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Abstract—We investigate the possibility of using a combination
of a smartphone and a smartwatch, carried by a shopper, to
get insights into the shopper’s behavior inside a retail store.
The proposed IRIS framework uses standard locomotive and
gestural micro-activities as building blocks to define novel com-
posite features that help classify different facets of a shopper’s
interaction/experience with individual items, as well as attributes
of the overall shopping episode or the store. Besides defining such
novel features, IRIS builds a novel segmentation algorithm, which
partitions the duration of an entire shopping episode into atomic
item-level interactions, by using a combination of feature-based
landmarking, change point detection and variable-order HMM-
based sequence prediction. Experiments with 50 real-life grocery
shopping episodes, collected from 25 shoppers, we show that
IRIS can demarcate item-level interactions with an accuracy of
approx. 91%, and subsequently characterize item-and-episode
level shopper behavior with accuracies of over 90%.

I. INTRODUCTION

Faced with increasing online competition, retail store own-
ers are increasingly interested in the ability to better under-
stand the browsing behaviors and intentions of consumers
inside their physical stores. A variety of technologies, such
as Wi-Fi and BLE beacon based aisle-level location track-
ing [11], RFID based asset monitoring [10] and smartglass-
based browsing monitoring [8] have been explored to capture
such individual and collective in-store behavior. While these
advanced technologies hold great promise, their cost makes
them unlikely to be adopted widely, especially in low-margin,
emerging economy markets (such as India, China or Brazil)
in the near future.

In our view, solutions for capturing latent in-store individual
behavior become much more practical if they can work without
requiring infrastructure support, such as Wi-Fi APs, BLE
beacons or in-store cameras. Accordingly, our work in this
paper is motivated by the following question: “What level
of individual consumer behavior inside a retail store can we
reliably infer, by appropriately mining the sensor data from
readily-available personal smartphone & smartwatch devices,
without requiring ANY store-level infrastructural support”?

Driven by this objective, this paper presents our initial
work on IRIS (In-store Retail Insights on Shopper), an
infrastructure-oblivious, mobile-cum-wearable based partici-
patory framework for in-store behavioral analytics of shoppers.
IRIS is motivated by two key hypotheses: (i) A significant
fraction of in-store browsing activities involve gestural inter-
actions with objects of interest (such as picking up an item

Fig. 1: Typical sequence of shopper activities in a grocery store

in a grocery store, retrieving and draping on a dress in a
clothing store or having a coffee in the middle of a shopping
episode), that a wrist-worn smartwatch should help capture;
and (ii) A consumer’s interest-level or familiarity level with
objects of interest will also be manifested in macroscopic
locomotion-related features (e.g., how long a person stood
stationary in front of a product), that a smartphone can
help sense. Accordingly, we believe that a combination of
smartphone & smartwatch sensor data can provide unique,
hitherto unexplored, behavioral insights about a consumer’s
in-store behavior.

More specifically, in this paper, we explore the use of the
IRIS framework to understand different aspects of individual-
level behavior inside retail grocery stores. A key contribution
of our research lies in appropriately decomposing an entire
store visit (called a “shopping episode”) into a series of
modular and hierarchical individual interactions, such as a
sequence of “in-aisle” durations, interspersed with “non-aisle”
activities. Each “in-aisle“ segment can consist of one or more
product-interaction activities, such as “picking up item” (P),
“putting item in trolley (cart)” (T), or “putting item back in the
aisle“ (B). Figure 1 visually illustrates such a decomposition.
This decomposition is crucial because it not only helps define
the specific atomic “activities” for which we seek to extract
discriminatory features and build classifiers, but also helps to
conceptualize two different levels of individual-level behavior
(these will be further detailed in Section III).
Key Challenges & Research Questions: IRIS’ broad goals
require us to address several research questions: (a) Shopping
Interaction Recognition: Given sensor data corresponding to
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a specific shopping gesture (e.g., putting an item in the cart),
how do we extract discriminative features that help us identify
such gestures? What level of accuracy for individual-level
gesture accuracy can we achieve, by intelligently combining
sensor data from both smartphones and smartwatches? (b) Ac-
curate Episode Segmentation: Given that a shopping episode
can consist of a shopper’s interaction with multiple items, and
movement across multiple aisles, how do we take the sensor
data for the entire episode duration and then reliably segment
it into individual interaction instances (corresponding to the
hierarchy in Figure 1)? What are the errors in demarcating
the (start, end) times of such individual interactions? (c) Con-
necting Interaction-Level Observations to Overall Behavior:
Assuming that we can infer the individual-level interactions
of a shopper (i.e., how many items the shopper placed in her
cart, etc.), how reliably can we use such inferences to classify
the overall episode-level behavioral attributes (such as whether
a shopper was in a hurry or not)? Can such classification be
person-independent, or do shopper’s behave differently enough
to warrant person-specific classifiers?

