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Optimized Algorithms for Predictive Range and KNN Queries on Moving Objects

Rui Zhang1, H. V. Jagadish2, Bing Tian Dai3, Kotagiri Ramamohanarao4

Abstract

There have been many studies on management of moving objects recently. Most of them try to optimize the performance of
predictive window queries. However, not much attention is paid to two other important query types: the predictive range query and
the predictive k nearest neighbor query. In this article, we focus on these two types of queries. The novelty of our work mainly
lies in the introduction of the Transformed Minkowski Sum, which can be used to determine whether a moving bounding rectangle
intersects a moving circular query region. This enables us to use the traditional tree traversal algorithms to perform range and kNN
searches. We theoretically show that our algorithms based on the Transformed Minkowski Sum are optimal in terms of the number
of tree node accesses. We also experimentally verify the effectiveness of our technique and show that our algorithms outperform
alternative approaches.

Key words: Transformed Minkowski Sum, spatio-temporal databases, moving objects, range query, nearest neighbor query, kNN

1. Introduction

As telecommunication technologies such as GPS and mobile
devices become widely used, we are able to track cars or mo-
bile phone users and provide location-based services to them.
Commonly, these services request information about moving
objects (cars, mobile phone users, etc) for a period of time in
the future, which are called predictive queries. Several struc-
tures have been proposed to support efficient processing of pre-
dictive queries ([19, 24, 13, 16]). All these studies focus on
one query type, the predictive window query, which is defined
as follows. Given a rectangular region WQ and a future time
interval QT , retrieve the set of objects that will intersect WQ at
any timestamp t ∈ QT . For a real-life example, a police officer
can issue the query: “report the registration numbers of all the
cars that will pass through the central business district in the
next 10 minutes” through a traffic monitoring system. A pre-
dictive window query is suitable here since the central business
district is probably best described by a rectangle. However, in
many other cases, a query region is best described by a circle.
For example, a tourist can issue the query: “find all the va-
cant taxis within 200 meters from me in the next 10 minutes”
through a mobile phone. The region of this query is more accu-
rately represented by a circle than by a rectangle. In this regard,
we introduce the predictive range query to capture predictive
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queries with circular regions. A formal definition of the query
will be given in Section 2.1.

Consider further the above example. Sometimes, the tourist
may not know a proper distance to specify the query range.
Suppose there is no taxi that will be within 200 meters from
the tourist in the next 10 minutes, then the tourist will get a null
answer to the query, and not get any taxi. In this case, another
type of query, the predictive nearest neighbor query suits the
purpose better. The tourist would now ask: “find the nearest
vacant taxi to me in the next 10 minutes”. Generally, the tourist
can request k nearest taxis for consideration, which corresponds
to a predictive k nearest neighbor (kNN) query. A formal defi-
nition of the query will be given in Section 2.2.

While the predictive range and kNN queries have wide
ranges of applications, few studies have specifically focused on
optimizing algorithms to process these queries. In this article,
we study how to process these two types of queries efficiently
and make the following contributions:

• We introduce an analysis tool, the Transformed Minkowski
Sum (TMS), for moving object databases. TMS can be
used to determine the intersection of two moving objects
of arbitrary shapes. In particular, we apply this technique
to determine the intersection between a moving rectangle
and a moving circle, which enables us to process queries
with circular search regions on moving objects, specifi-
cally, predictive range and kNN queries.

• Exploiting the TMS, we derive an equivalent condition
that is easy to evaluate for identifying objects in a moving
circular query range. Based on this equivalent condition,
we can adopt a tree traversal algorithm for processing the
predictive range query. The algorithm can return exactly
the objects that intersect the circular range, which is not
achieved by any existing algorithm. We prove that this
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algorithm is optimal in terms of the number of tree node
accesses.

• We also provide tree traversal algorithms for the predictive
kNN query, again, enabled by the TMS concept. We prove
that our kNN algorithm is optimal in terms of the number
of tree node accesses. In addition, we can determine the
timestamps when the closest distances between the query
point and the k nearest neighbors (NNs) happen.

• Based on the TMS, we develop a cost model to estimate
the number of node accesses for predictive range queries.
We also show how it can help estimate the cost of predic-
tive kNN queries.

• We perform an extensive experimental study. The results
verify the effectiveness of our algorithms and the accuracy
of our cost model.

The rest of the article is organized as follows: Section 2 gives
the formal definitions of the predictive range and kNN queries
and discusses our problem setting. Section 3 reviews related
work and provides preliminaries. In Section 4, we introduce
the Transformed Minkowski Sum. Sections 5 and 6 present our
algorithms for the predictive range and kNN queries, respec-
tively. Section 8 reports the results of our experimental study
and Section 9 concludes the article.

