28.0 0.026 ± 0.005 0.248 ± 0.019 445.8 ± 33.3 0.068 ± 0.006
MaROMMA 0.740 ± 0.021 487.0 ± 6.8 0.029 ± 0.005 0.247 ± 0.019 448.8 ± 33.3 0.082 ± 0.004
MOGD 0.725 ± 0.018 468.4 ± 6.1 0.031 ± 0.005 0.145 ± 0.009 262.9 ± 16.0 0.076 ± 0.006
PAM 0.767 ± 0.014 516.5 ± 3.3 0.034 ± 0.004 0.144 ± 0.007 1,112.5 ± 15.6 0.093 ± 0.009
PAM1 0.765 ± 0.014 516.8 ± 2.9 0.033 ± 0.002 0.144 ± 0.007 1,112.5 ± 15.6 0.093 ± 0.004
PAM2 0.766 ± 0.015 521.1 ± 2.3 0.033 ± 0.002 0.144 ± 0.007 1,112.5 ± 15.6 0.095 ± 0.006
MCW 0.630 ± 0.016 422.7 ± 8.1 0.063 ± 0.003 0.077 ± 0.003 439.9 ± 9.4 0.168 ± 0.004
MAROW 0.612 ± 0.015 527.0 ± 0.0 0.050 ± 0.003 0.127 ± 0.008 806.9 ± 42.8 0.200 ± 0.007
MSCW1 0.592 ± 0.020 466.3 ± 5.2 0.070 ± 0.004 0.077 ± 0.003 439.9 ± 9.4 0.174 ± 0.008
MSCW2 0.589 ± 0.018 471.4 ± 7.2 0.083 ± 0.004 0.075 ± 0.004 438.4 ± 7.8 0.182 ± 0.010

dna segment
Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

PerceptronM 0.159 ± 0.003 318.3 ± 6.6 0.077 ± 0.012 0.248 ± 0.006 572.0 ± 14.0 0.089 ± 0.005
PerceptronU 0.157 ± 0.005 314.9 ± 10.6 0.085 ± 0.006 0.239 ± 0.006 552.8 ± 13.3 0.093 ± 0.004
PerceptronS 0.159 ± 0.004 318.6 ± 8.8 0.088 ± 0.005 0.242 ± 0.007 558.7 ± 17.1 0.099 ± 0.005
MROMMA 0.202 ± 0.009 404.3 ± 17.6 0.085 ± 0.005 0.221 ± 0.009 510.0 ± 21.1 0.085 ± 0.007
MaROMMA 0.198 ± 0.009 525.6 ± 16.5 0.101 ± 0.003 0.196 ± 0.010 1,147.8 ± 86.7 0.105 ± 0.002
MOGD 0.151 ± 0.007 388.0 ± 13.9 0.094 ± 0.006 0.161 ± 0.007 951.8 ± 39.4 0.110 ± 0.006
PAM 0.114 ± 0.005 981.3 ± 11.8 0.109 ± 0.004 0.211 ± 0.007 1,362.7 ± 18.3 0.119 ± 0.006
PAM1 0.114 ± 0.005 981.3 ± 11.8 0.109 ± 0.005 0.199 ± 0.006 1,415.7 ± 11.1 0.120 ± 0.001
PAM2 0.111 ± 0.004 1,027.0 ± 11.6 0.110 ± 0.002 0.203 ± 0.005 1,611.4 ± 12.6 0.123 ± 0.004
MCW 0.105 ± 0.004 702.5 ± 10.9 0.651 ± 0.023 0.119 ± 0.004 536.2 ± 12.4 0.157 ± 0.002
MAROW 0.099 ± 0.005 1,106.3 ± 27.7 0.845 ± 0.029 0.109 ± 0.010 1,482.5 ± 78.2 0.185 ± 0.005
MSCW1 0.093 ± 0.005 694.8 ± 7.9 0.620 ± 0.012 0.091 ± 0.005 452.6 ± 10.6 0.156 ± 0.004
MSCW2 0.093 ± 0.005 748.3 ± 11.8 0.682 ± 0.016 0.094 ± 0.004 584.5 ± 19.7 0.187 ± 0.003
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Table VII. Evaluation of the Classification Performance of Multiclass SCW

satimage usps

Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

PerceptronM 0.221 ± 0.004 978.4 ± 15.8 0.157 ± 0.009 0.152 ± 0.002 1,105.2 ± 15.3 0.306 ± 0.009

