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Abstract: 
Several recent articles report evidence of predictability in the skewness of equity returns, 
raising hopes that predictability in third moments will be useful for forecasting the 
probability of tail events. The evidence is unfortunately difficult to interpret, partly 
because they were obtained mainly from parametric models of time-varying conditional 
skewness, and because little is known about the behavior of such models, for instance, 
when there are outliers. We investigate a non-parametric approach to testing for 
predictability in skewness. Specifically, we explore the size and power of a Runs tests, 
and compare this approach with other tests. A re-examination of daily market returns 
reveals mild evidence of predictability in skewness. Incorporating this conditional 
heteroskewness into standard volatility models hardly improves out-of-sample forecasts 
of tail probabilities.  
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1. Introduction 

 There is strong evidence that the standardized residuals from conditionally heteroskedastic 

models fitted to stock returns are asymmetrically distributed (Bai and Ng, 2001; Bera and Premaratne, 

2001). Does the degree and extent of the asymmetry vary over time, and is this variation predictable? If 

there is predictability in the shape of the conditional distribution of stock returns, the implications for 

asset and derivative pricing and risk management are immediate. Under general assumptions about utility 

functions, the shape of the distribution of asset returns will be priced (Kraus and Litzenberger, 1976; 

Harvey and Siddique, 2000). Even if the first two moments are sufficient for asset pricing, variation in the 

shape of the distribution may affect the estimation of the conditional mean and conditional variance of an 

asset return, just as (non-varying) asymmetry affects the estimation of the conditional mean and variance 

(Newey and Stiegerwald, 1997; Bera and Premaratne, 2001). Likewise, the shape of the distribution of the 

underlying asset will in general affect option prices. Risk management practices often focus on the left 

tail of the distribution of future changes in the value of a portfolio (Duffie and Pan, 1997), and the 

probability of large negative changes in the value of a portfolio, for any given level of mean and volatility, 

may depend on the shape of the distribution. 

 The question of predictability in the shape of a variable’s conditional distribution is usually 

framed in terms of predictability in conditional skewness, or ‘conditional heteroskewness’, with attention 

focusing primarily on predictability using the variable’s past history. Recent investigations have 

uncovered some evidence of such predictability in stock returns. Specifying the conditional distribution of 

the standardized residuals of a GARCH-M model as a non-central t-distribution, with skewness 

depending on the conditional skewness in the previous period, Harvey and Siddique (1999) found 

evidence of autoregressive behavior in the conditional skewness of daily US, German and Japanese stock 

index returns. Chen, Hong and Stein (2001) used cross-sectional regressions of skewness in the daily 

stock returns of individual firms, measured over six month periods, and found that periods of high return 

and unusually high turnover tend to be followed by periods of negative skewness. Building on the 

Autoregressive Conditional Density (ARCD) model of Hansen (1994), Jondeau and Rockinger (2000) 
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found evidence of predictability in the third moments of the daily returns of several major stock markets, 

but not at the weekly frequency (see also Rockinger and Jondeau, 2001). Using the ARCD framework, 

Hashmi and Tay (2001) found predictability in the skewness of weekly returns of a World and an Asia-

Pacific stock index. Perez-Quiros and Timmermann (2001) found time-variation in the skewness of size-

sorted portfolios US stocks. In an application to a daily French stock index return, El Babsiri and Zakoian 

(2001) found that a model with conditional heteroskewness, heterokurtosis, and leverage effects in 

volatility improves upon models without these effects. 

 The evidence of predictability in the skewness of stock returns is, however, difficult to interpret, 

particularly its implications for risk management. The majority of studies on this issue proceed by fitting 

a model that allows for predictability in skewness, and testing if the parameters that embody conditional 

heteroskewness are statistically significant (e.g., Harvey and Siddique, 1999; Rockinger and Jondeau, 

2000; Hashmi and Tay, 2001). However, little is known about the behavior of models with time-varying 

conditional skewness. In particular, these models may not be robust to outliers. On the other hand, the 

models may not be able to pick up predictability in extreme realizations, even if predictability exists, as 

extreme realizations occur infrequently (Rockinger and Jondeau, 2002, pg 139). Another problem with 

parametric tests for predictability in skewness is the need to specify a law of motion for conditional 

skewness. Estimation of the parametric model is difficult, and usually also requires a distributional 

assumption, and either an incorrect specification of skewness dynamics or an incorrect distributional 

assumption may lead to faulty inferences. 

 We explore a non-parametric approach, involving the use of a Runs test, to testing for 

predictability in skewness. The following section explains why the Runs test is well suited for detecting 

this particular departure from randomness. In section 3, we use Monte Carlo experiments to evaluate the 

size and power properties of the Runs test under various situations. We also compare the Runs test with 

other tests for predictability in skewness. We report in Section 4 the results of an application of the tests 

to three daily stock index returns: the S&P 500, FTSE100 and Nikkei 225. We find mild evidence of 

predictability in skewness in two of the three series. We then investigate whether this predictability 
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represents a systematic component in the shape of the distribution that may assist in forecasting tail events. 

We do so by generating out-of-sample one-step-ahead forecasts of tail probabilities using two sets of 

models, one with and the other without conditional heteroskewness, and compare the models’ ability to 

forecast tail events.  

