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Weak Monotonicity Characterizes
Deterministic Dominant Strategy Implementation

by

Sushil Bikhchandani,† Shurojit Chatterji,‡ Ron Lavi,! Ahuva Mu’alem,∗

Noam Nisan,∗ and Arunava Sen#

February 1, 2006

Abstract

We characterize dominant strategy incentive compatibility with multi-dimensional

types. A social choice mechanism is incentive compatible if and only if it is weakly

monotone (W-Mon). W-Mon is the following requirement: if changing one agent’s

type (while keeping the types of other agents fixed) changes the outcome under the

social choice function, then the resulting difference in utilities of the new and original

outcomes evaluated at the new type of this agent must be no less than this difference

in utilities evaluated at the original type of this agent.

JEL Classification Numbers: D44.

Keywords: dominant strategy implementation, multi-object auctions.

——————————

This paper subsumes parts of “Towards a Characterization of Truthful Combinatorial Auc-
tions,” by Lavi, Mu’alem, and Nisan, and of “Incentive Compatibility in Multi-unit Auc-
tions,” by Bikhchandani, Chatterji, and Sen. We are grateful for helpful comments to Liad
Blumrosen, Joe Ostroy, Moritz Meyer-ter-Vehn, Benny Moldovanu, Dov Monderer, Motty
Perry, Phil Reny, Amir Ronen, and Rakesh Vohra. We are especially grateful to six referees
and two editors whose comments led to substantial improvements in this paper. Bikhchan-
dani was supported by National Science Foundation under grant no. SES-0422317, and
Lavi, Mu’alem, and Nisan were supported by Israeli Science Foundation and USA-Israel
Bi-National Science Foundation.
†Anderson School of Management, UCLA, CA.
‡CIE, I.T.A.M., Mexico City.
!California Institute of Technology, Pasadena, CA.
∗School of Engineering and Computer Science, The Hebrew University of Jerusalem.
#I.S.I., Delhi.

ppyeo
Typewritten Text
Published in Econometrica, July 2006, Volume 74, Issue 4, Pages 1109-1132.http://dx.doi.org/10.1111/j.1468-0262.2006.00695.x

ppyeo
Typewritten Text



1 Introduction

We characterize dominant strategy incentive compatibility of deterministic social

choice functions in a model with multi-dimensional types. We show that incentive

compatibility is characterized by a simple monotonicity property of the social choice

function. This property, termed weak monotonicity (W-Mon), requires the following:

if changing one agent’s type (while keeping the types of other agents fixed) changes

the outcome under the social choice function, then the resulting difference in utilities

of the new and original outcomes evaluated at the new type of this agent must be

no less than this difference in utilities evaluated at his original type. In effect W-

Mon requires that the social choice function be sensitive to changes in differences in

utilities.

We restrict attention to a private-values, quasilinear-preferences setting. The

social choice function is deterministic in that randomization over the finite set of

outcomes is not permitted. We take as primitive a preference order for each agent

over the set of outcomes. These orders may be null, partial, or complete, and may

differ across agents. This formulation incorporates multi-object auctions. The notion

of incentive compatibility in this paper is dominant strategy, which is equivalent to

requiring Bayesian incentive compatibility for all possible priors (see Ledyard (1978)).

Thus, it is not necessary to assume that agents have priors over the types of all

agents (let alone the mutual or common knowledge of such priors) for the mechanisms

considered here. This weakening of common knowledge assumptions is in the spirit

of the Wilson doctrine (see Wilson (1987)).

Myerson (1981) showed that in a single object auction, a random allocation func-

tion is Bayesian incentive compatible if and only if each buyers’ probability of receiving

the object is non-decreasing in his type. However this monotonicity condition applies

only to single dimensional domains, in which a player’s type is determined by a single

real number. For multi-object auctions, as well as other general multi-dimensional

domains, the necessary and sufficient condition for Bayesian incentive compatibility is

that is that the random allocation rule be the subgradient of a convex function.1 We

show that when the incentive compatibility requirement is strengthened to dominant

strategy and only deterministic mechanisms are considered, then incentive compati-

bility in a multi-dimensional types setting is characterized by W-Mon, which is much

more intuitive than the subgradient condition. In particular, our condition is sig-

nificantly simpler than the “cyclic monotonicity” condition of Rochet (1987). The

resulting simplification of the constraint set for incentive compatibility should be

1See, for example, Rochet (1987), McAfee and McMillan (1988), Williams (1999), Krishna and
Perry (1997), Jehiel, Moldovanu, and Stacchetti (1996, 1999), Jehiel and Moldovanu (2001), Krishna
and Maennar (2001), and Milgrom and Segal (2002).
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helpful in applications such as in finding an expected revenue maximizing auction in

the class of deterministic dominant strategy auctions.

Our characterization also bears upon a framework where the mechanism designer

is interested in issues of efficiency rather than revenue. While the Vickery-Clarke-

Groves (VCG) mechanism is ex post efficient, there are reasons to be interested in

other (inefficient) incentive-compatible mechanisms. It is well known that because

of its computational complexity the VCG auction is infeasible for selling more than

a small number of objects. Several papers investigate computationally feasible (but

inefficient) auctions in private-values settings (see Nisan and Ronen (2000), Lehman et

al. (1999), and Holzman and Monderer (2004)). Characterizing the set of incentive-

compatible auctions facilitates the selection of an auction that is preferable to the

VCG auction on grounds of computational feasibility.

Roberts (1979) showed that in quasilinear environments with a complete domain,

a condition called positive association of differences (PAD) is necessary and suffi-

cient for dominant strategy incentive compatibility. Our paper considers a much

more restrictive domain of preferences than Roberts assumes. In particular, the PAD

condition is vacuous in our model as all social choice functions satisfy it.

The paper is organized as follows. The characterization of incentive compatibility

for a single agent model is developed in Sections 2 and 3. In Section 4, we describe

how this characterization extends easily to many agents. In Section 5, we discuss the

connections of our paper to other characterizations of incentive compatibility with

multi-dimensional types. We conclude in Section 6. Most proofs are given in an

Appendix. A few related examples and results are in the Supplementary Materials

to this paper, i.e., Bikhchandani et al. (2006).

2 A single agent model

Let A = {a1, a2, ..., aK} be a finite set of possible outcomes. We assume that the agent

has quasilinear preferences over outcomes and (divisible) money. The agent’s type,

which is his private information, determines his utility over outcomes. The utility of

an agent of type V over outcome a and money m is:

U(a, m, V ) = U(a, V ) + m, a ∈ A.