PerceptronU 0.213 ± 0.004 943.5 ± 17.4 0.178 ± 0.010 0.143 ± 0.002 1,040.8 ± 12.7 0.342 ± 0.018

PerceptronS 0.216 ± 0.004 958.3 ± 18.6 0.187 ± 0.008 0.145 ± 0.002 1,059.8 ± 16.5 0.355 ± 0.017

MROMMA 0.232 ± 0.004 1,030.0 ± 16.9 0.166 ± 0.009 0.162 ± 0.009 1,178.8 ± 62.6 0.344 ± 0.019

MaROMMA 0.217 ± 0.004 1,803.1 ± 28.1 0.203 ± 0.010 0.154 ± 0.008 1,538.0 ± 88.5 0.501 ± 0.008

MOGD 0.166 ± 0.002 1,580.1 ± 43.0 0.209 ± 0.007 0.106 ± 0.003 897.3 ± 28.6 0.368 ± 0.009

PAM 0.229 ± 0.003 2,059.4 ± 19.1 0.215 ± 0.009 0.119 ± 0.002 3,128.9 ± 26.2 0.428 ± 0.011

PAM1 0.175 ± 0.003 2,016.8 ± 18.2 0.216 ± 0.008 0.119 ± 0.002 3,128.9 ± 26.2 0.426 ± 0.010

PAM2 0.188 ± 0.003 2,626.2 ± 23.4 0.229 ± 0.007 0.119 ± 0.003 3,130.7 ± 26.6 0.427 ± 0.010

MCW 0.195 ± 0.004 1,391.6 ± 20.0 0.428 ± 0.016 0.083 ± 0.002 1,463.6 ± 15.9 2.790 ± 0.047

MAROW 0.173 ± 0.005 3,264.8 ± 79.9 0.542 ± 0.019 0.075 ± 0.002 4,303.3 ± 119.7 6.734 ± 0.188

MSCW1 0.155 ± 0.002 1,168.8 ± 25.5 0.406 ± 0.011 0.065 ± 0.001 1,181.5 ± 14.2 2.364 ± 0.057

MSCW2 0.157 ± 0.003 1,726.8 ± 48.0 0.539 ± 0.019 0.068 ± 0.002 1,315.7 ± 20.1 2.622 ± 0.056

letter protein

Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

PerceptronM 0.489 ± 0.003 7,331.0 ± 40.9 0.668 ± 0.032 0.429 ± 0.002 7,622.3 ± 41.9 0.907 ± 0.025

PerceptronU 0.453 ± 0.002 6,792.7 ± 35.9 0.749 ± 0.027 0.415 ± 0.002 7,381.4 ± 38.4 0.993 ± 0.031

PerceptronS 0.463 ± 0.003 6,950.4 ± 49.2 0.808 ± 0.021 0.423 ± 0.002 7,518.8 ± 42.0 1.081 ± 0.036