 

2. A Runs Test for Predictability in Conditional Skewness 

2.1 The Runs Test 

 The Runs test is a test designed to detect non-randomness in a sequence of observations of a 

binary variable, such as a sequence of 1’s and 0’s. A ‘run’ is defined as a string of consecutive 1’s or 0’s, 

and a run may consist of just one observation. The idea of the runs test is that non-randomness in a string 

of 1’s and 0’s often manifests itself as either too few runs, or too many runs. In a sequence of 

observations of a univariate continuous random variable, non-randomness can be detected using a Runs 

test, by assigning ‘1’ to realizations that fall within some category (e.g., 0y ≥ ), and ‘0’ otherwise. The 

distribution of the number of runs under the null of randomness has long been derived (see for instance 

Mood, 1940). Although the exact distribution is known, we will use the asymptotic result of Wald and 

Wolfowitz (1940): in a sequence of length n  with 1n  1’s and 0n  0’s, the number of runs is asymptotically 

normal with mean 

 0 121 n n
n

µ = +  

and standard deviation 

 0 1 0 1
2

2 (2 )
( 1)

n n n n n
n n

σ −
=

−
. 

 
The Runs test has been used in a wide range of applications in numerous fields of research. We will not 

elaborate upon applications of the Runs test, except to note that in finance it has been used to test stock 

returns for departures from independence, e.g., Fama (1965), and in the econometric forecasting literature, 

the Runs test has been used to evaluate interval forecasts, e.g., Christoffersen and Diebold (2000).  
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 Take a sequence of 1’s and 0’s { } 1

n
t tI

=
 to be indicators of the sign of the corresponding 

realizations { } 1

n
t ty

=
of a random variable, say, stock returns. Any form of predictability in ty  that results in 

predictability in the probability of observing positive and negative values would result in non-randomness 

in { } 1

n
t tI

=
. For example, in an AR(1) process with strong positive autocorrelation and a symmetric 

conditional distribution there will be long periods of time during which the probability of observing one 

sign is greater than the probability of the opposite sign.  This “clustering of probabilities” results in long 

runs of 1’s and 0’s in { } 1

n
t tI

=
, and consequently, of too few runs. This is the rationale behind the usual 

interpretation of a rejection of the Runs test as evidence of predictability in the mean (linear or otherwise). 

This same idea is explored in detail and used in Christoffersen and Diebold (2002) to study the 

relationship between market timing (i.e., predictability of the sign of returns) and volatility dynamics.  

 On the other hand, any form of dependence that leaves the conditional probability of a positive 

realization unchanged will result in randomness in tI , since the conditional probability at any time t  of 

observing a positive value would be the same as the marginal probability of a positive realization. If ty  is 

a process with zero conditional mean, tI  is random even if the process is conditionally heteroskedastic. If 

in addition the conditional distribution is symmetric, tI  will also be random under conditional 

heterokurtosis, since neither predictability in the second moments, nor in any of the higher even moments, 

would result in variation in the conditional probability of observing positive values of ty . It is reasonable, 

therefore, to interpret a rejection of the Runs test, when applied to the signs of a zero-conditional mean 

process, as evidence of predictability in the variation in the degree of asymmetry present in the 

conditional distribution of ty . Finally, the Runs test will be robust to the presence of outliers, since it 

focuses on the sign of the observations and not their size. We therefore propose the following non-

parametric approach to testing for predictability in conditional skewness: first model the conditional mean, 

perhaps using a non-parametric regression technique, and generate the indicator sequence tI  of the signs 
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of the residuals. Next, carry out the Runs test on tI . This procedure can be repeated for different ways of 

modeling the conditional mean, to provide a more robust view regarding predictability in conditional 

skewness.  

 We focus on the Runs test, but of course, the Runs test can be replaced by other tests for 

forecastability of the signs. Probit models relating tI  to past residuals, for instance, might prove useful. 

There are also other ways to test for conditional heteroskewness that use the residuals themselves, rather 

than their signs. For instance, we could evaluate the statistical significance of a regression of 3
t̂ε  on 1t̂ε − , 

where ε̂  represents the residuals after estimating and removing the conditional mean of the process. We 

can informally view this test as having a foundation based on an Information Matrix (IM) test; Bera and 

Lee (1993) show that the IM test statistic for a linear regression model with possibly autocorrelated 

Gaussian errors can be decomposed into several components, one of which tests for ‘heterocliticity’ in a 

similar fashion. The size and power properties of the Runs test for predictability in skewness will be 

investigated using Monte Carlo experiments, but first we briefly discuss a parametric model with 

conditional heteroskewness. The properties of this approach will also be investigated and compared with 

the Runs test. 

 

2.2 A Parametric Model for Predictability in Skewness 

 Another way to test for predictability in conditional skewness is to fit a model that allows for 

such a phenomenon, and test if the relevant parameters are statistically significant. An early time series 

model that allows for predictability in conditional skewness is the Autoregressive Conditional Density 

(ARCD) model of Hansen (1994). Building on the standard setup of a conditionally heteroskedastic 

model, Hansen (1994) specifies:  

(2.1) 

(2.2) 

(2.3) 

 

1( , ) , ,t t t t t tr r zµ θ ε ε σ−= + =

2 2 ( , )t txσ σ θ=

( )~ ,t t t tz g z λ η
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where ( ),t t tg z λ η  is a skewed t-distribution standardized to have zero mean and unit variance: 

 

 

(2.4) 

 
 

 

with 24
1

t
t t t

t

a c ηλ
η

 −
=  − 

, 2 2 21 3t t tb aλ= + − , and 
( )