The domain of V is D ⊆ #K
+ . It is convenient to assume that the agent’s initial en-

dowment of money is normalized to zero and he can supply any (negative) quantity

required. We will sometimes write V (a), V ′(a) instead of U(a, V ), U(a, V ′) respec-

tively.
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A social choice function f is a function from the agent’s report to an outcome in the

set A. As we are interested in truth-telling social choice functions, by the revelation

principle we restrict attention to direct mechanisms. Thus, f : D → A. We assume,

without loss of generality, that f is onto A. A payment function p : D → # is a

function from the agent’s reported type to a money payment by the agent. A social

choice mechanism (f, p) consists of a social choice function f and a payment function

p.

A social choice mechanism is truth-telling if truthfully reporting his type is optimal

(i.e., is a dominant strategy) for the agent:

U(f(V ), V )− p(V ) ≥ U(f(V ′), V )− p(V ′), ∀V, V ′ ∈ D. (1)

A social choice function f is truthful if there exists a payment function p such that

(f, p) is truth-telling; p is said to implement f .

Consider the following restriction on the allocation mechanism. A social choice

function f is weakly monotone (W-Mon) if for every V, V ′,

U(f(V ′), V ′)− U(f(V ), V ′) ≥ U(f(V ′), V )) − U(f(V ), V ). (2)

If f satisfies W-Mon, then the difference in the agent’s utility between f(V ′) and

f(V ) at V ′ is greater than or equal to this difference at V .

W-Mon is a simple and intuitive condition on social choice functions. In effect, it

is a requirement that the social choice function be sensitive to changes in differences

in utilities. It is easy to see that W-Mon is a necessary condition for truth-telling:

Lemma 1 If (f, p) is a truth-telling social choice mechanism then f is W-Mon.

Proof: Let (f, p) be a truth-telling social choice mechanism. Consider two types V

and V ′ of the agent. By the optimality of truth-telling at V and V ′ respectively, we

have

U(f(V ), V )− p(V ) ≥ U(f(V ′), V )− p(V ′)

and U(f(V ′), V ′)− p(V ′) ≥ U(f(V ), V ′)− p(V )

These two inequalities imply that

U(f(V ′), V ′)− U(f(V ), V ′) ≥ p(V ′)− p(V )

≥ U(f(V ′), V )− U(f(V ), V ).

Hence f satisfies W-Mon.

Next, we obtain conditions on D, the domain of the agent’s types, under which

W-Mon is sufficient for truth-telling.
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3 Sufficiency of W-Mon

If the domain of the agent’s types, D, is not large enough then W-Mon is not sufficient

for truth-telling. This is clear from the following example.

Example 1: There are three outcomes a1, a2, and a3. The agent’s type is a vector

representing his utilities for these outcomes. The agent has three possible types:

V 1 = (0, 55, 70), V 2 = (0, 60, 85), V 3 = (0, 40, 75).2 That is, D = {V 1, V 2, V 3}.

The social choice function f(V 1) = a1, f(V 2) = a2, and f(V 3) = a3 is W-Mon on

the set D because:

V 2(a2)− V 2(a1) = 60 − 0 ≥ 55 − 0 = V 1(a2)− V 1(a1)

V 3(a3)− V 3(a2) = 75 − 40 ≥ 85 − 60 = V 2(a3)− V 2(a2)

V 1(a1)− V 1(a3) = 0 − 70 ≥ 0 − 75 = V 3(a1)− V 3(a3)

However, there is no payment function that implements f . Suppose that the agent

pays p1 at report V 1, p2 at report V 2, and p3 at report V 3. Without loss of generality,

let p1 = 0. For truth-telling we must have p2 ≥ 55, else type V 1 would report V 2.

Similarly, p3 − p2 ≥ 25 else type V 2 would report V 3. Therefore, we must have

p3 ≥ 80. But then type V 3 would report V 1.

Even if the domain of types is connected, W-Mon is not sufficient for truthfulness.

Let D̂ be the sides of the triangle with corners V 1, V 2, and V 3 defined above. The

allocation rule f̂ is as follows: f̂(V ) = a1, ∀V ∈ [V 1, V 3), f̂(V ) = a2, ∀V ∈ [V 2, V 1),

and f̂(V ) = a3, ∀V ∈ [V 3, V 2).3 It may be verified that f̂ satisfies W-Mon but there

are no payments that induce truth-telling under f̂ . (

Requiring W-Mon on a larger domain (than in the example) strengthens this

condition. To this end, we define order-based preferences over the possible outcomes.

Order-based domains: We restrict attention to domains D ⊆ RK
+ . In certain

contexts, regardless of his type, the agent has an order of preference over some of the

outcomes in the set A. In a multi-object auction, for instance, where an outcome is

the bundle of objects allocated to the agent, if a! ⊂ ak, then under free disposal it is

natural that the agent prefers ak to a! and V (a!) ≤ V (ak) for all V ∈ D. Therefore,

we take as a primitive the finite set of outcomes A and a (weak) order + on it. This

order may be null, partial, or complete.

A type V is consistent with respect to (A,+) if ak + a! implies V (ak) ≥ V (a!). A

domain of types D is consistent with respect to (A,+) if every type in D is consistent

2Thus, V 1(a1) = 0, V 1(a2) = 55, and V 1(a3) = 70 and so on.
3Here [V 1, V 3) denotes the half-open line segment joining V 1 to V 3 etc.
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with respect to (A,+). We will sometimes write domain D on (A,+) to mean D is

consistent with respect to (A,+).

If + is null then D is an unrestricted domain in the sense that for any ak, a! ∈ A,

there may exist V, V ′ ∈ D such that V (ak) > V (a!) and V ′(ak) < V ′(a!). If, instead,

+ is a partial order then D is a partially ordered domain: for any ak, a! ∈ A if

ak + a! then V (ak) ≥ V (a!) for all V ∈ D. If + is a complete order then D is a

completely ordered domain: for any ak, a! ∈ A either V (ak) ≥ V (a!) for all V ∈ D

or V (ak) ≤ V (a!) for all V ∈ D depending on whether ak + a! or ak , a!.

Examples:

(i) As already mentioned, in a multi-object auction the set of outcomes A is a list

of possible subsets of objects that the agent might be allocated. The order + is the

partial order induced by set inclusion.

(ii) A multi-unit auction is a special case of a multi-object auction in which all objects

are identical. Let the outcomes be the number of objects allocated to the agent. Thus,

for any ak, a! ∈ A either ak ≤ a! or a! ≤ ak; accordingly either ak , a! or ak + a!

and + is a complete order.

(iii) Another special case is when the agent has assignment model preferences over

K − 1 heterogeneous objects. Let the outcome a1 denote no object assigned to the

agent, and let ak+1, k = 1, 2, ..., K − 1, denote the assignment of the kth object to

the agent. The allocation of more than one object to the agent is not permitted. The

underlying order is ak + a1, for all k ≥ 2, and ak -+ a!, for all k, ! ≥ 2, k -= !. (

In an auction, there is an outcome at which the agent does not get any object;

the utility of this outcome is 0 for all types of the agent. The proofs in Section 3.2

(but not in Section 3.1) require the existence of such an outcome.