MROMMA 0.549 ± 0.003 8,232.5 ± 44.0 0.672 ± 0.022 0.430 ± 0.003 7,647.9 ± 50.9 1.039 ± 0.021

MaROMMA 0.518 ± 0.004 12,784.4 ± 46.6 0.836 ± 0.024 0.424 ± 0.002 9,931.0 ± 96.4 1.251 ± 0.032

MOGD 0.405 ± 0.003 14,422.3 ± 39.2 0.897 ± 0.039 0.346 ± 0.003 12,157.2 ± 67.1 1.198 ± 0.03

PAM 0.530 ± 0.004 13,053.6 ± 35.0 0.924 ± 0.027 0.429 ± 0.002 13,078.0 ± 42.9 1.288 ± 0.024

PAM1 0.410 ± 0.002 13,267.5 ± 29.0 0.925 ± 0.022 0.382 ± 0.003 13,104.2 ± 35.2 1.294 ± 0.033

PAM2 0.434 ± 0.002 14,599.2 ± 19.1 0.967 ± 0.024 0.404 ± 0.002 14,743.4 ± 34.6 1.360 ± 0.036

MCW 0.514 ± 0.012 9,705.5 ± 157.3 1.693 ± 0.069 0.432 ± 0.002 11,751.5 ± 51.2 38.753 ± 0.725

MAROW 0.355 ± 0.003 15,000.0 ± 0.0 1.510 ± 0.032 0.343 ± 0.002 17,017.1 ± 28.9 54.043 ± 1.147

MSCW1 0.286 ± 0.002 8,205.0 ± 43.6 1.604 ± 0.053 0.338 ± 0.002 12,136.5 ± 58.8 39.897 ± 0.850

MSCW2 0.304 ± 0.003 11,506.7 ± 45.1 2.234 ± 0.091 0.349 ± 0.002 11,850.2 ± 103.1 39.185 ± 1.164

poker shuttle

Algorithm Mistake Rate #Updates Time(s) Mistake Rate #Updates Time(s)

PerceptronM 0.568 ± 0.003 14,198.0 ± 73.2 0.991 ± 0.030 0.068 ± 0.001 2,977.6 ± 23.9 1.503 ± 0.033

PerceptronU 0.544 ± 0.001 13,613.4 ± 34.5 1.138 ± 0.019 0.065 ± 0.001 2,810.2 ± 35.3 1.558 ± 0.048

PerceptronS 0.554 ± 0.002 13,856.2 ± 49.2 1.283 ± 0.025 0.067 ± 0.001 2,908.6 ± 29.9 1.588 ± 0.031

MROMMA 0.591 ± 0.005 14,769.3 ± 118.9 1.063 ± 0.026 0.070 ± 0.001 3,037.2 ± 38.6 1.429 ± 0.032

MaROMMA 0.586 ± 0.007 19,749.2 ± 735.3 1.252 ± 0.025 0.066 ± 0.001 5,320.7 ± 299.0 1.646 ± 0.072

MOGD 0.509 ± 0.002 24,666.5 ± 40.9 1.476 ± 0.023 0.086 ± 0.002 12,370.6 ± 142.6 1.878 ± 0.110

PAM 0.569 ± 0.002 20,967.4 ± 52.5 1.448 ± 0.026 0.068 ± 0.001 7,971.4 ± 65.5 1.691 ± 0.072

PAM1 0.527 ± 0.003 24,124.3 ± 38.4 1.537 ± 0.028 0.043 ± 0.001 7,742.9 ± 32.2 1.699 ± 0.025

PAM2 0.544 ± 0.003 24,946.5 ± 12.3 1.564 ± 0.023 0.049 ± 0.000 14,367.8 ± 97.7 1.883 ± 0.036

MCW 0.639 ± 0.106 16,025.7 ± 2642.9 2.811 ± 0.304 0.054 ± 0.001 4,733.7 ± 91.1 2.348 ± 0.033

MAROW 0.508 ± 0.001 25,010.0 ± 0.0 2.421 ± 0.048 0.058 ± 0.007 20,276.8 ± 1732.5 2.850 ± 0.108

MSCW1 0.503 ± 0.004 17,890.8 ± 1521.9 2.961 ± 0.146 0.027 ± 0.002 1,506.2 ± 139.6 2.160 ± 0.026

MSCW2 0.509 ± 0.004 25,010.0 ± 0.0 4.295 ± 0.060 0.052 ± 0.009 2,822.7 ± 398.4 2.413 ± 0.071
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Fig. 4. Evaluation of Multiclass SCW.
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Fig. 5. Evaluation of Multiclass SCW.
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Fig. 6. Evaluation of Multiclass SCW.
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APPENDIX: PROOFS OF PROPOSITIONS

Proof of Proposition 1

PROOF. First, when �φ(N (μμμt, �t); (xt, yt)) = 0, it is easy to see the solution is valid.
When �φ(N (μμμt, �t); (xt, yt)) > 0, it is easy to see the optimization problem is equivalent
to

DKL(N (μμμ,�)‖N (μμμt, �t)) + Cξ,

s.t. �φ(N (μμμ,�); (xt, yt)) ≤ ξ, and ξ ≥ 0.