1
2

2
2

t

t
t

t

c

η

ηπ η

+ Γ 
 =

 − Γ 
 

. The “parameters” tλ  and tη  

determine the shape of the distribution. If 0tλ =  the distribution reduces to the standardized t distribution 

with degrees of freedom tη , otherwise the distribution is skewed to the left when 0tλ <  and skewed to 

the right when 0tλ > . The parameter tλ  is restricted to lie within the interval (–1.0, 1.0), and a logistic 

transformation of tλ  is usually applied to achieve this effect. Predictability in the parameters tλ  and tη  

is achieved by allowing them to be driven by past shocks, much in the same way that past shocks drive 

variation in the conditional variance. As the skewness and kurtosis are functions of tλ  and tη , this 

framework generates predictability in the third and fourth conditional moments. The properties of this 

model and applications using it can be found in Hansen (1994), Jondeau and Rockinger (2000) and 

Hashmi and Tay (2002). In principle, the skewed t-distribution can be substituted by any non-symmetric 

distribution, including the non-central t-distribution (Harvey and Siddique, 1999), Pearson Type IV and 

Log-Gamma (Brannas and Nordman, 2001) and predictability in skewness (and kurtosis) induced by 

specifying the relevant parameters to vary with past information. In an interesting and significant 

departure from this framework, Rockinger and Jondeau (2002) model time-varying skewness and kurtosis, 

and estimate entropy densities to match the skewness and kurtosis at each point in time. 

 Once these models are fitted to the data, it is a simple matter to test for the presence of 

predictability in conditional skewness (or higher moments) by testing if the relevant parameters are 

( )

1
2 2

1
2 2

11 when /
2 1

,

11 when /
2 1

t

t

t t t
t t t t t

t t

t t t

t t t
t t t t t

t t

b z ab c z a b

g z

b z ab c z a b

η

η

η λ
λ η

η λ

+
−

+
−


   + + < −    − −    = 

   +  + ≥ −   − +   
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significantly different from zero. For instance, if the Hansen (1994) framework is applied, and the 

skewness equation is specified as 

 0 1 1t tzλ β β −= +  (2.5) 

so that skewness in the conditional distribution is driven by past standardized residuals, then the 

hypothesis of no predictability of conditional skewness is simply the hypothesis 0 1: 0H β = , which can be 

tested using a Wald test or a Likelihood Ratio test.  

 

3. Monte Carlo Analysis 

 In this section, we report the results of Monte Carlo experiments to evaluate the size and power of 

the Runs Test. We begin with size, in relation to alternatives with outliers, and with dependence in the 

second and fourth moments. We use 1000 replications in each experiment, and the tests are evaluated 

over two sample sizes of 500 and 2000 observations, roughly corresponding to two years of daily data or 

ten years of weekly data, and 8 years of daily data, the intention being to study the behavior of the tests 

for small and for reasonably large sample sizes. In all cases, our DGPs will be zero-conditional mean 

processes, so the Runs test is applied directly to the pseudo-data, without any need to model a conditional 

mean process.1 

 

3.1 Size 

 To check for robustness of the Runs test to the presence of random outliers, we apply the test to 

simulated data with outliers. Pseudo-data with outliers are generated in several ways: 

 a.  ~ (5)
iid

ty t , 

 b.  ~ ( 0.5, 5)
iid

ty g λ η= − =  where ( , )g λ η  is as in (2.4), 

                                                      
1 All computations in this section were carried out in MATLAB.  Maximum Likelihood Estimation of the parametric 
model in the next subsection uses the MATLAB numerical optimization routine fminunc, and robust standard errors 
are used. 
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c. ~ (5)
iid

ty t  with one outlier (–10 standard deviations) per 500 observations, 
randomly located, and 

 

d. ~ (5)
iid

ty t  with two outliers (–10 standard deviations) per 500 observations, 
randomly located. 

 
 

The first DGP specifies an iid process with fat-tails. The second DGP adds leftward skewness so that the 

probability of negative outliers is increased, and the likelihood of positive outliers reduced. The last two 

DGPs, like the first one, specifies an iid t(5) process, but adds one and two very large outliers per 500 

observations respectively. The locations of these outliers were determined by drawing uniformly 

distributed numbers over the sample range. The results of this experiment are displayed in Table 1. The 

results are not surprising; in all four cases, the Runs test is perfectly sized.  

 Conditionally heteroskedastic and conditionally heterokurtic (i.e., predictable conditional kurtosis) 

alternatives are generated using the ARCD model given in (2.1) - (2.4). In all cases, we set 

,t t t t tr zε ε σ= = , so we have zero-conditional mean. For conditionally heteroskedastic alternatives, we 

set ( )22 2 2
0 1 1 2 1 3 1max 0,t t t tσ α α ε α ε α σ− − −= + + + , tλ λ=  and 5tη η= = . The form of the variance equation 

is that of Glosten, Jagannathan and Runkle (1993) which allows for positive and negative shocks to affect 

future volatility differently; setting 2 0α =  gives the usual GARCH specification. 0λ =  gives us the 

usual conditionally student-t GARCH process. We also include a DGP with 0.5λ = − . For conditionally 

heterokurtic alternatives, we set 2 2 1tσ σ= = , 0tλ =  and ( )t tfη η′= , 0 1 1 2 1t t tzη γ γ γ η− −′ ′= + +  where (.)f  

is a logistic transformation to restrict tη  to the interval (3,50). The empirical size of the Runs test for 

these alternative at various parameter values are given in Table 2; other parameter values were also used, 

with similar results. Again, the empirical size of the Runs test is close to that of the nominal size of the 

test, highlighting the robustness of the Runs test to dependence in even moments. 
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3.2 Power 

 To ascertain the power of the Runs tests, a second set of experiments is run using DGPs with 

predictability in conditional skewness. For this purpose, we again simulate data from the Hansen ARCD 

model as specified in equations (2.1) to (2.4), setting the mean and variance equations to be constant as in 

the conditionally heterokurtic case. Again, we set 5tη η= = , but specify a law of motion for tλ . 