The inverse of a social choice function f is

Y (k) ≡ {V ∈ D | f(V ) = ak}.

For any k, ! ∈ {1, 2, ..., K}, define4

δk! ≡ inf{V (ak)− V (a!) |V ∈ Y (k)}. (3)

Note that δkk = 0. The following lemma will be useful in the sequel.

Lemma 2 For any social choice choice function f and ak, a!, ar ∈ A we have:

(i) If ak + a! then δrk ≤ δr!.

(ii) W-Mon implies that δk! ≥ −δ!k.

4The dependence of Y and of δk! on the social choice function f is suppressed for notational
convenience.
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Proof: (i) As V (ak) ≥ V (a!) for all V , including V ∈ Y (r), we have V (ar)−V (ak) ≤
V (ar)− V (a!), ∀V ∈ Y (r). Therefore, δrk ≤ δr!.

(ii) By W-Mon, V (ak)− V (a!) ≥ V ′(ak)− V ′(a!), ∀V ∈ Y (k), V ′ ∈ Y (!). Thus,

δk! = inf{V (ak)− V (a!) |V ∈ Y (k)} ≥ sup{V (ak)− V (a!) |V ∈ Y (!)}
= − inf{V (a!)− V (ak) |V ∈ Y (!)} = −δ!k

Next, we prove sufficiency of W-Mon for partially ordered domains.

3.1 Partially ordered domains

Recall that the set of outcomes is A = (a1, a2, ..., aK). Throughout Section 3.1 we

make the following assumption on the domain of types.

Rich domain assumption: Let D be a domain of types on (A,+). Then D is rich

if every V ∈ RK
+ that is consistent with (A,+) belongs to D.

Thus, if + is null then D = #K
+ . If, instead, + is a partial order then D is the

largest subset of #K
+ satisfying inequalities V (ak) ≥ V (a!) whenever ak + a! for all

ak, a! ∈ A. It is easily verified that the formulations of the auction examples of the

previous section admit rich domains.

Next, we define a payment function that implements a social choice function

satisfying W-Mon on a rich domain. Relabelling the outcomes if necessary, let aK

be an outcome such that no other outcome is always weakly preferred to it; that is,

for each a! ∈ A there exists a V ∈ D such that V (aK) > V (a!).5 If + is null, any

outcome has this property. If + is a non-null partial order then any outcome which

is maximal under + may be selected as aK .6 Consider the payment function

pk ≡ −δKk, ∀k = 1, 2, ..., K. (4)

That is, if V ∈ Y (k) then an agent who reports V pays pk (and the outcome ak is

selected by f). We use the next result to show that p implements f .

Lemma 3 Let f be a social choice function that is W-Mon. For any a! ∈ A and

V ∈ D,

(i) If V (a!)− p! < V (aK)− pK then f(V ) -= a!.

(ii) If V (a!)− p! > V (aK)− pK then f(V ) -= aK.

5Note that if a! -+ aK then, as D is rich, there exists such a V .
6In a multi-object auction, aK is any maximal subset (with respect to set inclusion) in the range

of the mechanism. Thus, if the outcome at which all objects are allocated to the agent is in the
range of the mechanism then this outcome is aK .
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This leads to the main result for partially ordered domains.

Theorem 1 A social choice function on a rich domain is truthful if and only if it is

weakly monotone.

As already observed, the smaller the domain of types on which the social choice

mechanism satisfies W-Mon, the weaker the restriction imposed by W-Mon. There-

fore, next we investigate whether W-Mon is sufficient for truth-telling when the do-

main is not rich, in particular the domain is bounded. To obtain a sufficiency result

with smaller domain assumptions, we make the stronger assumption that the under-

lying order is complete.

3.2 Completely ordered domains

The order + on the set of outcomes is complete. That is, for any ak, a! ∈ A, either

ak + a! or a! + ak but not both.7 Thus, for any domain D consistent with (A,+)

either V (ak) ≥ V (a!) for all V ∈ D or V (a!) ≥ V (ak) for all V ∈ D. We label the

outcomes such that ak + ak−1, k = 1, 2, ..., K. Define for each type V the marginal

(or incremental) utility of the kth outcome over the (k − 1)th outcome:

vk ≡ V (ak)− V (ak−1) ≥ 0, k = 1, 2, ..., K.

For notational simplicity, we have K+1 outcomes rather than K. Further, we assume

that the utility of outcome a0 is the same for each type in D, and we normalize

V (a0) ≡ 0, ∀V ∈ D.

A multi-unit auction has a completely ordered domain, with the number of units

allocated to the buyer being the outcomes. Therefore, we denote the set of outcomes

as A = {0, 1, 2, ..., K} (rather than {a0, a1, ..., aK}). It is convenient to define the

agent’s type in terms of marginal utilities v = (v1, v2, ..., vK) for each successive unit

(rather than total utilities V = (V (1), V (2), ..., V (K)). The social choice and pay-

ment functions map marginal utilities to an outcome k = 0, 1, ..., K and to payments

respectively. The inverse social choice function Y (·) maps integers k = 0, 1, ..., K to

subsets of types (in marginal utility space).

Using (2), we see that in this context W-Mon may be restated as follows. A social

choice rule f is W-Mon if for every v and v′,

If f(v′) > f(v) then
f(v′)∑

!=f(v)+1

v′! ≥
f(v′)∑

!=f(v)+1

v!. (5)

7If the agent is indifferent between any two outcomes, we can recombine them into one outcome.
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Suppose that f is the allocation rule of a multi-unit auction and that the agent is

allocated more units by the mechanism when his (reported) type is v′ than when it

is v. If f is W-Mon then the agent’s valuation at v′ for the additional units allocated

at v′ is at least as large as his valuation at v.

The domain in Example 1 is completely ordered but W-Mon is not sufficient for

truthfulness; therefore, we need a larger domain. The following assumption encom-

passes both bounded utilities and diminishing marginal utilities.8

Bounded domain assumption: There exist constants āk ∈ (0,∞), k = 1, 2, ..., K,

such that the domain of agent types, D, satisfies either (A) or (B) below:

A. D = ΠK
k=1[0, āk]

B. D is the convex hull of points (ā1, ā2, ..., āk−1, āk, 0, ..., 0), k = 0, 1, ..., K.

The assumption that āk <∞ for all k is not essential, but does simplify the proofs.