2. Problem Formulation

In this section, we first give the formal definitions of the pre-
dictive range query and the predictive kNN query. Then we
discuss our problem setting and optimization goals.

2.1. Predictive Range Queries

In previous studies on the predictive window query (such as
[19, 16]), three kinds of queries are distinguished based on the
time span and the region they specify. Similarly, we distinguish
three kinds of queries for the predictive range query: timeslice
query, time-interval query and moving query. Let S(Q,r) denote
a circle centered at point Q with radius r; let tc be the current
timestamp and tre f be a reference timestamp. The definitions of
the three kinds of predictive range queries are given below.

Definition 1 (Timeslice range query). Given a set of moving
objects MS , a point Q, a radius r and a timestamp t (t ≥ tc),
find every object O ∈ MS that satisfies: O intersects S (Q, r) at
timestamp t.

Definition 2 (Time-interval range query). Given a set of
moving objects MS , a point Q, a radius r and a time inter-
val QT = [t`, ta] (tc ≤ t` ≤ ta), find every object O ∈ MS that
satisfies: there exists a timestamp t ∈ QT so that O intersects
S (Q, r) at t.

In general, the query range may move and change its radius.
For example, a tornado (which is a circular region) is moving
and expanding. We would like to find all the cell phone users

(moving objects) that may be contained in the tornado in the
next half hour so that they can be contacted and notified of the
danger. Bush fire is a natural disaster that happens every year in
Australia. The range of the fire is an expanding circular region
and the center of the fire moves due to wind. When there is a
bush fire, it is urgent to notify anyone who may be caught in the
fire in the next few hours. In case of an oil slick on the sea, the
oil slick expands as a circular region and the center of the circle
moves as the water flow. Vessels should be notified to avoid
the oil slick regions Therefore, we provide the following more
general form of the range query.

Definition 3 (Moving range query). Given a set of moving
objects MS , a moving point Q represented by its position
Q(tre f ) at the reference time tre f and its velocity QV , a chang-
ing radius represented by its radius r(tre f ) at the reference time
tre f and its changing speed rv, and a time interval QT = [t`, ta]
(tc ≤ t` ≤ ta), find every object O ∈ MS that satisfies: there
exists a timestamp t ∈ QT so that O intersects S (Q(t), r(t)) at
timestamp t, where Q(t) is the query point’s position at times-
tamp t.

In definition 3, Q(t) = Q(tre f )+QV (t−tre f ) and r(t) = r(tre f )+
rv(t − tre f ). Note that Q and QV are vectors while r and rv are
scalars. The time-interval range query is a special case of the
moving range query; the timeslice range query is a special case
of the time-interval range query. In the rest of the article, we
also call QT the querying period.
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Figure 1: Predictive range query examples

Figure 1 shows examples of the three kinds of predictive
range queries in a 2-dimensional space. Together with the time
dimension, the coordinate space is 3-dimensional. We use point
objects in these examples for ease of presentation (same for the
examples in Figure 2), although the following discussions also
apply to objects with extents. Q1 is a timeslice range query5

at timestamp 1. Its query region is a disk. Object O1 is in it,
while O2 or O3 is not in it. Therefore the answer to Q1 is O1.

5We misuse Q to also denote a predictive range or kNN query (rather than
just a query point) when the context is clear.

2



Q2 is a time-interval range query spanning the period [2,5]. Its
query region is a cylinder. At timestamp 2, no object is in Q2.
Object O2 is moving and it moves into Q2 at timestamps 4 and
5. Objects O1 and O3 are not moving and they stay outside of
Q2 all the time. Therefore the answer to Q2 is O2. Q3 is a
moving range query spanning the period [2,5]. The center and
radius of Q3 are both changing during the querying period. The
query region of Q3 is a leaning truncated cone. No object is
in Q3 at timestamp 2. Although O3 does not move, it is in Q3
at timestamps 4 and 5 because of the movement of Q3. The
other two objects are outside of Q3 all the time. Therefore the
answer to Q3 is O3. From these examples, we can see that the
relative movements of objects and time are important factors to
determine answers.

2.2. Predictive K Nearest Neighbor Queries
Similar to the predictive range queries, we have three kinds of

predictive k nearest neighbor queries: timeslice, time-interval
and moving queries; the timeslice query is a special case of the
time-interval query and the time-interval query is a special case
of the moving query. In the following, we only give the defini-
tion of the most general version for brevity. Let closest(O,Q,T)
denote the closest distance between object O and point Q during
a time interval T .