In this paper, we address these questions, by utilizing a fairly
extensive set of user studies (detailed in Section IV), involving
50 distinct shopping episodes, collected from 25 individuals,
across 2 different mid-sized retail grocery stores in Bangalore,
India. Based on this real-world data, we make the following
key contributions:

(i) Accurate Recognition of Item-Level Interaction &
Locomotive Gestures and Shopping Activities: We show
that we can identify a variety of item-level interactions such as
whether the shopper buys the item frequently or knew specif-
ically what he wanted, and gestures (especially the {P,T,B}
gestures mentioned before) with accuracies of over 90%, by
appropriately using inertial sensor (accelerometer & gyro-
scope) based features from a smartwatch and a smartphone.
Moreover, we derive novel higher-level features to identify
various aspects of item-level interactions by the shopper.

(ii) Robust and Accurate Segmentation: We develop a
novel, hierarchical segmentation algorithm to accurately de-
lineate the (start, end) times of different item-level interaction
gestures, and aisle vs. non-aisle movements, over the entire
duration of a store visit. Our proposed segmentation algorithm
first utilizes locomotive features to separate ‘in-aisle’ vs. ‘non-
aisle’ durations (a shopper performs item-level interactions
only when in an aisle), and then uses a combination of change-
point detection and a lookahead-augmented Viterbi decoding
process to identify the best sequence of {P,T,B} gestures
(and their start and end times) embedded within an in-aisle
duration. We show that this technique is both robust (any
mis-classifications never cascade beyond the current aisle) and
accurate (it identifies gesture start and end times with mean
errors of only 4.2 seconds, and achieves an overall 92% item-
level gesture recognition accuracy).

(iii)Accurate Prediction of Episode Attributes: We also
utilize aggregate features (the item-level interaction history,
plus in the in-aisle and non-aisle movement history) to build
classifiers to estimate two episode-level attributes (“was the
shopper in hurry?”, and “was the shopping experience pro-
ductive?”), achieving accuracies of over 92%.

Note again that IRIS operates without any assumption of
in-store infrastructure support or location tracking capability
(no Wi-Fi, no RFID, no knowledge of store layout, etc.).

II. RELATED WORK

Mobile phone sensing has emerged as a paradigm cater-
ing to multiple sectors such as healthcare, social networks,
safety, environmental monitoring,and transportation. Recent
years have witnessed an increased adoption of this trend by the
retail industry. Wearable sensing has simultaneously evolved
as a technology that enables human activity recognition at a
finer granularity [2]. Our work utilizes a combination of such
mobile and wearable sensing to uncover deeper insights into
a shopper’s in-store behavior.

Gesture & interaction recognition: The feasibility of
mobile sensing for human activity recognition has been well
explored in literature. While [7] proposes a probabilistic model
based on conditional random fields to identify smoking ges-
tures using sensor data collected from an inertial measurement
unit; Khan et.al [4] implements a smartphone-based Human
Activity Recognition scheme that uses a non-linear discrimina-
tory approach together with a non-linear SVM based classifier.
The trade-off between energy efficiency and classification
accuracy is explored for mobile phone sensing in [13]. Unlike
community-based personalized activity models [5], our work
attempts to infer shopper behavior in a generalized setting
where no shopper-specific training data is available.

In-store analytics: Several works have focused on human
activity recognition based on images or videos. Previous
work[12] proposes a finite state machine based approach to
infer hand-activities in video-based retail surveillance. Addi-
tionally, the Channel State Information of Wi-Fi signals have
been used to study in-store shopper behavior in [15]. The
interesting problem of studying the shopping time in stores is
presented in [14], where a phone-based shopping tracker uses
motif groups to identify movement trajectories and transforms
the problem of monitoring shopping time as a classification
problem. ThirdEye [8], uses image, inertial sensor, and Wi-Fi
data crowd-sourced from shoppers wearing smart glasses to
track the physical browsing of shoppers. Sen et.al [9] proposes
a person-independent activity recognition technique, CROS-
DAC, which uses smartphone based sensor (accelerometer,
compass) data and Wi-Fi, to identify the shopping intent of
users. Our goal is to push the boundaries of in-store behavior
analytics without relying on any special-purpose wearable or
infrastructure support.

Mall-level/Shopper Behavior: There are numerous case
studies on shopper/mall-level shopping behaviors which are
typically confined to specific stores or demographies of shop-
pers [3]. Lee et.al in [6] presents an automated computing
framework using smartphones designed to provide compre-
hensive understanding of customer behavior.