Domain assumption A does not restrict the marginal utilities to be decreasing (or

increasing). We do not specifically assume that āk ≥ āk+1, but when this inequal-

ity holds for all k and domain assumption B is satisfied, then we have diminishing

marginal utilities; that is, vk ≥ vk+1 for all v ∈ D.9 Under domain assumption B,

v = (v1, v2, ..., vK) ∈ D if and only if 0 ≤ v! ≤ ā!, ∀! and

v!

ā!
≥ v!+1

ā!+1
! = 1, 2, ..., K − 1. (6)

Recalling the definition in (3), note that

δk k−1 = inf{vk | v ∈ Y (k)}
(7)

δk−1 k = − sup{vk | v ∈ Y (k − 1)}.

Next, a “tie-breaking at boundaries” assumption, TBB, is invoked to deal with

difficulties at the boundary of the domain.

Tie-breaking at boundaries (TBB): A social choice function f satisfies TBB if:

(i) vk > 0 for all v ∈ Y (k), and

(ii) vk < āk for all v ∈ Y (k − 1).

8The domain of types is referred to by D rather than D as types now specify marginal utilities
rather than total utilities. However, we continue to use the symbol Y (·) for the inverse social choice
function, which now maps outcomes into subsets of D.

9A straightforward modification extends the proofs to the case of increasing marginal utilities,
i.e., when D is the convex hull of points (0, 0, ...0, āk, āk+1, ..., āK), k = 1, ...,K and (0, 0, ..., 0).
The assumption of increasing marginal utilities obtains when the objects are complements, such as
airwave spectrum rights.
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Consider TBB(i). If δk k−1 > 0 then TBB(i) imposes no restriction. If, instead,

δk k−1 = 0 then there exists a sequence vn ∈ Y (k) such that limn→∞ vn
k = 0; the

existence of a point v ∈ Y (k) at which vk = δk k−1 = 0 is precluded by TBB(i).

Similarly, TBB(ii) imposes no restriction if −δk−1 k < āk, and if, instead, −δk−1 k = āk

it requires that for any v ∈ Y (k − 1), we have vk < āk.

First, we prove sufficiency of W-Mon and TBB (Lemmas 4 and 5) for truth-

telling. We then show (Lemma 6) that (i) for any W-Mon social choice function f

there exists a social choice function f ′ that satisfies W-Mon and TBB and agrees

with f almost everywhere, and (ii) the money payments which truthfully implement

f ′ also truthfully implement f .

By Lemma 2(ii), W-Mon implies δk k−1 ≥ −δk−1 k. If in addition TBB is satisfied

then the weak inequality is replaced by an equality:

Lemma 4 Let f be a social choice function on a completely ordered, bounded domain.

If f satisfies W-Mon and TBB then āk ≥ δk k−1 = −δk−1 k ≥ 0 for all k.

It is clear from (7) that v! ≥ δ! !−1 for any v ∈ Y (!) and v′! ≤ −δ!−1 ! for any

v′ ∈ Y (!− 1). This, together with Lemma 4, implies that v′! ≤ −δ!−1 ! = δ! !−1 ≤ v!.

In fact, there exist v ∈ Y (!) and v′ ∈ Y (! − 1) such that v! and v′! are arbitrarily

close to δ! !−1. In other words, the hyperplane v! = δ! !−1 weakly separates Y (!) and

Y (!− 1).

Construct a payment function using the δ! !−1’s as follows:

pk ≡
{ ∑k

!=1 δ! !−1, if ! = 1, 2, ..., K

0, if ! = 0.
(8)

This payment function is shown to truthfully implement a social choice function

satisfying W-Mon and TBB.

Lemma 5 A social choice function on a completely ordered, bounded domain is truth-

ful if it satisfies W-Mon and TBB.

The next lemma allows us to dispense with TBB in the sufficient condition for

truth-telling. The proof is in the Supplementary Material.

Lemma 6 If a social choice mechanism f satisfies W-Mon then there exists an al-

location mechanism f ′ which satisfies W-Mon and TBB such that f(v) = f ′(v), for

almost all v ∈ D. Moreover, the payment function p′k defined as in (8) with respect

to f ′ truthfully implements f .

Lemma 6 assures us that given any social choice function f that satisfies W-Mon

we can construct another social choice function f ′ which is W-Mon and TBB. By

9



Lemma 5, f ′ is truthful and by Lemma 6 the payment function which implements

f ′ also implements f . Thus, W-Mon is sufficient for truth-telling. This leads to the

main result for completely ordered domains.

Theorem 2 A social choice function on a completely ordered bounded domain is

truthful if and only if it is weakly monotone.

An alternative characterization for the single agent, completely ordered domain

model is through the payment function rather than the social choice function. Con-

sider a multi-unit auction with one buyer. The allocation rule “induced” by any

increasing payment function (pk ≥ pk−1 ≥ 0) is implementable. We note that this

characterization becomes considerably more complex when one considers two or more

buyers. This is because each buyer’s payment function will, in general, depend on oth-

ers’ reported types and for each vector of types, it must be verified that the induced

allocation rule does not distribute more units than are available. Our characteriza-

tion based on W-Mon is easily generalized to multi-agent settings, both for completely

ordered and partially ordered domains.

4 Extension to multiple agents

We extend the results of the single agent model to multiple agents, with each agent

having private values over the possible outcomes. For concreteness, we use the set-up

of Section 3.1; an identical argument extends the results of Section 3.2.

There are i = 1, 2, ..., n agents and the finite set of outcomes is A = {a1, a2, ..., aL}.
Agent i’s type is denoted by Vi = (Vi1, Vi2, ..., Vi!, ..., ViL), where each Vi ∈ Di ⊆ #L

+.

The characteristics of all the agents are denoted by V = (V1, V2, ..., Vi, ..., Vn).10 The

private-values assumption is that each agent’s utility function depends only on his

type. Thus, when the types are V = (Vi, V−i), agent i’s utility over the outcome a

and m units of money is Ui(a, m, (Vi, V−i)) = Ui(a, Vi) + m, a ∈ A.

The outcome set A is endowed with (partial) orders, +i, i = 1, 2, ..., n, one for

each agent. The domain of agents’ types, D = D1 × D2 × . . . × Dn, is consistent

with (A, +1,+2, ...,+n) if each Di, the domain of agent i’s types, is consistent with

(A,+i). Further, D is rich if each Di is rich (as defined in Section 3.1).

In an auction, A represents the set of possible assignments of objects to agents

(buyers). If buyer i cares only about the objects allocated to him, then the partial

order +i is determined by set inclusion on the respective allocations to buyer i at

10In a departure from the notation of Section 3, V now refers to a profile of utilities for n agents
rather than for a single agent.
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a, a′ ∈ A. Thus, a ∼i a′, (i.e., Ui(a, Vi) = Ui(a′, Vi), ∀Vi ∈ Di) whenever a and a′

allocate the same bundle of objects to buyer i.