Specifically, we specify 0 1 1t tzλ β β −′ = + , setting 0β  and 1β  to various values, and use the logistic 

transformation ( )
1.980.99

1 expt
t

λ
λ

= − +
′+

 to restrict the asymmetry parameter to the unit interval. The 

values of 0β  and 1β  were chosen to control the range and variability of tλ , noting that as 0 1 1t tzλ β β −′ = +  

behaves as a random variable with mean 0β  and variance 2
1β  (since 1tz −  is a zero mean unit variance 

process). The values chosen are combinations of 0 { 0.6,0, 0.6}β ∈ − , corresponding approximately to an 

average value of –0.3, 0 and 0.3 respectively for tλ  (which in turn corresponds to an average value of the 

skewness coefficient of about –1.0, 0, and 1.0 respectively), and 1 { 0.5, 0.5}β ∈ − , so there are altogether 

six different DGPs. In the case 0 0β = , the values of 1β  implies a range of tλ  of approximately 0.5−  to 

0.5 . These ranges can be inferred from the relations between λ  and η  and the skewness and kurtosis 

coefficients given in Jondeau and Rockinger (2000).  Figure 1 displays a simulated series from the ARCD 

for one of these sets of parameter values.  

 The results of this experiment are shown in Table 3, and demonstrates the power of the Runs test 

to detect predictability in conditional skewness. Two observations stand out, the first is that power 

appears to be influenced by the value of 0β . Specifically, the test is most powerful when 0 0β = , and 

power can fall by over twenty points when 0β  is set at 0.6 or −0.6. This corresponds with the analysis of 

David (1947) who demonstrated that the Runs test becomes less powerful as the relative frequency of 1’s 

and 0’s becomes uneven. As we pointed out earlier, in our DGPs the value of 0β  is the average value of 

tλ , and therefore corresponds with the unconditional skewness of the data, which in turn influences the 
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relative probability of observing 1’s and 0’s. The results in Table 3 also emphasizes the need for a fairly 

large sample size in order to achieve reasonable power.  

 

3.3 A Comparison with Other Tests 

 We repeat the experiments using the two other approaches discussed in section 2.2, namely a 

parametric test, and the test of the significance of the regression of 3
ty  on 1ty − ; we denote the latter test by 

31ρ . The parametric test is carried out by first estimating the model described in equations (2.1) - (2.4), 

assuming 0 1 1t tzλ β β −= +  with tλ  again restricted to the ( 1,1)−  interval using a logistic regression. Other 

skewed distributions can be used in place of (2.4) although we expect the results to be similar for the 

other specifications. We then test for the presence of predictability of conditional skewness by testing the 

statistical significance of 1β . Starting values in our numerical optimization procedures are always set with 

the presumption that there is no predictability in skewness, and no unconditional skewness, i.e., we set the 

initial values of both 0β  and 1β  to zero. To focus on predictability in conditional skewness, we set 

tη η=  to be constant, and allow only for tλ  to vary over time. The mean and variance equations are set at 

constants ( )txµ µ=  and 2 2( )t txσ σ= .  

 The results are displayed in Table 4a. To improve the readability of the table we left out the 

results for nominal size 0.01, and only report the results of a small subset of specifications. The results in 

panel (B) indicate that outliers cause the parametric test to be oversized, but the effect is mild. The 

numbers in panel (A) show that both tests have power to detect predictability in skewness; the 31ρ  test 

having similar power to the Runs test. The parametric test is much more powerful than both the Runs test 

and the 31ρ  test . It should be borne in mind, however, that the experiments are heavily stacked in favor of 

the parametric test, since we have assumed in our estimation model both the correct distribution and the 

correct specification for the asymmetry equation. Some power is naturally sacrificed when moving from a 
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parametric test to a non-parametric test, in return for not having to make any distributional and 

specification assumptions. 

 The cost of misspecification is highlighted by the results in panel (C) and (D) of Table 4a. Here, 

the parametric test and the 31ρ  test are applied to conditionally heteroskedastic and conditionally 

heterokurtic DGPs. Note that for the parametric test we have assumed constant values for the variance 

and degrees of freedom parameters. When leverage effect is present, the parametric test is severely 

oversized. This is consistent with the Harvey and Siddique (1999) finding that incorporating conditional 

heteroskewness sometimes reduces leverage effects in conditional variance. The 31ρ  test is also oversized 

when there is conditionally heteroskedasticity. The parametric test performs better when the 

misspecification is removed. In Table 4b, the parametric test is re-evaluated for conditionally 

heteroskedastic DGPs but without the misspecification in the estimation model. The empirical size of the 

test is much closer to the nominal size.  

 

4. Application 

 We now test for predictability in the conditional skewness of stock market returns, and check if 

this predictability can assist in the prediction of tail events. We study daily returns on three stock market 

index returns, namely the FTSE100, the Nikkei 225 and the S&P 500, over the period Jan, 1984 to Dec 

2001, giving a sample size of 4,695 observations. The data is obtained from Datastream. 