To the best of our knowledge, our work is among the first
to utilize a mobile phone and smartwatch concurrently to infer
item-level interactions of shoppers inside stores.
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III. IRIS: ARCHITECTURE AND KEY OBJECTIVES

IRIS’ goal is to uncover shopper-specific and store-level
behavioral attributes, both during a specific shopping episode,
and via aggregated observations across a longitudinal trace of
such episodes. As IRIS does not presuppose any support from
the store (e.g., location tracking, maps, PoS data, etc.), it does
not attempt to capture insights such as specific product viewed
or bought by a shopper. Instead, our goal is to infer item-
independent aspects of a shoppers behavior, such as number
of products picked and then returned, movement speed within
the store etc.

Even in absence of item-specific knowledge, such insights
can enable new applications such as: (a) targeted advertising:
e.g., promotions of newly launched products preferentially
pushed to shoppers whose prior browsing behavior indicates a
propensity to look for unfamiliar products (so-called diversity-
seeking behavior); (b) proactive retail help: e.g., a shop
assistant directed to assist the customers who exhibit an
“undecide” purchase pattern (an unusually high number of
items picked up from, but then returned to, the shelves); or (c)
crowdsourced store profiling: IRIS can be built as a 3rd-party
mobile App, as it does not have any interaction with the store’s
IT infrastructure. Accordingly, crowdsourced data from a pool
of shoppers using IRIS can be used to build typical “experience
profiles” associated with the store, for use in recommendation
applications.

A. Types of individual and store-level insights

One of our long-term goals is to use microscopic gestural-
level insights obtained during a consumer’s interaction with
a single product as a “building block”, to help build pro-
gressively deeper insights about both a shopper’s short-term
and longer-term behavioral attributes. In this view, the item-
specific insights gained by looking at a set of sensor data
frames (a relatively small duration lasting a few seconds) can
be viewed as elements of a periodic table of in-store shopping
behavior; these elements are then combined in hierarchical
fashion to discover the higher-level individual and store-level
attributes. More specifically, we categorize the insights into
three broad bins:

• Item-Level Insights (Individual): These insights describe
aspects of an individual shopper’s behavior with a specific
product (or product type). For example, based on the
time that the user inspects the product, i.e., the interval
between a ‘P’ (pick) and the corresponding ‘T’ (in trolley)
activity, we hope to learn if this is a “familiar” product
(that the shopper regularly buys without much additional
thought) or an “unfamiliar” one. Similarly, an observation
of multiple ‘P’ (picks) and ‘B’ (put backs), before an
eventual ‘T (trolley), might indicate that the shopper had
no apriori brand affinity, but instead compared multiple
brands before picking a specific item.

• Episode-Level Insights (Individual & Store): These in-
sights are obtained at the shopping episode-level (an
episode comprises multiple item-level interactions) by
aggregating individual item-level labels/features. These
insights can capture the episode-level behavior of the

shopper (e.g., a relatively small number of in-trolley (‘T’)
actions, coupled with shorter “non-aisle” durations, might
indicate that the “shopper was in a hurry”). Moreover, the
insights can also describe properties of the store itself
(e.g., unusually slow movement during “non-aisle” seg-
ments might indicate that the store was overly crowded).

• Longitudinal Insights (Individual & Store): These insights
are obtained by aggregating observations across a large
collection of episodes (independent store visits), observed
over a period of weeks and months. At an individual-
level, they can help reveal the shopper’s persona— for
example, that the “shopper is always hurried during a
weekday visit” or that “the shopper always shops in
bulk”. At a store-level, they can help reveal the stores
macroscopic properties for example, that “store X has
more (or less footfall) during specific times or days”.

B. The IRIS Architecture

Fig. 2: Functional Components & Analytics Flow

Figure 2 illustrates the device and backend components
of the IRIS framework, as well as the typical flow of the
analytics pipeline. Each individual shopper carries an on-body
smartphone and smartwatch, whose sensor streams capture the
individual’s physical movement and gestural activities, over
an entire shopping episode. At the backend, this entire stream
is first run through a Segmentation Engine, which splits up
the entire shopping episode duration into different segments
(time chunks), each corresponding to a single movement or
gestural activity. Each individual chunk is then fed into a
hierarchical “Item-level” classifier, which attempts to first
classify each chunk as either “in-aisle” vs. “non-aisle”, and
subsequently separately classifies different gestures within an
“in-aisle” segment into one of multiple interaction-related
labels (e.g., {P, B, T} gestures). This collection of gestures
and movement patterns (from the Item-level classifier) is
then collectively analyzed by the Episode-level classifier, to
help discern episode-level labels (e.g., “was the shopper in
a hurry?”). Finally, the Longitudinal Classifier operates at
longer time scales, analyzing (a) multiple episodes of the
same shopper to determine “persona-level” attributes, and (b)
episodes from multiple in-store shoppers to determine “store-
level” attributes.