A social choice function f is a mapping from the domain of all agents’ (reported)

types onto A, f : D → A. For each agent i there is a payment function pi : D → #.

Let p = (p1, p2, ..., pn). The pair (f, p) is a social choice mechanism. A social choice

mechanism is dominant strategy incentive compatible if truthfully reporting one’s

type is a dominant strategy for each agent. That is, for every i, Vi, V ′
i , V−i,

Ui(f(Vi, V−i), Vi)− pi((Vi, V−i)) ≥ Ui(f(V ′
i , V−i), Vi)− pi(V

′
i , V−i). (9)

A social choice function f is dominant strategy implementable if there exist payment

functions p such that (f, p) is dominant strategy incentive compatible.

The following definition generalizes weak monotonicity to a multiple agent setting.
A social choice function f is weakly monotone (W-Mon) if for every i, Vi, V ′

i , V−i,

Ui(f(V ′
i , V−i), V ′

i )− Ui(f(Vi, V−i), V ′
i ) ≥ Ui(f(V ′

i , V−i), Vi) − Ui(f(V ′
i , V−i), Vi). (10)

Observe that the requirement of dominant strategy, (9), is the same as requiring

truth-telling (i.e. (1)) for each agent i, for each value of V−i. Further, (10) is equivalent

to requiring (2) for each agent i, for each value of V−i. Thus, Theorem 1 (and similarly

also Theorem 2) generalize:

Theorem 3 (i) A social choice function on a rich domain is dominant strategy im-

plementable if and only if it is weakly monotone.

(ii) A social choice function on a completely ordered, bounded domain is dominant

strategy implementable if and only if it is weakly monotone.

5 Relationship to earlier work

In his seminal paper, Myerson (1981) showed that a necessary and sufficient condi-

tion for incentive compatibility of a single object auction is that each buyer’s prob-

ability of receiving the object is non-decreasing in his reported valuation.11 Several

authors, including Rochet (1987), McAfee and McMillan (1988), Williams (1999), Kr-

ishna and Perry (1997), Jehiel, Moldovanu, and Stacchetti (1996, 1999), Jehiel and

Moldovanu (2001), Krishna and Maennar (2001), and Milgrom and Segal (2002), have

extended Myerson’s analysis to obtain necessary and sufficient conditions for Bayesian

incentive-compatible mechanisms in the presence of multi-dimensional types. These

results are easily adapted to dominant strategy mechanisms.

11Myerson characterized Bayesian incentive compatibility when agents’ types are one dimensional;
simple modifications to his proofs yield a similar characterization for dominant strategy incentive
compatibility. Myerson’s characterization coincides with W-Mon applied to one dimensional types.
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To place our results in the context of this earlier work, let G be a (random)

social choice function that maps the domain of agents’ types D to a probability

distribution over the set of outcomes A = {a1, a2, . . . , aL}. Thus, for each V ∈ D,

G(V ) = (g1(V ), g2(V ), ..., g!(V ), ..., gL(V )) is a probability distribution. Recall that

the payment functions are p = (p1, p2, ..., pn). A social choice mechanism (G, p)

induces the following payoff function for agent i:

Πi(Vi, V−i) ≡ G(Vi, V−i) · Vi − pi(Vi, V−i),

where x · y denotes the dot product of two vectors x and y. Dominant strategy

incentive compatibility implies that for all i, Vi, V ′
i , V−i,

Πi(Vi, V−i) ≥ G(V ′
i , V−i) · Vi − pi(V

′
i , V−i)

= Πi(V
′
i , V−i) + G(V ′

i , V−i) · (Vi − V ′
i ), (11)

=⇒ Πi(Vi, V−i) = max
V ′

i

{G(V ′
i , V−i) · Vi − pi(V

′
i , V−i)}

As Πi( ·, V−i) is the maximum of a family of linear functions, it is a convex function

of Vi. Further, for each i and V−i, G( ·, V−i) is a subgradient of Πi( ·, V−i). This leads

to the following characterization: A social choice function G is dominant strategy

implementable if and only if for each V−i, G( ·, V−i) is a subgradient of a convex

function from Di to #.

A function G( ·, V−i) : Di → #L, Di ⊆ #L, is cyclically monotone if for every finite

selection V j
i ∈ Di, j = 1, 2, ...,m, with V m+1

i = V 1
i ,

m∑

j=1

V j
i · [G(V j

i , V−i)−G(V j+1
i , V−i)] ≥ 0. (12)

A function is a subgradient of a convex function if and only if it is cyclically monotone

(Rockafellar (1970, p. 238)). Thus, cyclic monotonicity of the social choice function

also characterizes dominant strategy implementability. The rationalizability condition

of Rochet (1987) generalizes the cyclic monotonicity characterization of incentive

compatibility to settings where the utility function is possibly non-linear.

W-Mon is a weaker condition than cyclic monotonicity in that W-Mon requires

(12) only for m = 2.12 Thus, our contribution is to show that when one restricts

attention to deterministic social choice functions, dominant strategy incentive com-

patibility is characterized by the simpler condition of W-Mon. Rochet’s cyclic mono-

tonicity condition requires that inequality (12) be checked for all finite selections of

types, whereas W-Mon requires the inequality to be verified only for every pair of

types.

12Note that if m = 2 then (12) may be restated as [G(V ′
i , V−i)−G(Vi, V−i)] · (V ′

i − Vi) ≥ 0 for all
Vi, V ′

i . This is the same as (10), with Ui(G(Vi, V−i), Vi) = G(Vi, V−i) · Vi, etc.
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It is well known that with multi-dimensional types, characterizations of incen-

tive compatibility are complex. For one dimensional types, cyclic monotonicity is

equivalent to W-Mon which is equivalent to a non-decreasing subgradient function

(Rockafellar (1970, p. 240)). Hence, Myerson’s characterization of incentive com-

patibility as a non-decreasing allocation function. W-Mon, which generalizes the

concept of a non-decreasing function, does not characterize incentive compatibility in

a multi-dimensional setting with random mechanisms; the more complex condition of

cyclic monotonicity is needed. However, when attention is restricted to deterministic

mechanisms then we show that the simpler condition of W-Mon is enough. Thus

our paper helps delineate the boundaries of multi-dimensional models which permit

a simple characterization of incentive compatibility.

Although our characterization is significantly simpler, the restriction to deter-

ministic mechanisms may be a limitation. Manelli and Vincent (2003) and Thanas-

soulis (2004) show that a multi-product monopolist can strictly increase profits by

using a random, rather than deterministic, mechanism. Example S1 in the Supple-

mentary Materials establishes that for random social choice functions W-Mon is not

sufficient for dominant strategy implementability.13 Whether there is an intuitive

condition, which in conjunction with W-Mon, is sufficient for incentive compatibility

of random social choice functions is an open question.

