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ABSTRACT
Users express their personal preferences through ratings,
adoptions, and other consumption behaviors. We seek to
learn latent representations for user preferences from such
behavioral data. One representation learning model that
has been shown to be e↵ective for large preference datasets
is Restricted Boltzmann Machine (RBM). While homophily,
or the tendency of friends to share their preferences at some
level, is an established notion in sociology, thus far it has
not yet been clearly demonstrated on RBM-based preference
models. The question lies in how to appropriately incorpo-
rate social network into the architecture of RBM-based mod-
els for learning representations of preferences. In this paper,
we propose two potential architectures: one that models so-
cial network among users as additional observations, and
another that incorporates social network into the sharing of
hidden units among related users. We study the e�cacies
of these proposed architectures on publicly available, real-
life preference datasets with social networks, yielding useful
insights.

Keywords
user preferences; homophily; representation learning; social
recommendation; restricted Boltzmann machine

1. INTRODUCTION
Representation learning [5] deals with deriving useful la-

tent representations from a large amount of data, so as to
enable better learning or prediction. It is an area of ac-
tive research in diverse fields, including speech recognition
[13], computer vision [19], natural language processing, etc.,
where approaches based on neural networks and deep learn-
ing are currently generating a lot of interest.

In this work, we are particularly interested in representa-
tion learning for preference data. Users express their prefer-
ences in various ways, e.g., when they assign ratings to items,
when they tag or bookmark contents they like, when they
purchase or re-purchase products, when they watch videos

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys ’16, September 15 - 19, 2016, Boston , MA, USA

c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4035-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2959100.2959157

or listen to music. Such behaviors generate a large amount
of data that carry a lot of information about what users like
and dislike. Our aim is to learn a latent representation for
each user’s preferences from such behavioral data.

One pioneering work based on undirected graphical model
[31] used Restricted Boltzmann Machine (RBM) to model
user preferences from ratings. [31] showed that RBM could
learn representations for user preferences from large-scale
datasets such as Netflix [4], with collaborative filtering per-
formance competitive with matrix factorization’s. More-
over, being a basic building block of many deep learning
models, RBM could potentially benefit from further devel-
opment in the currently very active deep learning research.

Many online social media platforms today capture not just
users’ preferences through their behaviors, but also their so-
cial connections with one another through their friendship
links. This highlights an important aspect of user prefer-
ences that has not yet been factored in by previous RBM-
based models, i.e., homophily, or the tendency of people with
social connections to have shared preferences at some level.
Homophily is an established notion in sociology [26], and
as we will survey in Section 2, factoring in social network
information often helps collaborative filtering algorithms.

Given the preponderance of evidence from the literature
on homophily, we hypothesize that social network infor-
mation could also potentially improve the performance of
RBM-based models at learning representations for user pref-
erences. The research questions lie in how to do so appropri-
ately. In this paper, we investigate two primary structures.

The first is to model social network links as observations

that are generated by RBM, in addition to behaviors such as
ratings or adoptions. This yields our first proposed model,
SocialRBM-Wing described in Section 4, which features a
dual-wing structure, i.e., two groups of visible units (cor-
responding to item adoptions and social links respectively)
sharing a common layer of hidden units. This has the advan-
tage of simplicity, by learning the social e↵ects from data.

Rather than modeling social links as observations, the sec-
ond model, SocialRBM-Deep described in Section 5, fea-
tures a deep structure, i.e., a higher layer of hidden units

that are partially shared among friends, while still maintain-
ing some global sharing across all users. This has the ad-
vantage of incorporating the homophily assumption directly
into the higher layer of hidden units, so as to allow the origi-
nal lower layer of hidden units to focus on capturing patterns
of item adoptions among all users. Moreover, deeper struc-
tures tend to produce more robust features, which are less
likely to su↵er from noise than shallower structures.
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Contributions. In this work, we make the following con-
tributions:

1. As far as we know, this is the first systematic study of
di↵erent means for incorporating social network infor-
mation into RBM-based models for preference data.

2. Towards this objective, we propose two models, namely:
SocialRBM-Wing in Section 4 and SocialRBM-Deep

in Section 5, and describe their inferences.

3. To verify the e�cacy of the models, we conduct an em-
pirical analysis based on two publicly available real-life
datasets: Delicious and Last.fm, showing promising re-
sults in terms of improving the representations learnt
by RBM-based models from these datasets.

2. RELATED WORK
A Boltzmann Machine (BM) [1] is a network of stochastic

binary units, with one hidden layer and one visible layer.
A more popular form with simpler inference is Restricted
Boltzmann Machine (RBM) [31], which allows only connec-
tions between hidden and visible layers, but not within each
layer. Variants of RBM include replacing binary units with
Gaussian hidden units [31] or visible units [30] for continuous
values, or learning from inequality constraints [35]. RBM
can also be extended to have multiple hidden layers, form-
ing a Deep Boltzmann Machine (DBM) [30].