4

IV. DATA COLLECTION

We first describe our process of collecting real-world shop-
ping behavioral data. We conducted a user study with 25
middle-aged volunteers (15 female, 10 male) recruited from
our organization. Each participant was asked to visit one of
the two different retail grocery stores in Bangalore, India
(one large and spacious, the other much more cramped for
space) and purchased items from a given shopping list. We
collected 50 shopping episodes from the grocery stores at
different times of the day. Each episode lasted, on average,
for about 20 minutes and belonged to one of 3 distinct types:
(i) Engineered List (20 episodes), (ii) Clocked (20 episodes)
and (iii) Discretionary (10 episodes).

1) Engineered List: The participants were given a list of
14 grocery items which consisted of 4 Frequent-Choice
(FC), 4 Infrequent-Choice (IC), 3 Frequent-Specific
(FS) and 3 Infrequent-Specific (IS) items. The items
were categorized based on general consensus after a
small survey. For example, egg and bread were frequent
items, while dishwashing soap and Schezwan sauce were
infrequent items; “select a juice of your choice” is an
example of a FC item; while “Tropicana Orange Juice–
1 gallon” exemplifies a Specific item. The participants
were asked to shop for the items in the same order as
in the list.

2) Clocked: The objective here was to emulate “hurried”
behavior. Hence, we paired up the participants, gave
each a list of 10 items and engaged them in a shopping
competition. The participants were informed that the
person clocking the least overall time, while buying
all the items listed, would be declared the winner. To
control for differences in familiarity with the shop, all
the participants were familiarized with the shop and its
aisles before the episode started. All items in the list
were open-ended (Choice), and selected “randomly” (by
picking ingredients from arbitrary common recipes).

3) Discretionary: The objective here was to capture be-
havior in situations where a shopper could choose not
to buy an item, due to a variety of factors (such as
budget constraints, product unavailability, or deficient
quality). The items in the list were chosen to elicit some
of these factors. Sample items included fruits that were
out of season, items with budget constraints which were
not feasible, “greens that needed to be fresh enough”,
“red coffee mug with a design they liked”, etc. The
shoppers were unaware of our study objectives; the data
traces thus capture the natural behavior of shoppers who
earnestly look for a preferred item but may be unable
to find it.

A. Sensor Data Collection

Each participant was given a smartphone (running Android
v4.3 or above) and a smartwatch (Android Moto 360). The
phone was placed in the right-side pant pocket facing front,
and the watch was worn on the dominant hand (all our
participants were right-handed). The devices were pre-installed
with our custom data collection apps for the smartphone and

TABLE I. List of sensors monitored

Sensors Purpose Device
Accelerometer Speed and patterns in walking and Watch, Phone

hand activities
Gyroscope Rotational and angular information Watch, Phone

during walking and hand activities
Magnetometer Directional information during walking Phone
Step Counter Number of steps directly obtained Watch, Phone

from Google Fit API
Battery Distinguish between zones using Watch
Temperature ambient temperature (e.g., freezer section)
Light Sensor Ambient lighting in the store Watch
Audio Sensor Ambient noise in the store Watch
Heart Rate To study if specific browsing Watch

behavior causes excitement

smartwatch. The apps recorded data from the sensors listed
in Table I, at the maximum permitted sampling frequencies
of 200 Hz (phone) and 25Hz (watch). Some sensors were
only exclusive to a single device–e.g., the magnetometer was
unavailable on the watch, whereas the heart rate sensor was
unavailable on the phone. Ambient sensing (temperature, light
and audio) was more reliable on the watch since the phone was
placed inside the pocket.

B. Ground Truth Collection

The ground truth of a shopping episode was collected by
having a person shadow the shopper (without the shopper’s
knowledge). The shadower used an app on his own device,
which enabled him to both record micro-activity labels of the
shoppers (“Picking”, “In Trolley”, “Enter Aisle”, etc.), and
to record audio notes, along with the timestamps (all three
devices, i.e., shopper’s phone & watch, and shadower’s phone,
were time-synchronized). Other non-activity related informa-
tion, such as the shopper’s familiarity level with the store or the
crowdedness of the store were captured via a survey filled in at
the end of each episode. To ensure uniformity in ground truth
annotation, an item-level interaction was assumed to start after
the preceding “Trolley” label (where the user was pushing a
trolley), and continued till the subsequent “Trolley” label; the
interval itself could contain multiple labels, such as “pick”,
“put back”, etc. Note that all our studies (and analyses) make
the assumption that the shopper always uses a trolley, although
we believe that the technique can be extended to other modes
(e.g., a shopping basket).