Roberts (1979) characterizes deterministic dominant strategy mechanisms in quasi-

linear environments with a “complete” domain. Roberts identifies a condition called

positive association of differences (PAD) which is satisfied by a social choice function

f if for all V = (V1, V2, . . . , Vn) and V ′ = (V ′
1 , V

′
2 , . . . , V

′
n)

if Ui(f(V ), V ′
i )− Ui(a, V ′

i ) > Ui(f(V ), Vi)− Ui(a, Vi), ∀a -= f(V ), ∀i,
then f(V ′) = f(V ). (13)

An allocation rule f is an affine maximizer if there exist constants γi ≥ 0, with at

least one γi > 0, and a function U0 : A→ # such that

f(V ) ∈ arg max
a∈A

(
U0(a) +

n∑

i=1

γiUi(a, Vi)
)
.

Roberts (1979) shows that f is a (deterministic) dominant strategy mechanism if and

only if f satisfies PAD if and only if f is an affine maximizer.

What is the relationship between Roberts’ work and ours? The fundamental

difference is that Roberts assumes an unrestricted domain of preferences while we

operate in a restricted domain. In particular, Roberts requires that for all a ∈ A, any

real number α, and any agent i, there exists a type Vi of agent i such that Ui(a, Vi) = α.

13We are grateful to an anonymous referee for this example.
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Thus, taking (A, +1,+2, . . . ,+n) and the domain of types as primitives of the two

models, in Roberts’ model +i is a null order and Di = #L for each agent i,14 whereas

we allow each +i to be a non-null (even complete) order and the corresponding Di

to be a strict subset of #L
+. Thus, an auction or any mechanism that allocates

(private) goods does not satisfy Roberts’ domain assumptions as they preclude free

disposal and no externalities in consumption. Indeed, in an auction with two or more

buyers PAD is vacuous in that all mechanisms satisfy PAD.15 W-Mon, however, is not

vacuous in this setting and is the appropriate condition for incentive compatibility.16

Because a smaller domain (than Roberts’) is sufficient for our characterization, one

may suspect that W-Mon is stronger than PAD. This is proved in Lemma S1 in

the Supplementary Materials. As already noted, in multi-agent models PAD does

not imply W-Mon. Example S2 in the Supplementary Materials presents a single

agent model in which a social choice mechanism satisfies PAD but not W-Mon; this

mechanism is, of course, not incentive compatible. An important difference between

these two conditions is that PAD is defined for changes in types of any combination

of players, while W-Mon is defined for changes in exactly one player’s type.

Thus, W-Mon and PAD are not equivalent. Further, because of the domain restric-

tions inherent in our model, our result is not a consequence of the characterization

result of Roberts. It may be useful conceptually to draw an approximate parallel

with the results on dominant strategy incentive compatibility in various domains.

According to the Gibbard-Satterthwaite Theorem, dominant strategy is equivalent

to dictatorship in an unrestricted domain (subject to a range assumption). In the

quasilinear model (with otherwise unrestricted domain), Roberts showed that dom-

inant strategy, PAD, and the existence of affine maximizers are equivalent. In the

more restricted economic environments of auctions, where agents care only about

their private consumption, the equivalence of these three concepts breaks down; in

particular, PAD is necessary (and in the multi-buyer case vacuously so) but not suffi-

cient for dominant strategy. The domain restrictions inherent in auctions imply that

a wider class of allocation rules is incentive compatible. But if PAD is strengthened

to W-Mon, then we recover equivalence between dominant strategy and W-Mon.17

Although it is stronger than PAD, W-Mon is much weaker than cyclic monotonic-

ity which has been used to characterize incentive compatibility in multi-dimensional

settings (Rochet (1987)).

14Di = #L, for all i, is essential for Roberts’ proofs.
15Let a differ from f(V ) in the allocation to exactly one buyer. Then the hypothesis in (13) is

false as the inequality holds for at most one and not for all buyers.
16In our search for conditions that might be necessary and sufficient on even smaller domains than

considered here, we examined two conditions that strengthen W-Mon in a natural way. However,
neither of these two conditions is necessary. See Example S3 in Supplementary Materials.

17W-Mon by itself does not imply affine maximization. Lavi, Mu’alem, and Nisan (2003) identify
an additional property which together with W-Mon implies affine maximization.
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Chung and Ely (2002) obtain a characterization of incentive compatibility which

they call pseudo-efficiency. They show that f is dominant strategy implementable if

and only if there exist real-valued functions wi(a, Vi) such that for each V ,

f(V ) ∈ arg max
a∈A

(
Ui(a, Vi) + wi(a, Vi)

)
, ∀i.

W-Mon must therefore be equivalent to pseudo-efficiency. However, we believe that

W-Mon is, in some ways, a more insightful condition than pseudo-efficiency. For

instance, the definition of the latter involves an existential quantifier which makes it

hard to verify.

6 Concluding remarks

Characterizations of incentive compatibility with multi-dimensional types are far from

simple. By restricting attention to deterministic, dominant strategy mechanisms we

obtain a substantial simplification. In particular, the W-Mon condition clarifies the

structure of incentive-compatible auctions. The resulting simplification of the con-

straint set for incentive compatibility will be of use in identifying revenue-maximizing

auctions within the class of deterministic dominant strategy mechanisms. Another

possible application of our characterization is to practical auctions. Starting with the

auction of spectrum rights in the U.S. in the mid-nineties, new market institutions

have been proposed for selling multiple heterogeneous objects. Simple characteriza-

tions such as ours can be used to check the incentive properties of these institutions.18

Our strategy has been to start with W-Mon, a monotonicity condition necessary

for dominant strategy incentive compatibility, and show that when applied to a large

enough domain of agent types, W-Mon is also sufficient. In principle, this approach

can also be applied to Bayesian incentive compatibility. However, first the problem

of extending this approach to random mechanisms must be solved (see Section 5).19

18To our knowledge, all the recently proposed market mechanisms are deterministic except, of
course, when there are ties. Thus a restriction to deterministic mechanisms does not seem to be a
limitation in these applications.

19The distinction between random and deterministic social choice functions is less useful for
Bayesian mechanisms. A Bayesian agent views a social choice function as a function of his type
alone, which is a probability distribution over outcomes.
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7 Appendix: Proofs of Sections 3.1 & 3.2

Proof of Lemma 3: (i) By definition, pK = 0 and p! = −δK!. Therefore, V (a!) −
V (aK) < −δK! ≤ δ!K , where the second inequality follows from Lemma 2(ii). The

definition of δ!K implies that f(V ) -= a!.

(ii) In the other direction we have V (aK)−V (a!) < pK−p! = δK! implies f(V ) -= aK .