The use of RBM for collaborative filtering was pioneered
by [31]. This has been extended in several directions. [8] ex-
panded into two sets of hidden layers: for modeling correla-
tions among users and items respectively. [32] used autoen-
coder in place of RBM. [7] used autoencoder on ratings to
learn representation for initializing an existing matrix factor-
ization [22]. In this work, we build upon the well-established
RBM model [31] to further incorporate social networks.

By incorporating social networks into modeling ratings or
adoptions, our work is related to multi-modal representation
learning. For instance, [17, 39] modeled text and images,
[33] modeled audio and video, while [38] modeled text and
ratings. We are distinct in two ways. For one, we are model-
ing a di↵erent set of modalities. For another, most of these
works treat modalities as observations, whereas we also ex-
plore another means for incorporating one modality (social
network) into the configuration of shared hidden units.

Previous works in collaborative filtering were mostly based
on matrix factorization [2, 16, 18]. It thus follows that past
works on incorporating social networks were modifications of
matrix factorization [10, 40], e.g., generating social network
links [23], regularizing friends’ latent vectors [24], or express-
ing one’s ratings [21] or latent vector [15] as a function of
those of friends. These and our work essentially follow two
di↵erent forks of collaborative filtering paradigms: matrix
factorization and RBM respectively. The two paradigms are
e↵ectively complementary and co-existent. Previous studies
showed that ensembles of collaborative filtering paradigms
could yield better performance than any one paradigm on
its own [3, 4, 14]. In this work, we focus on investigating
the e↵ects of homophily on RBM-based preference models.

There are also e↵orts to factor in social network into other
types of models, such as topic modeling [28, 37]. Such works
rely heavily on the availability of rich features, such as words.
Modeling features is an orthogonal direction to our focus
here on the e↵ects of social networks on adoptions.

3. PRELIMINARIES
Restricted Boltzmann Machine (RBM). RBM is a

form of Markov Random Field, with the structure of a bipar-
tite graph, connecting two types of binary stochastic units:
visible units x 2 {0, 1}N and hidden units h 2 {0, 1}K .

As a member of the family of energy-based models, its
energy function is defined as follows:

E(x,h) = �aT
x� b

T
h� x

T
Wh, (1)

where a and b are bias vectors for visible and hidden units
respectively, and W is the N ⇥K matrix of weights associ-
ated with the connections between visible and hidden units.

Based on the energy function, the likelihood P (x) of an
observed boolean vector x is as follows:

P (x;⇥) =
X

h

exp(�E(x,h))
Z

, (2)

where Z =
P

x

0,h0 exp(�E(x0

,h

0)) is the partition function

for normalization, while ⇥ is the set of model parameters.
The two conditional probabilities P (h|x) and P (x|h) can

be expressed as follows:

P (hk = 1|x) = �

 
NX

i=1

Wikxi + bk

!
, (3)

P (xi = 1|h) = �

 
KX

k=1

Wikhk + ai

!
, (4)

where �(t) = 1/1 + exp(�t) is the logistic function. The
conditional distributions indicate that units in one layer are
activated independently given activations from the other.

The model can be trained by maximizing the log-likelihood
logP (x;⇥) using an approximation gradient ascent “con-
trastive divergence” (CD) introduced by [12].

RBM for Preference Data. Let us denote U to be the
number of users, and N to be the number of items. For
each user, we observe a visible vector x 2 {0, 1}N , where ‘1’
indicates the user’s adoption of an item, and ‘0’ otherwise.
Here, for simplicity, we model binary adoptions. For multi-
scale ratings, we can use softmax units instead, as in [31].

These observations can be modeled as one RBM instance
for each user, with the same number of K hidden units, and
all the instances share the same a, b and W weights. This
way, we can derive a K�dimensional latent representation
vector h for each user, within a huge space of combinations
resulting from the activations of various binary hidden units.

Incorporating Social Networks. We assume that we
are also given a social network graph G, where each edge is
a symmetric connection between two users. Our objective is
to integrate G into an RBM model for user preferences, so
as to arrive at a better latent representation h for each user.

In the RBM above, there is no user-specific parameter.
Therefore, unlike some non-RBM approaches outlined in
Section 2, we cannot simply tie user-specific parameters of
friends. Directly employing regularization among hidden
layers of RBM would not be applicable either, because the
shared weights would lead to optimization on the whole net-
work globally at the same time, rather than just locally
among friends. This motivates our approach of placing social
constraints to express homophily through the model struc-
ture so as to learn personalized representation using the hid-
den layers. In the next two sections, we describe two RBM-
based structures that we find e↵ective for this problem.



Figure 1: SocialRBM-Wing: both social connections

and ratings/adoptions play a role as observations

encoded jointly through a shared hidden layer.