 

4.1 Predictability in Conditional Skewness 

 The Runs test for conditional heteroskewness requires the series being tested to have zero-

conditional mean. While our three series all show little correlation, we take care to account for possible 

non-linear dependence in the data. We do so in a number of ways, using parametric and non-parametric 

methods, and apply the Runs test, the parametric test and the 31ρ  test to the residuals after the removal of 

the conditional mean. We also apply the tests to the returns series itself. The original returns series is 
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labeled as series (a) in what follows. In series (b) and (c) we model the conditional mean using an ARMA 

– EGARCH-in-mean specification and an ARMA(2,2) specification respectively. For series (d) a 

nonlinear specification was used for the conditional mean: the returns were regressed on two lags of 

returns, their squares, and an interaction term between the two lagged returns. For series (e), the 

conditional mean is estimated non-parametrically, using a multivariate version of the local linear 

regression smoother as described and studied in Fan (1992), see also Fan and Gijbels (1996). Denoting 

the observations by ( ){ } ( ){ }1 1 1
, ,..., ,

T T
t t kt t ti i

y x x y
= =

= X , the local linear approximation of the conditional 

mean of y  at x  is obtained as 0̂δ  in the weighted regression 

 ( ) ( )
2

0
1 1

min
T k

i j ij j B i
i j

y x x K xδ δ
= =

 
− − − − 

 
∑ ∑ X  (4.1) 

where (.)BK  is a multivariate kernel density ( )11( )BK K B
B

−=u u  with bandwidth matrix B . We use the 

same predictors as in series (d), and use a multivariate gaussian kernel with a diagonal covariance matrix. 

The bandwidth is taken as B h= I , with the constant h  selected by cross-validation. The multivariate 

local polynomial regression is closely related to the LOESS procedure of Cleveland and Devlin (1988) 

and Cleveland, Grosse and Shyu (1992). Fan (1992) demonstrates that the performance of the local 

polynomial regression technique is superior to that of other non-parametric estimators when the 

regressors are highly clustered, such as in our application. The local polynomial regressor also does not 

require boundary modifications to achieve higher rates of convergence at the boundary of the support of 

( )f X . 

 The parametric test uses the ARCD model with the Hansen skewed-t distribution in (2.4) using 

various specifications for the variance as well as the asymmetry equation. Only the results for the best 

fitting model is reported. In all cases, the variance equation uses the Glosten et al (1993) specification. 

The asymmetry equation varies between  
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 0 1 1t tzλ β β −= +  (4.2) 

 0 1 1 3 1t t tzλ β β β λ− −= + +   (4.3) 

 2
0 1 1 2 1 3 1t t t tz zλ β β β β λ− − −= + + +  (4.4) 

 The specifications in (4.3) and (4.4) can be described as allowing for “autoregressive conditional 

skewness”. The lagged λ  term is included only if the coefficient of either 1tz −  or 2
1tz −  is significant. The 

parametric test for predictability in conditional skewness is a Wald test of the null hypothesis 

0 : 0 0jH jβ = ∀ ≠ . 

 The results are shown in columns (i), (ii) and (iii) of Table 5. The Runs test shows mild evidence 

of predictable conditional skewness in the FTSE100 returns series: for all five versions of the FTSE100 

returns series, the Runs test rejects at 10% the null hypothesis that there is no predictability in skewness, a 

conclusion that the 31ρ  test agrees with in all but one case. For the NK225 series, the Runs test does not 

detect any predictability, and again the 31ρ  test is in general agreement. The results for the S&P500 series 

are more difficult to interpret. The Runs test gives conflicting results. The 31ρ  test however, strongly 

rejects the null. Quite strikingly, the Wald test for every series and in every case indicates strongly the 

predictability of skewness. Our experiments have demonstrated that misspecifications can result in greater 

likelihood of a false rejection of the null in the parametric and 31ρ  tests, and our results may be a 

reflection of possible specification problems in our parametric models. The presence of outliers such as 

the October 1987 crash may have also affected the results, although as we have seen, the effects of 

outliers on the parametric test is small, and outliers should not effect the 31ρ  test. It seems more likely, 

given the sample skewness coefficients in column (iv) of Table 5, that in the case of the S&P500 series 

the Runs test may lack power; in our experiments, the power for the Runs test was found to be strongly 

influenced by the degree of skewness in the unconditional distribution, and the S&P500 returns series are 

strongly negatively skewed. Our conclusion is that there appears to be predictability in conditional 

skewness in the FTSE100 returns series, and very likely in the S&P500 returns series, but we find no 
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evidence in the Nikkei 225 returns series. Certainly, the occurrence of predictability in third moments 

does not appear to be anywhere as strong or as widespread as predictability in variance. 

 

4.2 Forecasting Tail Events 

 We next ask if the predictability in skewness is nonetheless useful in forecasting tail probabilities. 

We answer this question by comparing out-of-sample forecasts from two sets of models, one with and the 

other without conditional heteroskewness. We split the sample into two parts, a ‘estimation sample’ from 

Jan, 1984 to Dec, 1995 (3130 observations), and a ‘forecast sample’ from Jan, 1996 to Dec, 2001 (1567 

observations). We re-estimate the GARCH and GARCH-ARCD models to all fifteen series over the 

estimation sample. Again, we use the Glosten, Jaganathan and Runkle (1993) specification for the 

variance equation, allowing for different reactions of volatility to negative and positive shocks. Using the 

best fitting estimated models, one-step ahead probability forecasts of the event ( )Pr 2.5ty < −  are 

generated over the forecast sample period. We also generate the series of indicator variables defined as 

 
1 if  2.5
0 otherwise   

t
t

y
I

< −
= 


 (4.5) 

 As there appears to be only mild conditional heteroskewness in our data, we might also expect the 

tail probability forecasts to be similar across our models. This is indeed the case. Figure 2(a) plots the tail 

probability forecasts for the S&P500 returns series, without removing the conditional mean. While there 

is substantial variation in the probability forecasts, the two series are difficult to distinguish visually; their 

correlation is 0.957! Figure 2(b) plots the difference between the GARCH and the ARCD forecasts. The 

differences are mostly small, although the differences are larger in volatile periods. Nevertheless, it does 

appear that conditional heteroskewness plays a much smaller role in forecasting tail probabilities than 

conditional heteroskedasticity. Similar statements can be made about all fifteen series. 