Proof of Theorem 1: In view of Lemma 1, we need only show sufficiency of W-Mon.

In particular, we show that the payment function defined in (4) truthfully implements

any social choice function f which is W-Mon. Suppose to the contrary that there

exists k∗, k and V ∈ Y (k∗) such that V (ak∗) − pk∗ < V (ak) − pk. Lemma 3(i) and

(ii) imply that k -= K and k∗ -= K respectively (else it would contradict V ∈ Y (k∗)).

Further, Lemma 3(i) implies that V (ak∗) − pk∗ ≥ V (aK) − pK (= V (aK)). Choose a

γ > 0 and a small enough ε > 0 such that

V (ak∗) + ε− pk∗ < V (aK) + γ − pK < V (ak)− pk.

Note that γ > ε. Define T = {ak∗} ∪ {a! ∈ A | a! + ak∗ and V (a!) = V (ak∗)}. Let V ′

be the following type:

V ′(ar) ≡






V (ar) + ε, if ar ∈ T\{aK}
V (ar) + γ, if ar = aK

V (ar), otherwise.

As V ′ is consistent with the underlying order + and D is rich, V ′ ∈ D.20

By Lemma 2(i), pk∗ ≤ p! for any a! ∈ T . Therefore, as V ′(a!) = V ′(ak∗), for all

a! ∈ T\{aK}, we have

V ′(a!)− p! ≤ V ′(ak∗)− pk∗ < V ′(aK)− pK , ∀a! ∈ T\{aK}.

Thus, ak -∈ T and Lemma 3(i) implies that f(V ′) -= a! for any ! ∈ T\{aK}. As

V ′(aK)−pK < V ′(ak)−pk, f(V ′) -= aK by Lemma 3(ii). Thus, f(V ′) = ak′ -∈ T∪{aK}.
But then,

0 = V ′(ak′)− V (ak′) < V ′(ak∗)− V (ak∗) = ε

which violates W-Mon.

Proof of Lemma 4: By Lemma 2(ii) and the fact that āk ≥ vk ≥ 0 for all v ∈ D,

we have āk ≥ δk k−1 ≥ −δk−1 k ≥ 0.

20To verify the consistency of V ′ note the following. If a!′ + a! and a! ∈ T , a!′ -∈ T , a!′ -= aK

then select ε > 0 small enough so that V ′(a!′) = V (a!′) ≥ V (a!) + ε = V ′(a!). If aK + a!, a! ∈ T ,
then as γ > ε, we have V ′(aK) ≥ V ′(a!) if V (aK) ≥ V (a!). Further, aK was chosen so that a! -+ aK

for any $ -= K.
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Let vk ≡ (ā1, ā2, ..., āk, 0, ..., 0) for any k = 0, 1, 2, ..., K (with v0 ≡ (0, 0, ..., 0) ).

Observe that under either bounded domain assumption A or B, vk ∈ D. Thus,

vk ∈ Y (q) for some q = 0, 1, ..., K. TBB(i) implies that vk -∈ Y (q) for any q > k,

and TBB(ii) implies that vk -∈ Y (q) for any q < k. Therefore, vk ∈ Y (k). Next,

let v(t) = (1 − t)vk−1 + tvk, t ∈ [0, 1], be a point on the straight line joining vk and

vk−1, k ≥ 1. Observe that v(t) = (ā1, ..., āk−1, tāk, 0, ..., 0) ∈ D, ∀t ∈ [0, 1]. Thus,

v(t) ∈ Y (q) for some q. TBB implies that v(t) ∈ Y (k−1)∪Y (k). Because vk(t) = tāk

increases in t, there exists a t∗ ∈ [0, 1] such that v(t) ∈ Y (k − 1) for all t < t∗ and

v(t) ∈ Y (k) for all t > t∗. Thus,

t∗āk = lim
t↑t∗

vk(t) ≤ −δk−1 k ≤ δk k−1 ≤ lim
t↓t∗

vk(t) = t∗āk

Hence, δk k−1 = −δk−1 k.

Proof of Lemma 5: W-Mon implies that

If
q∑

!=f(v)+1

v′! <
q∑

!=f(v)+1

v!, ∀q > f(v) then f(v′) ≤ f(v). (14)

If
f(v)∑

!=q+1

v′! >
f(v)∑

!=q+1

v!, ∀q < f(v) then f(v′) ≥ f(v). (15)

Observe that if v′, v, satisfy the hypotheses in (14) and (15) then f(v′) = f(v).

First, we prove that for any k = 0, 1, 2, ..., K,

{
v ∈ D|

k∑

!=q

v! ≥
k∑

!=q

δ! !−1, ∀q ≤ k,
q∑

!=k+1

v! ≤
q∑

!=k+1

δ! !−1, ∀q > k
}
⊆ cl[Y (k)]. (16)

There are two cases to consider.

Case A: (δ1 0, δ2 1, ..., δK K−1) ∈ D.21

Consider the point v̂k(ε) = (δ1 0 + ε1, ..., δk k−1 + εk, δk+1 k − εk+1, ..., δK − εK) where

ε1, ε2, ..., εK satisfy the following conditions:

(i) If [q ≤ k and δq q−1 = āq] or [q > k and δq q−1 = 0] then εq = 0.

(ii) If [q ≤ k and δq q−1 < āq] or [q > k and δq q−1 > 0] then εq > 0.

As (δ1 0, δ2 1, ..., δK K−1) ∈ D, there exist ε1, ε2, ..., εK satisfying (i) and (ii) above

such that v̂k(ε) ∈ D.22 Consider any q < k. If δq+1 q < āq+1 then as v̂k
q+1(ε) > δq+1 q,

we know that v̂k(ε) -∈ Y (q). If, instead, δq+1 q = āq+1 then (as εq+1 = 0) we have

v̂k
q+1(ε) = āq+1. Thus, TBB(ii) implies that v̂k(ε) -∈ Y (q). Similarly, TBB(i) implies

21Lemma 4 implies that if domain assumption A is satisfied then we are in Case A.
22If domain assumption A is satisfied, this is easy to verify. If, instead, domain assumption B is

satisfied then ε1, ε2, ..., εK must be chosen to ensure that v̂k(ε) satisfies (6).
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that v̂k(ε) -∈ Y (q) for q > k. Hence v̂k(ε) ∈ Y (k). Therefore, (14) and (15) imply

that23

{
v ∈ D |

k∑

!=q

v! >
k∑

!=q

(δ! !−1 + ε!), ∀q ≤ k,
q∑

!=k+1

v! <
q∑

!=k+1

(δ! !−1 − ε!), ∀q > k
}
⊂ Y (k).