Though the problem is only quasi-convex, we are able to transform the original
problem to a convex problem by the method introduced in Crammer et al. [2008]. Since
� is positive semidefinite (PSD), let � = Qdiag(λ1, . . . , λd)QT be the eigendecomposition
of �, and then � can be written as � = ϒ2, where ϒ = Qdiag(

√
λ1, . . . ,

√
λd)QT . Now

the problem is convex in μμμ and ϒ jointly. But for convenience, we will still use � instead
of ϒ2 in the following analysis. The Lagrangian of the previous optimization is

L(μμμ,�, ξ, τ, λ)

= DKL(N (μμμ,�)‖N (μμμt, �t)) + Cξ + τ

(
φ

√
x�

t �xt − ytμμμ · xt − ξ

)
− λξ

= DKL(N (μμμ,�)‖N (μμμt, �t)) + ξ (C − τ − λ) + τ

(
φ

√
x�

t �xt − ytμμμ · xt

)

= 1
2

log
(

det �t

det �

)
+ 1

2
T r

(
�−1

t �
) + 1

2
(μμμt − μμμ)��−1

t (μμμt − μμμ) − d
2

+ ξ (C − τ − λ)

+ τ

(
φ

√
x�

t �xt − ytμμμ · xt

)
,

where τ ≥ 0 and λ ≥ 0 are Lagrange multipliers. We now find the minimum of the
Lagrangian with respect to the primal variables μμμr, μμμs, �, and ξ :

∂L
∂μμμt+1

= �−1
t (μμμt+1 − μμμt) + τ (−ytxt) = 0 ⇒ μμμt+1 = μμμt + τyt�txt,

∂L
∂�t+1

= 0 ⇒ �−1
t+1 = �−1

t + τφ
xtx�

t√
x�

t �t+1xt
,

and C − τ − λ = 0, so τ = C − λ ≤ C, and thus, τ ∈ [0, C]. The KKT conditions for the
optimization are

φ

√
x�

t �xt − ytμμμ · xt − ξ ≤ 0, −ξ ≤ 0, τ, λ ≥ 0, τ

(
φ

√
x�

t �xt − ytμμμ · xt − ξ

)
= 0, λξ = 0.

Case 1. τ = 0
As τ (φ

√
x�

t �xt − ytμμμ · xt − ξ ) = 0 implies (φ
√

x�
t �xt − ytμμμ · xt − ξ ) = 0, the KKT

conditions are simplified:

−ξ ≤ 0, τ > 0, λ ≥ 0 φ

√
x�

t �xt − ytμμμ · xt − ξ = 0, λξ = 0.

Subcase 1.1. λ = 0
When λ = 0, λξ = 0, which implies ξ = 0. The KKT conditions are simplified as

τ > 0, λ > 0, ξ = 0, φ

√
x�

t �xt − ytμμμ · xt = 0.
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Finally, by the Sherman-Morrison formula, we have the following:

�t+1 =
(

�−1
t + τφ

xtx�
t√

x�
t �t+1xt

)−1

= �t − �txt

(
τφ√

x�
t �t+1xt + τφx�

t �txt

)
x�

t �t.

Let ut = x�
t �t+1xt, vt = x�

t �txt, mt = yt(μμμt · xt); multiplying by x�
t (left) and xt

(right), we get ut = vt − vt( τφ√
ut+τφvt

)vt, which can be used to solve ut:

√
ut = −τφvt +

√
τ 2φ2v2

t + 4vt

2
.

And φ
√

x�
t �xt − ytμμμ ·xt = 0 implies φ

√
ut −mt − τvt = 0. Thus, φ

−τφvt+
√

τ 2φ2v2
t +4vt

2 −mt −
τvt = 0, which can be rearranged as v2

t (1 + φ2)τ 2 + 2mtvt(1 + φ2

2 )τ + (m2
t − φ2vt). The

larger root is then

τ =
−mtvt(1 + φ2

2 ) +
√

m2
t v

2
t (1 + φ2

2 )2 − v2
t (1 + φ2)(m2

t − φ2vt)

v2
t (1 + φ2)

.