V. CLASSIFYING SHOPPING ATTRIBUTES UNDER PERFECT
SEGMENTATION

As the first step in investigating IRIS, we first seek to
extract the discriminatory features of smartwatch & smart-
phone sensors, and understand their classificatory power, to
help infer various shopper-experience related item-level and
episode-level properties. More specifically, in this section, we
assume that, via some as-yet unknown mechanism, we have
perfect knowledge of the (start, end) times of each item-level
interaction (e.g., the “P”, “B, “T”, “in-aisle” or “out-of-aisle”
activities), and investigate two questions via a supervised
classification approach:

1) How accurately can we classify each of the distinct item-
level interaction activities, and what features aid this
classification?
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TABLE II. Features for Item-level classification

(1) Mean number of picks
(2) Variance in number of picks
(3) Mean hold time, i.e., duration between picking and putting back
(4) Variance in hold time
(5) Mean duration of time between picking an item for the first time

and putting in trolley (W1)
(6) Variance in W1
(7) Mean Duration between entering an aisle to putting item in trolley

(W2)
(8) Variance in W2
(9) Mean Duration between walking in non-aisle to entering an aisle (W3)
(10) Variance in W3
(11) For each time window W1, W2 and W3, following features from phone

accelerometer: mean & variance in magnitude, spectral entropy &
energy.

2) Given knowledge of such item-level behavior, how
accurately can we infer episode-level properties, and
what features (defined over the aggregated item-level
interactions) aid this classification?

A. Item-level Shopper Experience Attributes

We start by trying to identify the following four item-
level attributes (based on the shopper’s interaction with that
specific item), as insights on these four attributes help reveal
a shopper’s buying preferences and habits:

• Frequent Item: An item that the shopper buys frequently
or routinely and is familiar with.

• Infrequent Item: An item that the shopper is less familiar
with because he does not buy it as often.

• Specific Item: An item for which the shopper has a-priori
knowledge of the specific brand & product detail.

• Choice Item: An item for which the shopper does not
have an a-priori product in mind, but instead needs to
view alternative products and make a choice.

Table II lists the various features that we used to classify
these 4 labels. The features have a hierarchical structure as
follows. Initially, different statistical features (similar to that
used in [13]) are used to identify each interaction/movement
activity as “P”, “B”, “T”, “in-aisle” and “non-aisle”. While
the phone-based features help identify the walking/gait-related
patterns (e.g., “in-aisle” or non-aisle), the watch-based features
help identify the gestural interactions (“P”, “B”, “T”). Subse-
quently, features (1-10 in Table II), defined over the interaction
and movement activities, help classify the item-level aspects
of shopper experience.

Features 1-10 were defined to help exploit several intuitive
properties of human behavior that we visually observed across
shopping episodes. For example, for either a Specific (S) or
a Frequent (F) item, we can expect the shopper to perform a
smaller number of picks (P), exhibit smaller hold time (H),
as well as have smaller durations of the time windows W1,
W2 & W3. In contrast, for Choice (C) or Infrequent (I) items,
shoppers will likely exhibit a larger number of pick (P) and
put back (B) gestures and a longer duration of window W1 (as
they evaluate multiple items before converging on a selection).
Moreover, for Infrequent items, shoppers will likely spend
more time and effort to locate the item, resulting in larger
durations of windows W2 and W3. Note that the analysis of
F vs. I is performed by considering only those users who were

TABLE III. Item-level classification with ground truth. Column 3 uses indices from
Table II

Precision Recall Dominant Features
Frequent 0.997 1.0 (1), (3), (5),(6)
Infrequent 1.0 0.998 (1), (3), (6)
Specific 1.0 0.999 (2), (1), (4), (5)
Choice 0.999 1.0 (2), (1), (4), (5)
Freq-Spec 0.993 0.999 (2), (1), (4), (5)
Freq-Choice 1.0 1.0 (2), (1), (4), (5)
Infreq-Spec 1 0.997 (2), (1), (4), (5)
Infreq-Choice 1 0.998

familiar with the store, to avoid the confusion on whether a
shopper’s item-level behavior was due to unfamiliarity with
the item or the store’s layout.

Figure 3.(a) shows the values of these features for each
of these classes averaged across all episodes we collected, in
order to gain insight into the dataset w.r.t these features. We
see that the data reflects certain intuitive or expected trends.
For example, compared to S items, C items have a higher
mean duration for windows W1 and W2 (features 5 & 7);
similarly, I items tend to exhibit longer durations of non-
aisle movement (feature 9). To understand the ability of these
features in classifying these product-level attributes, we trained
J48 decision tree classifiers, along with Correlation Feature
Selection (CFS) to identify the most dominant (discriminatory)
features. Note that we trained 3 different classifiers, two binary
classifiers (one each to distinguish between S vs. C and F vs.
I) and one quaternary classifier (to distinguish between the 4
composite labels (FS), (IS), (FC) and (IC)).

Table III tabulates the results obtained via 10-fold cross
validation. We note that we get almost 100% accuracy (both
precision and recall values are over 99% for all labels)!
This is a very encouraging result, especially given that our
dataset contains labels aggregated from 25 users, who we
expect have diverse shopping styles and preferences. These
results suggest that the behavioral markers of shoppers are
distinct enough (between {S, C, F, I} products) for us to
robustly identify them from a combination of smartwatch
and smartphone sensor data.