One can construct a sequence (εn
1 , ε

n
2 , ..., ε

n
K) → 0 such that v̂k(εn) ∈ D. Taking limits

as εn → 0, we get

{
v ∈ D |

k∑

!=q

v! >
k∑

!=q

δ! !−1, ∀q ≤ k,
q∑

!=k+1

v! <
q∑

!=k+1

δ! !−1, ∀q > k
}
⊂ Y (k),

which in turn implies (16).

Case B: (δ1 0, δ2 1, ..., δK K−1) -∈ D.24

For each k = 0, 1, 2, ..., K define

vk(ε) =
{
v | vq = max[vq+1

āq

āq+1
, δq q−1 + εq], ∀q < k, δk k−1 + εk ≤ vk ≤ āk,

vq = min[vq−1
āq

āq−1
, δq q−1 − εq], ∀q > k

}
.

Any v ∈ vk(ε) satisfies (6). Thus, provided ε1, ε2, ..., εK satisfy (i) and (ii) defined in

Case A, and are small enough, vk(ε) ⊂ D [ = ∪K
q=0Y (q) ]. For any v ∈ vk(ε), we have

vq ≥ δq q−1 + εq for any q ≤ k; thus vk(ε) ∩ Y (q − 1) = ∅. Similarly, for any q > k,

vk(ε) ∩ Y (q) = ∅. Thus, vk(ε) ⊂ Y (k) for small enough ε!’s . From (14) and (15)

applied to each v ∈ vk(ε), we know that (with the qualification in footnote 23)

{
v ∈ D | vk > δk k−1 + εk,

k∑

!=q

v! > δk k−1 + εk +
k−1∑

!=q

max[v!+1
ā!

ā!+1
, δ! !−1 + ε!], ∀q < k,

q∑

!=k+1

v! <
q∑

!=k+1

min[v!−1
ā!

ā!−1
, δ! !−1 − ε!], ∀q > k

}
⊂ Y (k).

Taking limits as (ε1, ε2, ..., εK) → 0, we see that

{
v ∈ D | vk > δk k−1,

k∑

!=q

v! > δk k−1 +
k−1∑

!=q

max[v!+1
ā!

ā!+1
, δ! !−1], ∀q < k,

q∑

!=k+1

v! <
q∑

!=k+1

min[v!−1
ā!

ā!−1
, δ! !−1], ∀q > k

}
⊆ Y (k)

23If for some q ≤ k, δ! !−1 = ā! for all $ = q, q + 1, ..., k then the corresponding strict inequality
in the set on the left hand side is replaced by a weak inequality. A similar change is made if for
some q > k, δ! !−1 = 0 for all $ = q, q + 1, ..., k. In either case, (i) implies that ε! = 0 in the relevant
range. This ensures that the set on the left hand side is non-empty; the inclusion of this set in Y (k)
is implied by TBB together with (14) and (15).

24Domain assumption B must hold and (6) is violated by (δ1 0, δ2 1, ..., δK K−1).
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and therefore

{
v ∈ D | vk ≥ δk k−1,

k∑

!=q

v! ≥ δk k−1 +
k−1∑

!=q

max[v!+1
ā!

ā!+1
, δ! !−1], ∀q < k,

q∑

!=k+1

v! ≤
q∑

!=k+1

min[v!−1
ā!

ā!−1
, δ! !−1], ∀q > k

}
⊆ cl[Y (k)].

That this last set inclusion is equivalent to (16) follows from the observation that

(6) implies that if δk k−1 +
∑k−1

!=q max[v!+1
ā!

ā!+1
, δ! !−1] >

∑k
!=q v! ≥

∑k
!=q δ! !−1 for some

q < k or if
∑k

!=q+1 min[v!−1
ā!

ā!−1
, δ! !−1] <

∑k
!=q+1 v! ≤

∑k
!=q+1 δ! !−1 for some q > k,

then v -∈ D. This establishes (16) for Case B.

Next, suppose that the set inclusion in (16) is strict. In particular, there exists
k, v ∈ cl[Y (k)] such that

∑k
!=q′ v! <

∑k
!=q′ δ! !−1, for some q′ < k.25 We may assume

WLOG that v ∈ Y (k)26 and that
∑k

!=q v! ≥
∑k

!=q δ! !−1, ∀q = q′ + 1, ..., k. Therefore,
vq′ < δq′ q′−1 ≤ āq′ and

∑q
!=q′ v! <

∑q
!=q′ δ! !−1, ∀q = q′, q′ + 1, ..., k. Consider the

point v̂ ≡ (ā1, ā2, ..., āq′−1, vq′ + ε̂, vq′+1, ..., vk, 0, ..., 0) where ε̂ > 0 is small enough
that v̂ ∈ D and

∑q
!=q′ v̂! <

∑q
!=q′ δ! !−1, ∀q = q′, q′ + 1, ..., k. Thus, (16) implies that

v̂ ∈ cl[Y (q′ − 1)]. Suppose that v̂ ∈ Y (q′ − 1). But this violates (5) as
∑k

!=q′ v̂! >
∑k

!=q′ v! and v ∈ Y (k). If, instead, v̂ ∈ cl[Y (q′ − 1)]\Y (q′ − 1) then there exists
v∗ ∈ Y (q′ − 1) which is arbitrarily close to v̂ and (5) is violated. Thus, for any
v ∈ cl[Y (k)] we have

∑k
!=q v! ≥

∑k
!=q δ! !−1, ∀q ≤ k. A similar proof establishes that

if v ∈ cl[Y (k)] then ∀q > k,
∑q

!=k+1 v! ≤
∑q

!=k+1 δ! !−1. Therefore, the set inclusion in
(16) can be replaced by an equality, i.e.,

cl[Y (k)] =
{

v ∈ D |
k∑

!=q

v! ≥
k∑

!=q

δ! !−1, ∀q ≤ k, &
q∑

!=k+1

v! ≤
q∑

!=k+1

δ! !−1, ∀q > k
}

. (17)

For any v ∈ Y (k) and any q < k,

k∑

!=1

v! −
k∑

!=1

δ! !−1 ≥
q∑

!=1

v! −
q∑

!=1

δ!,!−1 (18)

⇐⇒
k∑

!=q+1

v! ≥
k∑

!=q+1

δ! !−1.

The last inequality follows from (17). Thus, (18) is true; when v ∈ Y (k) the agent

cannot increase his payoffs by reporting a type v′ ∈ Y (q), q < k. Similarly, (18) is

true for q > k. Thus, the payment function pk defined in (8) implements f .

25From the definition of δk k−1 we know that q′ -= k.
26If v ∈ cl[Y (k)]\Y (k), then there exists v′ ∈ Y (k), v′ close to v, such that

∑k
!=q′ v′! <

∑k
!=q′ δ! !−1.
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