4. SOCIAL NETWORK AS OBSERVATION
Our first model, SocialRBM-Wing, models item adop-

tions and social connections as two sets of observations,
which are encoded through a shared hidden layer. As shown
in Figure 1, the two sets of visible units resemble two“wings”
attached to a “body” (the shared hidden layer), thus the
name of the model. Our intuition is that if the model can
learn co-occurrence patterns across both users’ item adop-
tions and social connections, we would then be able to pre-
dict item adoptions given one’s social connections.

4.1 Model
Each user is associated with two sets of visible units. The

first set, for item adoptions, is x 2 {0, 1}N , as described in
Section 3. The second, for social connections, is y 2 {0, 1}U ,
i.e., a binary vector of U dimensions, where each element yj
in the vector is activated if the user has a connection to user
uj in the social network G. In the following, for simplicity, we
describe the model and the learning for an individual user.
For the collection of all users, the gradients with respect to
the shared weight parameters are averaged over all users.
Figure 1 shows an illustration for one example user user-1

or u1, with a social connection to herself as well as to her
friends (u3 and u4), thus the visible units y1, y4 and y5 are
activated (shaded in blue). The user is also observed to have
two item adoptions (the second and fourth items), thus the
visible units x2 and x4 are activated (shaded in green).
The conditional distribution of x is as shown in Eq. (4).

In turn, the conditional distribution of y is shown in Eq. (5)
below, where Vjk is the weight parameter (shared among all
users) associated with the connection between visible unit
yj and hidden unit hk.

P (yj = 1|h) = �

 
KX

k=1

Vjkhk + aj

!
(5)

The conditional distribution over hidden units for encod-
ing both visible layers is given in Eq. (6), while the energy
function is given in Eq. (7).

P (hk = 1|x,y) = �

 
UX

j=1

Vjkyj +
NX

i=1

Wikxi + bk

!
(6)

E(x,y,h) =�
UX

j=1

KX

k=1

yjVjkhk �

NX

i=1

KX

k=1

xiWikhj

�

KX

k=1

hkbk �

UX

j=1

yjaj �

NX

i=1

xiai

(7)

Learning. From Eq. (7), we can derive the log-likelihood
L(x,y;⇥) of visible inputs x and y for each user:

P (x,y;⇥) =
X

h

exp (�E(x,y,h))
Z(⇥)

, (8)

L(x,y;⇥) = log
X

h

exp (�E(x,y,h))� logZ(⇥), (9)

where Z(⇥) =
P

x

0,y0,h0 exp (�E(x0

,y

0

,h

0)) is the partition
function to normalize the probability sum to 1.

Model parameters are learned by contrastive divergence
[12] (CD) with n-step sampling (CD-n), as shown in Eq. (10)
where P0, Pn are respectively data distributions at step 0
and n after sampling from conditional distributions. In prac-
tice, we use one-step (CD-1) to approximate the gradients,
which is commonly used for training RBM [34].

@L(x,y)
@⇥

= h
�@E(x,y,h)

@⇥
iP0 � h

�@E(x0

,y

0

,h

0)
@⇥

iPn
(10)

Regularization. Due to the strong imbalance in data
between seen and unseen (missing) items, we find that CD
tends to lead to hidden biases increasing over time. If most
of the hidden units were activated during the training pro-
cess, then the model would not di↵erentiate the represen-
tations among users. Hence, we incorporate regularization
of the expected hidden activations around a desired level of
activation ⌧ into the objective function [20]. As shown in
Eq. (11), the aggregated gradients are updated at the same
time with the direction found in Eq. (10), where P̄ is the ex-
pected activation of hidden units. � is a tunable coe�cient.

L̃(x,y;⇥) = L(x,y;⇥)� �

KX

k=1

| ⌧ � P̄ (hk|x,y) |
2 (11)

4.2 Inference
After learning the model parameters, we estimate the la-

tent representation, and predict unseen adoptions by recon-
structing the visible layer from the hidden layer, by perform-
ing one step of sampling to reconstruct the data as below:

ĥk  �

 
UX

j=1

Vjkyj +
NX

i=1

Wikxi + bk

!

r̂i  �

 
KX

k=1

Wkiĥk + ai

! (12)

Compared to the RBM model for adoptions only, incorpo-
rating social network puts more constraints on deciding the
user preferences, which will be a↵ected by both global (all
users) and local (their friends) patterns. In terms of learn-
ing, one more benefit is the potential to reduce overfitting
due to cross-modality patterns produced from two sides of
observations. In addition, to deal with cold-start users with
few or no observed adoptions, the model can make use of
the observations from their social connections to infer item
adoptions. This is related to the notion of cross-modality
in [39] with similar structure, but with di↵erent types of
stochastic units, targeted for modeling text and images.