If τ ∈ (0, C), then λ = C − τ ∈ (0, C).
Subcase 1.2. λ = 0
C − τ − λ = 0 implies τ = C. The KKT conditions can be simplified as

−ξ ≤ 0, τ = C, λ = 0, φ

√
x�

t �xt − ytμμμ · xt − ξ = 0.

We thus have

φ

√
x�

t �xt − ytμμμ · xt =
[
φ

−τφvt +
√

τ 2φ2v2
t + 4vt

2
− mt − τvt

] ∣∣∣
τ=C

= ξ ≥ 0.

It is easy to verify that

f ′(τ ) = −φ2vt

2
+ φ3v2

t τ

2
√

τ 2φ2v2
t + 4vt

− vt = 0

has no solution on [0,+∞) and f ′(0) = −φ2vt
2 −vt < 0. As a result, f ′(τ ) < 0, τ ∈ [0,+∞),

which implies f (τ ) is decreasing on [0,+∞):

f (C) ≥ 0 = f (θ ),

where θ = −mtvt(1+ φ2
2 )+

√
m2

t v2
t (1+ φ2

2 )2−v2
t (1+φ2)(m2

t −φ2vt)
v2

t (1+φ2)
, which thus implies C ≤ θ .

Case 2. τ = 0
When τ = 0, since C − τ − λ = 0, λ = C, the KKT conditions are simplified as

φ

√
x�

t �xt − ytμμμ · xt ≤ 0, τ = 0, λ = C, ξ = 0.

Thus, μμμt+1 = μμμt and �t+1 = �t; as a result, φ
√

x�
t �txt −ytμμμt ·xt ≤ 0, which contradicts

�φ
(
N (μμμ,�); (xt, yt)

)
> 0 .
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Proof of Proposition 2

PROOF. For SCW-II, the Lagrangian of the optimization is

L(μμμ,�, ξ, τ, λ) = DKL(N (μμμ,�)‖N (μμμt, �t)) + Cξ2 + τ

(
φ

√
x�

t �xt − ytμμμ · xt − ξ

)
− λξ

= DKL(N (μμμ,�)‖N (μμμt, �t)) + ξ (Cξ − τ − λ) + τ

(
φ

√
x�

t �xt − ytμμμ · xt

)

= 1
2

log
(

det �t

det �

)
+ 1

2
Tr

(
�−1

t �
) + 1

2
(μμμt − μμμ)��−1

t (μμμt − μμμ) − d
2

+ ξ (Cξ − τ − λ)

+ τ (φ
√

x�
t �xt − ytμμμ · xt),

where τ ≥ 0 and λ ≥ 0 are Lagrange multipliers. We now find the minimum of the
Lagrangian with respect to the primal variables μμμ, �, and ξ :

∂L
∂μμμt+1

= �−1
t (μμμt+1 − μμμt) + τ (−ytxt) = 0 ⇒ μμμ = μμμt + τyt�txt,

∂L
∂�t+1

= 0 ⇒ �−1
t+1 = �−1

t + τφ
xtx�

t√
x�

t �t+1xt
,

and 2Cξ − τ − λ = 0, so ξ = τ+λ
2C . The KKT conditions for the optimization are

φ

√
x�

t �xt − ytμμμ · xt − ξ ≤ 0, ξ ≥ 0, τ ≥ 0, λ ≥ 0,

τ

(
φ

√
x�

t �xt − ytμμμ · xt − ξ

)
= 0, λξ = 0.

The rest of the proof is similar to that of SCW-I.

Proof of Proposition 3

PROOF. First, when �φ(N (μμμt,rt ,μμμt,st , �t); (xt, yt)) = 0, it is easy to see the solution is
valid. When �φ(N (μμμt,rt ,μμμt,st , �t); (xt, yt)) > 0, it is easy to see the optimization problem
is equivalent to

(μμμt+1,rt ,μμμt+1,st , �t+1)

= arg min
μμμr ,μμμs,�

DKL(N (μμμr, �)‖N (μμμt,rt , �t)) + DKL(N (μμμs, �)‖N (μμμt,st , �t)) + Cξ,

s.t. �φ(N (μμμr,μμμs, �t); (xt, yt)) ≤ ξ and ξ ≥ 0.