B. Episode-level Shopper Experience Attributes

We next focus on inferring the individual-specific episode-
level characteristics, such as whether the shopper was in
a hurry (or not) or whether the shopping experience was
productive (i.e., did the shopper find most of the items he
was looking for?). Following the approach used previously,
we used J48 binary classifiers and features 1-10 (listed in
Table IV) to study whether a shopper was “hurried” or not.
The data from 20 hurried (“Clocked”) episodes were combined
with 20 non-hurried (“Engineered List”) episodes to perform
the HU vs. NH analysis. Figure 3(b) shows the values of
these features averaged across all episodes from our data
set, correlating as expected with the feature set. With these
features, a J48 decision tree binary classifier yielded an overall
precision and recall of 99% each, which are tabulated later in
Table VII for comparison. Features (2), (4) & (9) were the
most dominant.
Summary: Our results in this section indicate that IRIS can
indeed very reliably (with accuracies usually above 99%) infer
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Fig. 3: Values of dominant
features listed and indexed in
Tables II

Fig. 4: Values of dominant
features listed and indexed in
Table IV respectively . All
durations are in seconds

TABLE IV. Feature set for determining hurriedness (* marks the dominant features)

Attribute Features
Hurried/
Non-
hurried

(1) Mean duration in an aisle, (2)* Variance of duration in
an aisle, (3) Mean duration in a non-aisle, (4)* Variance of
duration in a non-aisle, (5)* Mean step rate in an aisle, (6)
Variance in step rate in an aisle, (7) Mean step rate in a
non-aisle, (8) Variance in step rate in a non-aisle, (9)* Mean
hold time, (10) Speed of picking an item (mean magnitude
of watch accelerometer during a pick)

item-level and episode-level aspects of a shopper’s in-store
behavior. However, there is a big caveat: our high accuracy
has been demonstrated (thus far) only under the assumption
that the overall sensor data has been reliably segmented–i.e.,
the (start, end) times of each activity label are correctly known.
We next develop novel techniques to perform such automated
and accurate segmentation.

VI. AUTOMATIC SEGMENTATION

The supervised learning discussed in Section V assumed
the use of ground truth labels to demarcate the time segments
corresponding to different activities. As a key contribution
of this paper, we now describe how to automatically deduce
the (start, end) times of various labels through a combination
of (i) landmarking based on significant sensor features, to
distinguish between non-aisle and aisle zones (ii) Viterbi de-
coding with a time-dependent hidden markov model, to predict
the sequence of hand activities and (iii) survival analysis to
predict the likelihood of finding the item needed which in
turn improves the precision of hand sequence prediction.

A. Differentiating Aisle and Non-aisle zones

The key observation used in landmarking aisle and non-
aisle zones is that when a shopper moves into an aisle to
look for an item, there is a marked difference in the walking
speed hand movement, as he slows down after entering an aisle
of interest. The inter-step interval (i.e., the duration between
consecutive steps) is higher inside an aisle than in non-aisle;
moreover, while a shopper mostly pushes the cart (or carries a
basket) in non-aisle, he has a lot more variations in the hand
movements due to various browsing-related actions. Further,
the inter step interval for a shopping episode (Figure 5) reveals
that an aisle zone always begins from the foot of a peak
until the peak; similarly, a non-aisle zone spans from the

TABLE V. Feature set for classifying aisles/non-aisle zones and hand/non-hand
activities

Feature Aisle
vs Non-
Aisle

Hand
vs Non-
Hand

Mean phone accelerometer magnitude 3 3
Spectral entropy of phone accelerometer magnitude 3 3
Mean watch accelerometer across x,y,z axes 3(only

y,z axes)
3

Spectral entropy of Watch accelerometer across x,y,z
axes

3(only
y,z axes)

3

Mean watch gyroscope along x,y,z axes 3(only x-
axis)

3

Spectral entropy of watch gyroscope along x,y,z axes 7 3
Variance in step rate 3 7

peak to the foot. However, the number of peaks spanned,
i.e., duration for each zone is variable. Accordingly, using
peak and valley detection, we identify all peak-points (tpeaki

)
and foot-points (tfooti ) of all ramps. In order to determine
the duration of the zones, we use change point detection
analysis using a binary random forest classifier trained to
identify aisle and non aisle regions, using statistical features
from phone accelerometer, watch accelerometer and watch
gyroscope listed in Table V. A sliding window size of 10
seconds was used. The precision and recall of this classifier
model is 0.888 and 0.875, respectively. The reasoning behind
the change point detection algorithm is that the classification
probability will drop when the test set contains mixed data,
i.e., data from across different categories. Accordingly, we first
gather the features within the window corresponding to the
first ramp, w = [tfoot1 , tpeak1

] and compute the probability
Pr(aisle|featureset(w)) using the binary classifier. Next
we increase the window size to include subsequent peaks,
one peak at a time, until the classification probability drops.
Suppose the accuracy dropped for the window [tfootj , tpeaki

],
the region [tfootj , tpeak(i−1)] is marked as “Aisle”. Similarly,
next the features in window w = [tpeak(i−1), tfooti ] is used to
compute Pr(nonaisle|featureset(w)), and the window size
is incremented to include subsequent foots until the probability
drops, say at tfootk ; the region [tpeak(i−1), tfoot(k−1)] is then
marked as “non-aisle”.