Figure 2: SocialRBM-Deep: The top layer h

2

has U

hidden units, corresponding to U users. Each user is

represented by a single hidden unit on the top layer

with weights shared with their friends. For example,

user u1 has connections to u3 and u4, thus the hidden

units h

2
1, h

2
3 and h

2
4 are available for encoding u1’s

adoptions. The other hidden units h

2
2 and h

2
5 will

be unavailable (dashed). All K units in the middle

layer h

1

will always be available to all users.

5. SOCIAL NETWORK AS SHARING OF
HIDDEN UNITS

In this section, we propose an alternative approach that
adapts the model architecture to the social network struc-
ture. The intuition of SocialRBM-Deep is that instead of
letting social connections bring users and their friends closer
through shared observations, we allow friends to a↵ect each
other’s representations through sharing hidden units.

5.1 Model
In terms of its structure, this model SocialRBM-Deep

is a “flipped” version of SocialRBM-Wing, with the social
network layer now stacked up on top of the item adoption
layer. Its role also changes from visible units for observation
to hidden units, as illustrated in Figure 2.
The structure of SocialRBM-Deep is reminiscent of a

two-layer Deep Boltzmann Machine (DBM), thus its name.
There are two layers of hidden units h

1 (middle layer) and
h

2 (top layer). The middle layer is shared across all train-
ing instances (users). However, one critical di↵erence from
DBM is that our top layer is not shared across all instances.
Our structure is such that each user is represented at the
top layer by a group of hidden units. When learning the
representation of a user, only the groups of hidden units cor-
responding to her own, as well as those of her friends’ could
be activated. This induces sharing particularly among users
with social connections. Without losing generality, in this
work we use a group size of one, to keep the number of pa-
rameters of SocialRBM-Deep the same with SocialRBM-
Wing, thus establishing parity for comparison later. In other
words, to encode the item adoptions of a user, SocialRBM-
Deep makes use of (Fu + 1) hidden units, where Fu is the
number of friends of u. In Figure 2, for user u1 with two
friends, three hidden units are available at the top layer.

Figure 3: A visual for the sequence of forward steps

in the mean-field inference, in which at the first step,

hidden units h

2

in the top layer will be randomized

for initialization. The errors from both ⌧

1
vs. ⌧

2
in

the regularization are backpropagated through this

sequence for the gradient updates.

The energy function with all connections in the model is
shown below:

E(x,h1

,h

2) =�
NX

i=1

KX

k=1

xiW
1
ikh

1
k �
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k=1

UX

j=1

h

1
kW

2
kjh

2
j

�
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i=1

xiai �

KX

k=1

h

1
kbk �

UX

j=1

h

2
jaj ,

(13)

where h

1 and h

2 are the vectors of hidden units at the mid-
dle and top layers respectively.

Learning. The parameter updates are similar to Eq. (10),
except that P0 = P (h1

,h

2

|x) is now approximated by a
variational distribution Q(h1

,h

2) [30] as described in Sec-
tion 5.2. For the full distribution, we run n-step Gibbs sam-
pler through following conditional distributions:

p(h1
k = 1|x,h2) = �
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1
ikxi +
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2
kjh

2
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,
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W

2
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!
,

p(xi = 1|h1) = �

 
KX

k=1

W

1
ikh

1
k + ai

!
.

Our model is based on social network to allow sharing in
the training process of the top layer. Due to the connec-
tivity across layers, the e↵ect of sharing permeates through
all levels of the deep structure. The model is a combination
of two kinds of sharing: one is “global” across all users (the
first layer); the other is “local” based on the graph struc-
ture, whereby users are co-trained only with direct friends
or through mutual friends (via overlapping hidden groups).
In contrast, the original RBM only explores global patterns.

To better initialize the parameters for mean-field steps, we
apply pretraining stage for each layer in the deep network.
As discussed in [30], mid-layer hidden units can be activated
from both higher and lower layers; thus, the aggregation of
posterior over these units could be contributed by halving
the weights after learning, or duplicating them in training
and keeping its value in the testing process.

Regularization. As in Section 4, we apply regulariza-
tion to hidden activations. However, due to the use of vari-



ational inference for posterior approximation (as discussed
in Section 5.2), the gradients could be computed via back-
propagation algorithm (illustrated in Figure 3) through n

steps of mean-field update as discussed in [29]. The aggre-
gate objective function is as follows:

L̃(x;⇥) =� �1

KX

k=1

| ⌧1 � P̄ (h1

k

|x) |2

� �2

UX

j=1

| ⌧2 � P̄ (h2

j

|x) |2 +L(x;⇥),

(14)

where ⌧1, ⌧2 are the desired levels of hidden unit activations
in each of the two respective layers.