 To compare the forecasts more formally, we use Probit regressions of the form 

 ( ) ( )0 1 ˆPr 1 , 1,2t itI p iδ δ= = Φ + =  (4.6) 
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where 1ˆ tp  and 2ˆ tp  are the out-of-sample probability forecasts from the constant conditional skewness 

model (‘GARCH’) and the heteroskewness model (‘GARCH-ARCD’) respectively. The estimated 

coefficient 1̂δ  would give an indication of how well the probability forecasts match the actual occurrence 

of a realization of ty  below −2.5. Our method is similar in spirit to the Mincer-Zarnowitz (1969) 

regression, and is adapted for use with binary dependent variables. We compare the GARCH and 

GARCH-ARCD forecasts by comparing the value of the McFadden 2R : 

( )
( )

02

0 1

ˆlog
1

ˆ ˆ ˆlog it

l
R

l p

δ

δ δ
= −

+
 

 for the two sets of probit regressions, and view a larger 2R  as evidence of improved probability forecasts.  

 The results of the comparison is shown in Table 6. Several features stand out. First, The 2R  

values for the NK225 series are identical across the two models for all but one series, a result which 

corresponds with our findings from the previous section. For the FTSE100 and SP500 returns series, the 

2R  values for the GARCH-ARCD forecasts are all larger than the corresponding values for the GARCH 

forecasts, which suggests that incorporating third moment dynamics into our forecasting models improve 

forecasts of tail probabilities2. The differences are all, however, very small, which suggests that the 

improvements are small. While this may be a reflection of the restrictions imposed in our forecast models 

(e.g., constant conditional kurtosis) and the specific distributional assumption made, it appears that the  

predictability in conditional skewness, based on the past returns, has little to add to forecasts of tail 

probabilities using standard volatility models 

 

5. Concluding Remarks 

 We presented and studied a non-parametric approach to testing for predictability in conditional 

skewness. A comparative evaluation of the test with some alternative procedures demonstrated that the 

Runs test has good power while being robust to outliers, and other forms of dependence. In an application 
                                                      
2 We note also that the coefficients on the probability forecasts in the probit regressions are all significant. 



 

 16

of the test to three stock market indexes we find that while there is some evidence of predictability in 

conditional skewness, this evidence is mild. An out-of-sample forecast exercise suggests that this 

predictability improves upon forecasts of tail probabilities from conventional volatility forecasts, but that 

the improvements are small and insignificant.  

 To conclude, we mention several caveats and highlight a few avenues for further research. First, 

our analysis has focused on daily returns, which may be less relevant to risk managers than returns over 

longer periods. The analysis of Christoffersen and Diebold (2000), however, suggests that even volatility 

models may have little to add to unconditional forecasts at lower frequencies, so it is unlikely that an 

analysis at lower frequencies would provide a different conclusion. Our use of probability forecasts 

deviates from the usual focus on quantile forecasts in risk management applications, but allows us a 

straightforward way of comparing our models. Alternatively, one could extend the Value-at-Risk 

comparison test developed in Christoffersen, Hahn and Inoue (2001) to include models with conditionally 

heteroskewness to evaluate quantile forecasts from our models, an activity we leave to future research.  

 Our study is also limited to forecastability using only the history of returns, so while our evidence 

suggests only weak predictability, this does not preclude that there may be other variables that would 

explain or forecast the shape of the distribution, and in turn provide more informative forecasts of tail 

events. Our conclusions are also limited to three stock indexes. A further analysis on a wider range of 

stocks and stock index returns, and other financial assets, would also be of interest.  

 Finally, we note that perhaps the most limiting aspect of our analysis is the strict (and intentional) 

focus on conditional heteroskewness. We look forward to continued investigations into the nature of 

higher order moment dynamics and its implications for asset and options pricing, risk-management, and 

for market timing, as noted by Christoffersen and Diebold (2002). 
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Table 1 
Empirical Size of Runs Test (Outlier Alternatives) a 

 

  Nominal Size 

DGP Sample Size 0.01 0.05 0.10 

     
iid t(5)   500 0.014 0.062 0.130 

 2000 0.013 0.060 0.112 
     

  500 0.004 0.048 0.100 iid Hansen-t with 
0.5, 5λ η= − =  2000 0.009 0.047 0.096 

     
iid t(5) 1 outlier b   500 0.016 0.067 0.128 

per 500 obs 2000 0.015 0.062 0.114 
     

iid t(5) 2 outliers b   500 0.015 0.075 0.126 
per 500 obs 2000 0.013 0.060 0.105 

     
 

a Frequency of rejection of the null hypothesis that there is no predictability 
in conditional skewness, measured over 1000 replications. 
 
b Outlier of –10 standard deviations
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Table 2 
Empirical Size of Runs Test (Conditionally Heteroskedastic 

and Conditionally Heterokurtic Alternatives) a 
 

  Nominal Size 

Sample Size DGP 0.01 0.05 0.10 

     

(A) Conditionally Heteroskedastic Alternatives 

  500 0 0.05α = 1 0.15α = 2 0.0α = 3 0.8α =  0.011 0.056 0.109 
2000 0.0λ =  0.014 0.060 0.115 

     
  500 0 0.05α = 1 0.15α = 2 0.08α = − 3 0.8α =  0.014 0.059 0.106 
2000 0.0λ =  0.010 0.058 0.126 