Since
∑

is PSD, it can be written as
∑ = ϒ2 to make the optimization with a convex

constraint in μμμ and ϒ simultaneously. But for convenience, we will still use � instead
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of ϒ2 in the following analysis. The Lagrangian of the previous optimization is

L(μμμr,μμμs, �, ξ, τ, λ)
= DKL(N (μμμr, �)‖N (μμμt,rt , �t)) + DKL(N (μμμs, �)‖N (μμμt,st , �t)) + Cξ

+ τ

(
φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt) − ξ

)
− λξ

= DKL(N (μμμr, �)‖N (μμμt,rt , �t)) + DKL(N (μμμs, �)‖N (μμμt,st , �t)) + ξ (C − τ − λ)

+τ

(
φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt)
)

= 1
2

log
(

det �t

det �

)
+ 1

2
T r

(
�−1

t �
) + 1

2
(μμμt,rt − μμμr)��−1

t (μμμt,rt − μμμr)

+ 1
2

(μμμt,st − μμμs)��−1
t (μμμt,st − μμμs) − d + ξ (C − τ − λ)

+ τ (φ
√

2x�
t �xt − (μμμr · xt − μμμs · xt)),

where τ ≥ 0 and λ ≥ 0 are Lagrange multipliers. We now find the minimum of the
Lagrangian with respect to the primal variables μμμr, μμμs, �, and ξ :

∂L
∂μμμr

= �−1
t (μμμr − μμμt,rt ) + τ (−xt) = 0 ⇒ μμμr = μμμt,rt + τ�txt

∂L
∂μμμs

= �−1
t (μμμs − μμμt,st ) + τ (xt) = 0 ⇒ μμμs = μμμt,st − τ�txt

∂L
∂�t+1

= 0 ⇒ �−1
t+1 = �−1

t +
√

2
2

τφ
xtx�

t√
x�

t �t+1xt
,

and C − τ − λ = 0, so τ = C − λ ≤ C, and thus, τ ∈ [0, C]. The KKT conditions for the
optimization are

φ

√
x�

t �xt − (μμμr · xt − μμμs · xt) − ξ ≤ 0,−ξ ≤ 0, τ, λ ≥ 0,

τ

(
φ

√
x�

t �xt − (μμμr · xt − μμμs · xt) − ξ

)
= 0, λξ = 0.

Case 1. τ = 0
As τ (φ

√
2x�

t �xt −(μμμr ·xt −μμμs ·xt)−ξ ) = 0 implies (φ
√

2x�
t �xt −(μμμr ·xt −μμμs ·xt)−ξ ) = 0,

the KKT conditions are simplified:

−ξ ≤ 0, τ > 0, λ ≥ 0, φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt) − ξ = 0, λξ = 0.

Subcase 1.1. λ = 0
When λ = 0, λξ = 0, which implies ξ = 0. The KKT conditions are simplified as

τ > 0, λ > 0, ξ = 0, φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt) = 0.

Finally, we have the following:

�t+1 =
(

�−1
t +

√
2

2
τφ

xtx�
t√

x�
t �t+1xt

)−1

= �t − �txt

(
τφ√

2x�
t �t+1xt + τφx�

t �txt

)
x�

t �t.
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Let ut = x�
t �t+1xt, vt = x�

t �txt, mt = μμμt,rt · xt − μμμt,st · xt; multiplying by x�
t (left)

and xt (right), we get ut = vt − vt( τφ√
2ut+τφvt

)vt, which can be used to solve ut:

√
ut = −τφvt +

√
τ 2φ2v2

t + 8vt

2
√

2
.