5.2 Inference
We apply the mean-field inference [30] to approximate the

true posterior by a fully factorized distribution Q. Learning
is conducted via minimizing theKL(Q(h1

,h

2)||P (h1

,h

2

|x))
or maximizing the lower-bound of likelihood with respect to
variational parameters

�
µk = Q(h1

k = 1), µj = Q(h2
j = 1)

�
as

shown below:

lnP (x;⇥) �
NX

i=1

KX
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xiW
1
ikµk +
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UX
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µkW
2
kjµj � lnZ(⇥)

+
KX
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(µk lnµk + (1� µk) ln(1� µk))

+
UX

j=1

(µj lnµj + (1� µj) ln(1� µj))

(15)
The fixed-point equations are produced below :
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k=1

W

1
kiµk + ai

!
(18)

For experiments, we set 15 iterations for updating alter-
natingly from Eq. (16) and Eq. (17) until convergence. Fi-
nally, the probabilities for unseen items are computed via
Eq. (18), and ranked in descending order for prediction.

6. EXPERIMENTS
The experimental objective is primarily to investigate the

e↵ects of homophily on RBM-based models for learning the
representation of user preferences. We pursue this objective
by evaluating the performance of comparable RBM-based
models on two publicly-available1 real-life datasets [6].
Datasets. The first dataset, Delicious, originally came

from an online bookmarking site, whereby a set of users
bookmark a set of URL’s. These are essentially binary ob-
servations of item adoptions. In addition, it is also an on-
line social network, which allows users to indicate friendship
links. The second dataset, LastFM, originated from an on-
line radio site, where users can tag their favourite artists
1http://grouplens.org/datasets/hetrec-2011

Delicious LastFM

No. of users 1,867 1,892
No. of items 69,226 17,632
No. of adoptions <user, item> 104,220 92,834
No. of social links <user, user> 15,328 25,434
Adoption density 0.08% 0.27%
Social network density 0.44% 0.71%

Table 1: Dataset Sizes

(items). These are also modeled as binary observations of
adoptions. Similarly, it has a social network among users.

The statistics for these two datasets are shown in Table 1.
While the number of users are similar, Delicious is the larger
and sparser dataset, with many more items and significantly
lower adoption density. This sparsity also implies that it is
the more di�cult dataset for prediction. Other than their
sizes, the two datasets are characteristically quite di↵erent.
Delicious, driven by bookmarks, tends to have a greater
level of personalization and expected homophily, whereas
LastFM, driven by music artists, tends to have greater uni-
formity due to the presence of popular artists with broad
appeal. Experimentation with these two contrasting natures
would allow us to derive greater insights.

We focus on binary adoptions, because our main concern
here is on the e↵ects of social networks. With some modifi-
cation, the models could apply to multi-scale ratings, which
we will consider for future work. Moreover, we do not use
tag information from the datasets, for parity with the origi-
nal RBM model [31] that does not use such features either.

Comparisons. Because of our objective of studying ho-
mophily on RBM-based models, we can demonstrate this
most clearly and directly by comparing the two proposed
models SocialRBM-Wing and SocialRBM-Deep (with so-
cial network) to the original RBM model [31] (without so-
cial network). To establish parity among the models, we use
the same dimensionality for the latent representations, i.e.,
K = 100 hidden units. This setting was also used in in [14,
31]. We will conduct this comparison in Section 6.1.

Although the dimensionality of the representation is the
same, the models do not all have the same number of param-
eters. The two models with social networks SocialRBM-
Wing and SocialRBM-Deep have an identical number of
parameters. Compared to RBM, both have an additional
number of K ⇥ U weight parameters, which are required to
connect the social layer and the hidden units. To ensure
that the observed e↵ects are not due to these additional pa-
rameters alone, in Section 6.2, we conduct another set of ex-
periments comparing the same models (SocialRBM-Wing

or SocialRBM-Deep respectively), but replacing the social
networks with random networks of the same structure.

Finally, in Section 6.3, we briefly explore whether the
learnt representations of friends tend to exhibit greater sim-
ilarity after incorporating social networks during learning.

6.1 Comparison of Various Models
In this section, we conduct a comparison between the two

proposed models and the baseline RBM model.
Task. Since one of the main applications of learning rep-

resentations from preference data is for recommendation,
here we evaluate the models on the task of predicting users’
item adoptions. The adoption data for each user is ran-

http://grouplens.org/datasets/hetrec-2011
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Figure 4: Recall@M for Delicious at various M ’s.

domly split into 80% for training vs. 20% for testing. For
each dataset, we create ten such training/testing splits. For
each user, we seek to predict the held-out item adoptions in
the testing set. This is done by getting each model to learn
from the training set, and output a ranked list of the top M

items whose adoptions were not seen in the training set.
In the training stage, each sample data is divided into

small batches of 100 instances (users) for each iteration. All
models are trained with a learning rate of 0.003 in 1000 iter-
ations util convergence. We also apply a momentum of 0.8
to speed up and a weight-decay of 0.001. For the pretrain-
ing stage in SocialRBM-Deep, we train each layer in 500
iterations with the similar process discussed in [30].