     
  500 0 0.05α = 1 0.15α = 2 0.0α = 3 0.8α =  0.010 0.050 0.109 
2000 0.5λ = −  0.010 0.049 0.110 

     

(B) Conditionally Heterokurtic Alternatives 

  500 0.0λ =  0.015 0.051 0.115 
2000 0 14.0 0.4γ γ= − =  0.013 0.055 0.107 

     
  500 0.0λ =  0.013 0.060 0.112 
2000 0 14.0 0.4γ γ= − = 2 0.5γ =  0.009 0.058 0.114 

     
 

a Frequency of rejection of the null hypothesis that there is no predictability in conditional 
skewness, measured over 1000 replications. The DGP in panel (A) is 
 

1/ 2, , ~ ( ,5)t t t t t ty h z z Hansen tε ε λ= = − , 
2 2

0 1 1 2 1 3 1max(0, )t t t th hα α ε α ε α− − −= + + + . 
 
The DGP in panel (B) is  
 

, , ~ (0, )t t t t t ty z z Hansen tε ε η= = − , 

0 1 1 2 1( ) ,t t t t tf zη η η γ γ γ η− −
′ ′ ′= = + +  

 
where (.)f  is the logistic distribution restricting tη  to the interval (3, 50). 



 

 21

Table 3 
Power of Runs Test a 

 

  Nominal Size 

Sample Size DGP 0.01 0.05 0.10 

     
  500 0 10.6 0.5β β= =  0.091 0.210 0.316 
2000  0.362 0.612 0.722 

     
  500 0 10.0 0.5β β= =  0.142 0.353 0.457 
2000  0.691 0.868 0.923 

     
  500 0 10.6 0.5β β= − =  0.083 0.215 0.313 
2000  0.333 0.594 0.711 

     
  500 0 10.6 0.5β β= = −  0.114 0.252 0.366 
2000  0.445 0.677 0.780 

     
  500 0 10.0 0.5β β= = −  0.147 0.343 0.459 
2000  0.679 0.842 0.902 

     
  500 0 10.6 0.5β β= − = −  0.097 0.240 0.350 
2000  0.434 0.690 0.787 

     
 

a Frequency of rejection of the null hypothesis that there is no predictability in 
conditional skewness, measured over 1000 replications. The DGP is  
 

, , ~ ( ,5)t t t t t ty z z Hansen tε ε λ= = − , 

0 1 1( ) ,t t t tf zλ λ λ β β −
′ ′= = +  

 
where (.)f  is the logistic distribution restricting tλ  to the interval (−1, 1). 
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Table 4a 
Size and Power of Other Tests for Predictability in Conditional Skewness 

 

  Wald  31ρ  

Sample Size DGP 0.05 0.10  0.05 0.10 

(A)   Power 

 500 0 10.0 0.5β β= =  0.943 0.969  0.262 0.388 
2000  1.000 1.000  0.662 0.773 

       
 500 0 10.6 0.5β β= − = −  0.919 0.953  0.192 0.296 
2000  1.000 1.000  0.493 0.622 

(B)   Size (Outlier Alternatives) 

 500 iid t(5) 0.074 0.139  0.042 0.089 
2000  0.058 0.107  0.047 0.097 

       
 500 iid Hansen-t 0.102 0.162  0.049 0.079 
2000 0.5, 5λ η= − =  0.068 0.123  0.044 0.085 

(C)   Size (Conditionally Heteroskedastic Alternatives) 

 500 0 0.05α = 1 0.15α =  0.057 0.117  0.183 0.248 
2000 2 0.08α = − 3 0.8α = ; 0.0λ =  0.040 0.112  0.289 0.351 

       
 500 0 0.05α = 1 0.15α =  0.128 0.198  0.277 0.351 
2000 2 0.0α = 3 0.8α = ; 0.5λ = −  0.245 0.346  0.447 0.521 

(D)   Size (Conditionally Heterokurtic Alternatives) 

 500 0.0λ =  0.077 0.120  0.039 0.065 
2000 0 14.0 0.4γ γ= − =  0.052 0.107  0.039 0.073 

       
 500 0.5λ = −  0.150 0.229  0.046 0.066 
2000 0 14.0 0.4γ γ= − =  0.106 0.193  0.051 0.075 

       
 

a Frequency of rejection of the null hypothesis that there is no predictability in conditional skewness, 
measured over 1000 replications. The DGPs are  

 Panel (A): , , ~ ( ,5)t t t t t ty z z Hansen tε ε λ= = − , 0 1 1( ) ,t t t tf zλ λ λ β β −
′ ′= = +  

where (.)f  is the logistic distribution restricting tλ  to lie in the interval (−1,1).  
 Panel (C): 1/ 2, , ~ ( ,5)t t t t t ty h z z Hansen tε ε λ= = − , 2 2

0 1 1 2 1 3 1max(0, )t t t th hα α ε α ε α− − −= + + + . 