And φ
√

2x�
t �xt − (μμμr · xt − μμμs · xt) = 0 implies φ

√
2ut − mt − 2τvt = 0. Thus,

φ
−τφvt+

√
τ 2φ2v2

t +8vt

2 − mt − 2τvt = 0, which can be rearranged as v2
t (4 + 2φ2)τ 2 + mtvt(4 +

2φ2)τ + (m2
t − φ2vt). The larger root is then

τ =
−mt(1 + φ2

2 ) +
√

m2
t (1 + φ2

2 )2 − m2
t (1 + φ2

2 ) + 2vtφ2(1 + φ2

2 )

2vt(1 + φ2

2 )
.

If τ ∈ (0, C), then λ = C − τ ∈ (0, C).
Subcase 1.2. λ = 0
C − τ − λ = 0 implies τ = C. The KKT conditions can be simplified as

−ξ ≤ 0, τ = C, λ = 0, φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt) − ξ = 0.

We thus have

φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt) =
[
φ

−τφvt +
√

τ 2φ2v2
t + 8vt

2
− mt − 2τvt

] ∣∣∣
τ=C

= ξ ≥ 0.

It is easy to verify that

f ′(τ ) = −φ2vt

2
+ φ3v2

t τ

2
√

τ 2φ2v2
t + 8vt

− 2vt = 0

has no solution on [0,+∞) and f ′(0) = −φ2vt
2 −2vt < 0. As a result, f ′(τ ) < 0, τ ∈ [0,+∞),

which implies f (τ ) is decreasing on [0,+∞):

f (C) ≥ 0 = f (θ ),

where θ = −mt(1+ φ2
2 )+

√
m2

t (1+ φ2
2 )2−m2

t (1+ φ2
2 )+2vtφ2(1+ φ2

2 )

2vt(1+ φ2
2 )

, which thus implies C ≤ θ .

Case 2. τ = 0
When τ = 0, since C − τ − λ = 0, λ = C, and the KKT condtions are simplified as

φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt) ≤ 0, τ = 0, λ = C, ξ = 0.

Thus, μμμt+1 = μμμt and �t+1 = �t; as a result, φ
√

2x�
t �xt − (μμμt,rt ·xt −μμμt,st ·xt) ≤ 0, which

contradicts with �φ(N (μμμt,rt ,μμμt,st , �t); (xt, yt)) > 0 .
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Proof of Proposition 4

PROOF. For SCW-II, the Lagrangian of the optimization is

L(μμμr,μμμs, �, ξ, τ, λ)
= DKL(N (μμμr, �)‖N (μμμt,rt , �t)) + DKL(N (μμμs, �)‖N (μμμt,st , �t)) + Cξ

+ τ

(
φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt) − ξ

)
− λξ

= DKL(N (μμμr, �)‖N (μμμt,rt , �t)) + DKL(N (μμμs, �)‖N (μμμt,st , �t)) + ξ (C − τ − λ)

+ τ

(
φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt)
)

= 1
2

log
(

det �t

det �

)
+ 1

2
T r

(
�−1

t �
) + 1

2
(μμμt,rt − μμμr)��−1

t (μμμt,rt − μμμr)

+ 1
2

(μμμt,st − μμμs)��−1
t (μμμt,st − μμμs) − d + ξ (Cξ − τ − λ)

+ τ

(
φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt)
)

,

where τ ≥ 0 and λ ≥ 0 are Lagrange multipliers. We now find the minimum of the
Lagrangian with respect to the primal variables μμμ, �, and ξ :

∂L
∂μμμr

= �−1
t (μμμr − μμμt,rt ) + τ (−xt) = 0 ⇒ μμμr = μμμt,rt + τ�txt,

∂L
∂μμμs

= �−1
t (μμμs − μμμt,st ) + τ (xt) = 0 ⇒ μμμs = μμμt,st − τ�txt,

∂L
∂�t+1

= 0 ⇒ �−1
t+1 = �−1

t +
√

2
2

τφ
xtx�

t√
x�

t �t+1xt
,

and 2Cξ − τ − λ = 0, so ξ = τ+λ
2C . The KKT conditions for the optimization are

φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt) − ξ ≤ 0, ξ ≥ 0, τ ≥ 0, λ ≥ 0

τ

(
φ

√
2x�

t �xt − (μμμr · xt − μμμs · xt) − ξ

)
= 0, λξ = 0.

The rest of the proof is similar to that of MSCW1.
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