Metric. There are various ways to evaluate recommen-
dations [11, 27]. For sparse preference datasets such as ours,
unseen item adoptions may not necessarily mean that a user
dislikes the items; the user might simply have been unaware
of them. This makes it di�cult to compute precision accu-
rately. However, since the observed item adoptions in the
testing sets are known to be true positives, following [28,
36], we focus on measuring recall. The recall of a model’s
prediction of top M items for a user is defined as follows:

recall@M  

number of correctly predicted items in top M

total number of held-out adopted items

For comparison across models, we average the recall@M
across all the users. We vary the value of M in the range of
[20 . . . 200]. Higher recall at lower M indicates a better re-
sult, implying that the correct items tend to be among the
top-ranked predictions. We average the results across the
ten training/testing splits described above. Where appro-
priate, we present not only the mean, but also the standard
deviation, as well as statistical significance test results.

Analysis. First, we look into the Delicious dataset. Fig-
ure 4 shows the cumulative recall up to top 200. As ex-
pected, as M increases, recall generally increases, because
the numerator of the recall equation above would increase,
while the denominator is stable. Importantly, based on the
trend lines in Figure 4, it is evident that both SocialRBM-
Wing and SocialRBM-Deep have higher recall results than
the baseline RBM. Between the two models with social net-
works, SocialRBM-Deep has a higher performance than
SocialRBM-Wing. Interestingly, the former tends to in-
crease faster in recall than the latter as M increases, indi-
cating SocialRBM-Deep’s greater e↵ectiveness at placing
the ground truth items higher in the prediction ranked lists.

To look into the di↵erences between various models in
greater detail, Table 2 shows not just the mean recall values,

M RBM SocialRBM-Wing SocialRBM-Deep

20 0.0040± 0.0007 0.0092± 0.0007†† 0.0105± 0.0008††§§

40 0.0072± 0.0007 0.0122± 0.0012†† 0.0153± 0.0013††§§

60 0.0097± 0.0008 0.0143± 0.0013†† 0.0190± 0.0013††§§

80 0.0120± 0.0004 0.0164± 0.0014†† 0.0224± 0.0014††§§

100 0.0139± 0.0005 0.0183± 0.0011†† 0.0252± 0.0014††§§

200 0.0214± 0.0011 0.0254± 0.0015†† 0.0351± 0.0022††§§

Table 2: Comparison of Recall@M (mean ± stan-

dard deviation) for Delicious. Best results are in

bold. † (0.05 level) and †† (0.01 level) indicate statis-

tically significant improvement over RBM. §§ (0.01

level) indicates statistically significant improvement

over SocialRBM-Wing.

M RBM SocialRBM-Wing SocialRBM-Deep

20 0.2298± 0.0020 0.2319± 0.0031† 0.2380± 0.0037††§§

40 0.3109± 0.0023 0.3133± 0.0030†† 0.3252± 0.0039††§§

60 0.3651± 0.0027 0.3677± 0.0031†† 0.3809± 0.0033††§§

80 0.4057± 0.0026 0.4080± 0.0033†† 0.4224± 0.0039††§§

100 0.4369± 0.0023 0.4397± 0.0033† 0.4542± 0.0042††§§

200 0.5317± 0.0029 0.5353± 0.0033†† 0.5500± 0.0038††§§

Table 3: Comparison of Recall@M for LastFM.

but also the standard deviations. We see that SocialRBM-
Deep is the best (in bold). The standard deviations are also
relatively small, implying that the mean values are quite
reflective of the relative performances across models. We
also conduct paired samples Student’s t-test for statisti-
cally significant di↵erences, indicating that the outperfor-
mance by SocialRBM-Wing over RBM, as well as that by
SocialRBM-Deep over the other two models, are indeed
statistically significant.

We reiterate that the key result here is the relative outper-
formance by the models with social network over the base-
line RBM, of which the results here are strongly indicative.
Compared to RBM, SocialRBM-Deep shows an increase
by a factor of 1.5X to 2.5X. The increase by SocialRBM-
Wing is smaller, but still significant. The absolute values of
recall in Delicious are low, because it represents a very chal-
lenging dataset, especially without using any tag feature.
A random predictor would attain a recall@200 of merely
0.0029. Thus, the performance of our models represents an
increase by an order of magnitude over a random baseline.

Turning to LastFM, we show the corresponding table of
results in Table 3. Similar observations as made above for
Delicious on the relative outperformance by the models in-
corporating social networks can also be made for LastFM.