 Panel (D): , , ~ ( , )t t t t t ty z z Hansen tε ε λ η= = − , 0 1 1 2 1( ) ,t t t t tf zη η η γ γ γ η− −
′ ′ ′= = + +  

where (.)f  is the logistic distribution restricting tη  to lie in the interval (3, 50).  
‘Wald’ refers to a test the null hypothesis 0 1: 0H β =  in the ARCD model 1/ 2, ,t t t t ty h zε ε= =  

~ ( ,5)t tz Hansen t λ−  , 0 1 1t tzλ β β −= + . 31ρ  refers to the significance of the regression of 3
ty  on  

1ty − . 
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Table 4b 
Size of Alternate Wald Test for Predictability in Conditional Skewness 

(Conditionally Heteroskedastic Alternatives) 
 

Sample  Wald (b) 

Size DGP 0.05 0.10 

    
  500 0 0.05α = 1 0.15α =  0.062 0.121 
2000 2 0.08α = − 3 0.8α = ; 0.0λ =  0.058 0.114 

    
  500 0 0.05α = 1 0.15α =  0.097 0.158 
2000 2 0.0α = 3 0.8α = ; 0.5λ = −  0.080 0.131 

    
 

a Frequency of rejection of the null hypothesis that there is no predictability in 
conditional skewness, measured over 1000 replications. The DGP is  
 

1/ 2, , ~ ( ,5)t t t t t ty h z z Hansen tε ε λ= = − , 
2 2

0 1 1 2 1 3 1max(0, )t t t th hα α ε α ε α− − −= + + + . 
 
Wald (b) refers to the same test using the model 
 

1/ 2, , ~ ( , )t t t t t t ty h z z Hansen tε ε λ η= = − ,  
2 2

0 1 1 2 1 3 1max(0, )t t t th hα α ε α ε α− − −= + + + , 

0 1 1t tzλ β β −= +
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Table 5  
Tests for Predictability in Conditional Skewness 

 
     

Series (i) Wald Test (ii) Runs Test (iii) 31ρ  (iv) skewness 
     
     

FTSE100     
(a) 0.000 0.087 0.000 -0.7405 
(b) 0.001 0.052 0.000 -0.6922 
(c) 0.000 0.057 0.000 -0.7173 
(d) 0.000 0.066 0.001 -0.5599 
(e) 0.000 0.066 0.359 -0.4694 

     
NK225     

(a) 0.000 0.903 0.069 0.0760 
(b) 0.000 0.120 0.023 0.1782 
(c) 0.001 0.293 0.174 0.0283 
(d) 0.000 0.221 0.912 -0.1205 
(e) 0.000 0.221 0.439 -0.1113 

     
SP500     

(a) 0.000 0.143 0.000 -1.8752 
(b) 0.000 0.057 0.000 -2.0261 
(c) 0.000 0.169 0.000 -2.0389 
(d) 0.000 0.249 0.000 -2.1203 
(e) 0.000 0.003 0.000 -1.9663 

     
 

a p-values of tests of the null hypothesis that there is no predictability in conditional skewness over 
the period Jan 1984 to Dec 2001. “Wald Test” refers to a Wald test of the null hypothesis that the 
coefficients of the asymmetry equation (T5.1) in the model  
 

1/ 2, , ~ ( ,5)t t t t t t ty h z z Hansen tµ ε ε λ= + = − , 
2 2

0 1 1 2 1 3 1max(0, )t t t th hα α ε α ε α− − −= + + +  
 1, 2( ,...)t t tg z zλ − −=  (T5.1) 

are zero. Several specifications for (T5.1) were used, including lags, squared lags, and lagged tλ . 
The result from the best fitting model is reported. (a) refers to the returns series. In (b) to (e), the 
conditional mean is first modeled and subtracted from the returns series.  The conditional mean is 
modeled as follows: (b) ARMA-GARCH-in-Mean, (c) ARMA(2,2), (d) regression of returns on 
two lags of returns and squared returns and an interaction term between returns at one and two 
lags, (e) non-parametrically (multivariate local polynomial smoothing) using the same predictors 
as in (d). 31ρ  refers to the significance of the regression of 3

ty  on  1ty − . ‘Skewness’ is the sample 
skewness coefficient. 
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Table 6 

Mincer-Zarnowitz Regressions for Tail Probabilities a 
 

 GARCH GARCH-ARCD 

FTSE100   
(a)  0.098  0.106 
(b)  0.298  0.396 
(c)  0.277  0.334 
(d)  0.099  0.110 
(e)  0.096  0.109 

   
NK225   

(a)  0.037  0.037 
(b)  0.258  0.306 
(c)  0.203  0.203 
(d)  0.036  0.036 
(e)  0.037  0.037 

   
SP500   

(a)  0.030  0.050 
(b)  0.133  0.246 
(c)  0.133  0.197 
(d)  0.024  0.049 
(e)  0.023  0.059 

   
 

a McFadden 2R  for estimated coefficients in the probit regression 
( )0 1 ˆPr( 2.5)i i ty pδ δ< − = Φ + , 1, 2i = , 

where 1ˆ tp  and 2ˆ tp  represent out-of-sample probability forecasts of the 
event 2.5ty < −  from an estimated GARCH model, and an estimated 
GARCH-ARCD model, respectively. (a) refers to the returns series. In (b) 
to (e), the conditional mean is first modeled and subtracted from the 
returns series.  The conditional mean is modeled as follows: (b) ARMA-
GARCH-in-Mean, (c) ARMA(2,2), (d) regression of returns on two lags 
of returns and squared returns and an interaction term between returns at 
one and two lags, (e) non-parametrically (multivariate local polynomial 
smoothing) using the same predictors as in (d).  
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Figure 1 Simulated Data Series with Predictability in Conditional Skewnessa 
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a Data generated from a Hansen ARCD distribution as given in equations (2.1) to (2.4), 
with the asymmetry equation specified as 10.6 0.5t tzλ −= − + . 
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Figure 2 

Tail Probability Forecasts 
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Panel (a) Forecasted probabilities ( )Pr 2.5ty < − for SP500 returns. Solid line: GARCH model. 
Dashed line: GARCH-ARCD model. Panel (b): differences between the forecasted 
probabilities. 
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