Accuracies for segmenting aisle and non-aisle regions are
as shown in Table VI. The possible reason for higher false
positives in classification of non-aisle is because of the “walk-
and-browse” characteristic, i.e., the time instances when a
shopper continues to walk after entering the aisle, without
necessarily slowing down or picking items to check items.
The average offset in time between an actual segment and
predicted segment is around 5 seconds.

B. Identifying Hand Activities

There are two parts to solving the problem of identifying
hand activities, which are defined as either a Pick (P), Put
Back (B) or In Trolley (T). The first is to identify if any hand
activity occurred, and if so, the next is to identify which of
these three actions it was. The first part is straightforward by
analyzing the gyroscope data from the smart-watch. Figure 6
shows the gyroscope data, after performing quaternion rotation
with respect to a common origin [111], and fitting it to a
spline curve [7]. The value plotted is the normalized product of
pitch, roll and yaw. The figure also shows the ground truth in
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Fig. 5: Inter-step interval
and corresponding aisle (dark
blue) and non-aisle (light
pink) zones

Fig. 6: Watch gyroscope
peaks indicating potential
hand activities. The red
dots show the actual hand
activities from ground truth.

terms of the times when a hand activity did occur. We observe
that the peaks are a good indicator of a hand activity, with
negligible false negatives, but there are a significant number
of false positives, resulting from arbitrary hand movements. To
address this, we first run a peak detection algorithm to identify
the peaks and then eliminate bulk of the false positives by
filtering out those peaks that occur during ‘Non-aisle’ segment
(as described in Section VI-A). For each remaining peak, we
compute the features in the window corresponding to the width
of the peak (full-width at half-maximum), and feed it to a
random forest binary classifier to compute the probability that
it is a hand activity based on a combination of watch gyro-
scope, watch accelerometer and phone accelerometer features
(Table V). This process yields a precision of 95% and recall
of 98% in identifying a hand activity.

The next step after identifying the existence of a hand
activity, is to predict if it is a P , B or T . We propose using a
Viterbi decoding approach on a Hidden Markov Model. The
state transition probabilities between P, B and T are computed
from the experimental data. The trellis diagram corresponding
to the Viterbi decoding is shown in Figure 7. The emission
probability is defined as Pr(FS|l), where l = P,B, T , and
FS = [f1, f2...fn] is the set of features from watch gyroscope
and watch accelerometer (features 3, 4, 5, 6 in Table II), which
are the observations in our HMM. The emission probability is
obtained as:

Pr(FS|l) = Pr(l|FS) ∗ Pr(FS)

Pr(l)
, (1)

where Pr(FS) =
∏n

i=1 Pr(fi), since sensor features are in-
dependent. The probabilities Pr(fi) and Pr(l) can be obtained
from the distribution of the empirical data. The probability
Pr(l|FS) is obtained from the random forest ternary classifier,
which is trained to distinguish between P, B and T using the
features in FS (with an average precision and recall of 0.926
and 0.927 respectively).

One salient aspect about this decoding approach is that it
avoids onset of cascaded prediction failures. This is because,
the length of the predicted sequence is limited to each aisle
segment, i.e., the sequence is predicted independently for each
aisle segment, since the activities within each aisle-segments
are independent of other segments, and this helps contain
prediction errors. The performance of classification is shown
in Table VI.

Fig. 7: Trellis diagram corresponding to the Viterbi decoding
of hand action sequences.
TABLE VI. Accuracy of automatic segmentation in identifying Aisle, Non-aisle, P, B
and T

Aisle Non-aisle P B T
Precision 0.9775 0.9051 0.9863 0.9149 0.8200

Recall 0.9669 0.9376 0.9863 0.9053 0.8367

C. Survival Analysis

We see that the prediction accuracy for T is lower than the
other two activities, and is often mispredicted as B. In order
to improve the accuracy, we use the likelihood of finding the
item as an indicator of whether the action would converge
in a Put Back or a Trolley. This probability is obtained by
using the Cox Proportional Hazards model [1], given the time
elapsed since the search began, and the number of picks as
a covariate. Since this value is not constant, we treat each
discrete value of number of picks as a separate covariate and
derive a different hazard function for each case. Our analysis
shows that the family of survival functions obtained this way
has 81.3% accuracy in predicting the likelihood of an item
being found.