Comparing the two datasets, in terms of the absolute val-
ues, the results on Delicious are lower than those on LastFM.
This can be explained by the disparity in the adoption den-
sities shown in Table 1, i.e., 0.08% for Delicious vs. 0.27%
for LastFM. The lower density indicates greater uncertainty
in prediction, thus higher error rate. However, the relative
improvements among models on Delicious are more signifi-
cant than on LastFM. We hypothesize that this comes from
the di↵erent characteristics of two datasets. For popular
items, such as music artists, even unrelated people may still
prefer similar music artists. Conversely, bookmarks are less
frequent, and may be more prone to social influence, ex-
plaining the greater e↵ects of homophily seen in Delicious.



Figure 5: Relative Comparison of Social Network

vs. Random Network for Delicious.

Figure 6: Relative Comparison of Social Network

vs. Random Network for LastFM.

6.2 Randomization Study
We try to keep the models comparable by using the same

dimensionality of latent representation across models. To
investigate the e↵ects of the social network itself, in this sec-
tion we conduct another set of experiments, which attempt
to control the e↵ects of the model structure, and isolate the
e↵ects of homophily alone. The best way to do so is to com-
pare within the same model, but swap the social network
graph with a random graph of a similar structure.

Randomization. Ascertaining data mining results via
randomization was advocated by [9]. Here, we follow the
way they generate random graphs, so as to maintain the
structure of the original graph in terms of the degree of each
node. Essentially, a random graph is obtained by randomiz-
ing the adjacency matrix of the original graph, while keeping
the same row and column sums. For each dataset, we gen-
erate ten random networks from the original social network,
and compare the model run with these random networks
with the same model run on the social network.

Analysis. For this study, we still use the recall@M met-
ric described above. However, our focus here is not on the
absolute performance, but on whether the same model will
produce di↵erent levels of performance when run with social
network or random network. To present these results clearly,
we peg the performance by the model with social network
at 100% (the absolute values can be seen in Table 2 and
Table 3), and present the relative results by the same model
but with random network as a percentage of the former.

For Delicious, Figure 5(a) shows the relative compari-
son of recall by SocialRBM-Wing, when social network is
replaced by random network. Figure 5(b) shows that of
SocialRBM-Deep. For both, we witness significant drops

Dataset RBM SocialRBM-
Wing

SocialRBM-
Deep

Delicious 0.0084± 0.0004 0.0250± 0.0008†† 0.0210± 0.0031††

LastFM 0.0486± 0.0015 0.0629± 0.0121†† 0.0821± 0.0024††

Table 4: Comparison of MAP for Similarity Ranking

of Social Links. †† (0.01 level) indicates statistically

significant improvement over RBM.

in recall for random networks, e.g., recall@20 drops to 55%
for SocialRBM-Wing, and 65% for SocialRBM-Deep.

Figure 6(a) and Figure 6(b) show similar experiments on
LastFM. They tell a similar story, though the drop is modest,
with random networks attaining 98% of the performance of
social network. This is another evidence of the relatively
weaker e↵ect of homophily on LastFM than on Delicious,
which we trace to the di↵erent natures of the items. If the
patterns of adopting popular artists are similar among users,
changing the network structure would not lead to significant
changes in adoptions, thus explaining the smaller drop rates.

For both Delicious and LastFM, the drops due to random
networks are statistically significant at 0.01 level in all cases.
This supports the hypothesis of the measurable e↵ects of
homophily on the RBM-based models for item adoptions.

6.3 Similarity in Latent Representations
So far we learn that improvements arise from the right

model architecture, as well as the right network structure.
This comes from the intuition built into the models to bring
together the representations of socially connected users, ei-
ther via hidden units (SocialRBM-Deep) or visible units
(SocialRBM-Wing). In this final experiment, we briefly
explore this intuition, by using the similarities among the
learnt representations of users to rank one’s friends.

Task. The user representation is a vector of hidden units
inferred from Sections 4 and 5. For each user, we rank other
users based on the cosine similarity to their learnt represen-
tations. The aim is to see whether the user’s friends would
be ranked highly in this list, i.e., friends have similar rep-
resentations. This study is not meant to be predictive, but
rather reflective, whether the learnt representations may be
correlated to the social connections in the training set.

Metric. We borrow a metric from information retrieval:
Mean Average Precision or MAP [25]. This is computed as
the mean of the average precision across all users, as follows.

MAP  

1
U

UX

j=1

AvgPrecisionj

AvgPrecisionj is computed by averaging the precisions at
each of uj ’s recall points (the ranks of uj ’s friends).

Analysis. The main expectation is that if the proposed
models do indeed absorb the social network information well
during the learning phase, they would perform better at this
task than the baseline RBM. Table 4 shows that on both
datasets, SocialRBM-Wing and SocialRBM-Deep have
significantly higher MAP than RBM. For LastFM, they
increase by a factor of 1.3X to 1.7X. For Delicious, they in-
crease by an even larger factor of 2.5X to 3X, supporting
the hypothesis of a stronger homophily e↵ect on Delicious.
Overall, these results support that the learnt representa-
tions of friends become more correlated as a result of the
homophily assumptions built into our proposed models.



7. CONCLUSION
We study the homophily e↵ect on RBM-based models

for preference datasets, proposing two models for incorpo-
rating social network. The first, SocialRBM-Wing, oper-
ates by fitting two sets of observations: item adoptions and
social network. The second, SocialRBM-Deep, uses so-
cial network as a form of sharing hidden units at the top
layer. These models are verified on two publicly available
real-life item adoption datasets. The main conclusions are
two-fold. First is the importance of the right architecture,
as evidenced by SocialRBM-Deep’s outperformance over
SocialRBM-Wing and RBM. Second is the importance of
the right network information, as evidenced by the outper-
formance by social network over random network for each
model. For future work, we plan to investigate enrichments
to the proposed models, such as additional modalities.
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[14] M. Jahrer and A. Töscher. Collaborative filtering ensemble.
In KDD Cup, pages 61–74, 2012.

[15] M. Jamali and M. Ester. A matrix factorization technique
with trust propagation for recommendation in social
networks. In RecSys, pages 135–142, 2010.

[16] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich.
Recommender systems: an introduction. Cambridge
University Press, 2010.

[17] R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying
visual-semantic embeddings with multimodal neural
language models. TACL, 2015.

[18] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, (8):30–37,
2009.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
NIPS, pages 1097–1105, 2012.

[20] H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief
net model for visual area v2. In NIPS, pages 873–880, 2008.

[21] H. Ma, I. King, and M. R. Lyu. Learning to recommend
with social trust ensemble. In SIGIR, pages 203–210, 2009.

[22] H. Ma, I. King, and M. R. Lyu. Learning to recommend
with explicit and implicit social relations. TIST, 2(3):29,
2011.

[23] H. Ma, H. Yang, M. R. Lyu, and I. King. SoRec: social
recommendation using probabilistic matrix factorization. In
CIKM, pages 931–940, 2008.

[24] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King.
Recommender systems with social regularization. In
WSDM, pages 287–296, 2011.

[25] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to information retrieval. Cambridge University Press, 2008.

[26] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a
feather: Homophily in social networks. Annual Review of
Sociology, pages 415–444, 2001.

[27] P. Pu, L. Chen, and R. Hu. A user-centric evaluation
framework for recommender systems. In RecSys, pages
157–164, 2011.

[28] S. Purushotham, Y. Liu, and C.-c. J. Kuo. Collaborative
topic regression with social matrix factorization for
recommendation systems. In ICML, pages 759–766, 2012.

[29] S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to
disentangle factors of variation with manifold interaction.
In ICML, pages 1431–1439, 2014.

[30] R. Salakhutdinov and G. E. Hinton. Deep boltzmann
machines. In AISTATS, pages 448–455, 2009.

[31] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted
boltzmann machines for collaborative filtering. In ICML,
pages 791–798, 2007.

[32] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. AutoRec:
Autoencoders meet collaborative filtering. In WWW, pages
111–112, 2015.

[33] N. Srivastava and R. R. Salakhutdinov. Multimodal
learning with deep Boltzmann machines. In NIPS, pages
2222–2230, 2012.

[34] T. Tieleman. Training restricted boltzmann machines using
approximations to the likelihood gradient. In ICML, pages
1064–1071, 2008.

[35] T. Tran, D. Phung, and S. Venkatesh. Thurstonian
Boltzmann machines: Learning from multiple inequalities.
In ICML, pages 46–54, 2013.

[36] C. Wang and D. M. Blei. Collaborative topic modeling for
recommending scientific articles. In KDD, pages 448–456,
2011.

[37] H. Wang, B. Chen, and W.-J. Li. Collaborative topic
regression with social regularization for tag
recommendation. In IJCAI, 2013.

[38] H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep
learning for recommender systems. In KDD, pages
1235–1244, 2015.

[39] E. P. Xing, R. Yan, and A. G. Hauptmann. Mining
associated text and images with dual-wing harmoniums. In
UAI, 2005.

[40] X. Yang, Y. Guo, Y. Liu, and H. Steck. A survey of
collaborative filtering based social recommender systems.
Computer Communications, 41:1–10, 2014.


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2016

	Representation learning for homophilic preferences
	Trong T. NGUYEN
	Hady W. LAUW
	Citation


	Introduction
	Related Work
	Preliminaries
	Social Network as Observation
	Model
	Inference

	Social Network as Sharing ofHidden Units
	Model
	Inference

	Experiments
	Comparison of Various Models
	Randomization Study
	Similarity in Latent Representations

	Conclusion
	References