If the survival function indicates that the item is not likely
to be found (< 0.5), then we bias the sequence prediction
towards a B (by multiplying the state transition probabilities
for the transitions into T by the likelihood of finding item),
or else towards a T. This is done by making use of the
fact that as the number of B for an item increases, and the
item is likely to be found eventually, the likelihood of a T
increases, i.e., there arises a time-dependent Markov chain.
We retain the Markov property by conditioning the states
based on the number of prior Pick-Put Back actions during
that item-episode. In other words, we compute a family of
transition probability matrices {TPMi} , where each matrix
TPMi gives the transition probabilities between Pick, Back,
Trolley given there have occurred i Pick-Put Back prior
transitions. Using this approach the precision and recall of
prediction of T improved by 7.6% and 4.2%, respectively.
to 0.8830 and 0.8646, respectively; the precision and recall
of prediction of B improved to 0.9226 and 0.9337.

D. Attribute Classification with Automatic Segmentation

Finally, we re-ran the supervised learning classification
experiments described in Section V, with the same set of
features, but with labels obtained from our automatic seg-
mentation approach instead of ground truth. We compared
accuracies with (a) classification with ground truth labels
and (b) classification with a brute-force approach for auto-
matic segmentation. The basic idea behind this brute force
approach is to use a regular classifier to determine which
label a time window belongs to. Accordingly, we split our
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TABLE VII. Comparison of Classification Accuracy with different approaches

Attribute P R P gt Rgt P bf R bf
Freq - Infreq 0.921 0.926 0.99 0.99 0.653 0.666
Specific-Choice 0.88 0.89 0.99 0.99 0.553 0.644
Hurried-Non hurried 0.916 0.922 0.99 0.99 0.693 0.714

Fig. 8: Trace of actual and predicted labels in the first 15 minutes of a shopping
episode.

data into windows of 10 seconds. We then use the binary
classifier trained with the features in Table V, as discussed in
Section VI-A to determine if each window belongs to Aisle
or Non-Aisle. Next, for each predicted aisle segment, we split
it into 3 second windows, compute the features in Table II
for these windows, and use the ternary classifier discussed in
Section VI-B to determine if that window belongs to a P, B or
T. We decided these window sizes of 10 seconds and 3 seconds
after some trial and error, selecting that window which gave
the highest accuracy. This brute-force approach only yielded
an average precision and recall for Aisle/Non-aisle of 71.3%,
73.5%, respectively; and for P, B, T classification, 50.5% and
38.8%,respectively.

Next we re-ran the attribute classification after automatic
segmentation. Table VII shows the average classification ac-
curacy for item level and episode-level attributes, using our
automatic segmentation method and brute force approach.

We see that our segmentation yields very good accuracy.
Interestingly, we see that the accuracy is higher for Frequent
vs. Infrequent and Hurried vs. non-hurried, than the other clas-
sification. This is most likely because the dominant features of
these attributes involves non-aisle and picks which are more
accurately predicted, than those that involve trolley and put
back labels. Figure 8 shows a sample trace of predicted and
actual labels for the first 15 minutes of a shopping episode.

VII. CONCLUSION & FUTURE WORK

This paper presents the design and initial prototype of IRIS,
a framework for obtaining behavioral insights about a shop-
per’s in-store interactions and behavior, utilizing only sensing
data available from the shopper’s personal smartphone and
wearable device (smartwatch). Results show that, given a trace
of an entire shopping episode in representative retail stores,
IRIS is able to (i) delineate the (start, end) times of different
in-store interactions, and (ii) utilize various shopping-related
features to characterize such individual in-store interactions –
both with very high (approx. 90%) accuracy. Such interactions
reveal novel insights into the familiarity & premeditated choice
attributes for each item, the level of hurriedness of the shopper
and her familiarity with the store, simply by exploiting behav-
ioral patterns captured by the mobile and wearable sensors.

There are a variety of additional approaches & possibilities
that we’re addressing in ongoing work. For example, we plan
to incorporate physiological sensor data (e.g., smartwatches
contain embedded heart rate or GSR sensors) to additionally

infer (or even predict) a shopper’s in-store browsing intent
and product-specific reactions. As a preliminary effort, we
observed that using the mean and variance of heart rate
values (captured by our smartwatch) allowed us to obtain a
classification accuracy of 78% for item-level interactions.
Moreover, in environments where additional infrastructure is
available, IRIS can be augmented to provide finer-grained
information. For example, if BLE beacons are deployed to
facilitate fine-grained, in-aisle location tracking, IRIS can also
associate the customers “experience” with a specific product
(indexed by its location on a specific aisle & shelf).
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