Definition 4 (Moving k nearest neighbor (kNN) query).
Given a set of moving objects MS , a moving point Q
represented by its position Q(tre f ) at the reference time
tre f and its velocity QV , an integer k and a time interval
QT = [t`, ta] (tc ≤ t` ≤ ta), find a subset A of MS that
satisfies: (1) |A| = k; (2) ∀O ∈ A and ∀O′ ∈ MS − A,
closest(O,Q,QT ) ≤ closest(O′,Q,QT ).
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Figure 2: Predictive kNN query examples

Figure 2 shows an example of the moving kNN query in a 2-
dimensional space: O1,O2,O3 are moving objects and Q is the
moving query point. The time axis is not shown in this figure
for a clearer representation of the movements of the objects;
the time for each position of an object can be easily derived
from the object’s trajectory. The dotted lines show the trajecto-
ries of the objects’ movements from timestamp 1 to timestamp
8 (arrows showing the directions); O′1,O

′
2,O

′
3 and Q′ are the

final positions of the objects and query, respectively. All the
objects and the query point have the same speed, 1, in dimen-
sion x for the whole period [1,8]. Their speeds in dimension
y can be derived from their trajectories. During the movement
of O1, it becomes closest to Q at timestamp 1, and the closest
distance is 2, so closest(O1,Q, [1, 8]) = 2. Similarly, we have
closest(O2,Q, [1, 8]) = 3 and closest(O3,Q, [1, 8]) = 1. There-
fore, during timestamp [1,8], the moving NN to Q is {O3} and
the moving 2NN to Q is {O3,O1}.

We should distinguish the moving NN query from the con-
tinuous NN query. The continuous NN query returns the NN
of a query point at every timestamp of the querying period,
that is, answering the query continuously. Suppose we want
to answer the continuous NN query for Q in Figure 2 for the
period [1,8]. As O1 is the NN in time interval [1,2], O3 is the
NN in the period (2, 7], and O2 is the NN in the period (7,8],
the answer for the continuous NN query is {< O1, [1, 2] >, <
O3, (2, 7] >, < O2, (7, 8] >}. The answer of a continuous NN
query is a set of pairs {< Ai,Ti >}, where Ti is the time interval
when Ai is the NN of the query. Obviously

⋃
i Ti = QT and

i , j ⇒ Ti
⋂

T j = ∅. The above discussion is with regard to
one NN. The extension to kNN is straightforward.

Now we can see the difference between the predictive kNN
query and the continuous kNN query. The former requests one
answer set for the whole querying period while the latter re-
quests an answer set at every timestamp in the querying pe-
riod. Both query types have their applications. For example,
suppose there is a swarm of robots moving around. A work-
ing robot needs maintenance within the next 10 minutes, so it
asks: “which maintenance robot comes closest to me within
the next 10 minutes?” This is a predictive kNN query because
finding one maintenance robot (the nearest one within the next
10 minutes) is enough. In another scenario, suppose there are
a number of tanks moving around in a battlefield. The driver
of a tank issues the query: “report to me the nearest 3 enemy
tanks at any time for the next 10 minutes”. This is a continuous
kNN query because the driver should be alerted with the nearest
enemy tanks all the time.

We can derive the answer of a predictive kNN query from the
answer of its continuous kNN query counterpart. In the exam-
ple shown in Figure 2, given the answer for the continuous NN
query, {< O1, [1, 2] >, < O3, (2, 7] >, < O2, (7, 8] >}, we just
need to compare closest(O1,Q, [1, 2]), closest(O3,Q, (2, 7])
and closest(O2,Q, (7, 8]) and get the closest one, which is O3.
However, maintaining kNN for all timestamps is much less ef-
ficient and unnecessary for the predictive kNN query. In this
article, we provide algorithms specifically designed for the pre-
dictive kNN query.

2.3. Problem Setting and Optimization Goals

We assume that the moving objects are stored on disk and in-
dexed by a TPR-tree [19] (actually the variant TPR*-tree [24]).
While there have been studies which assume all the objects are
held in memory, we do not follow that setting because of the fol-
lowing reasons. First, there may not be enough memory to hold
all the objects when the dataset is very large. Second, moving
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object monitoring is a continuously running process and sys-
tem crashes may happen. Crash recoveries in a main-memory
database incur significant overhead and are particularly trou-
blesome [12]. Therefore, we assume that the dataset is stored
on disk. Nonetheless, our techniques based on the new Trans-
formed Minkowski concept will still apply even if the data are
hold in a main-memory structure. We further assume a TPR-
tree maintained because it is a generic and efficient disk-based
indexing structure for moving objects. It can be used for various
query types and it has been adopted in many previous studies
as a basic structure.

Our goal is to minimize the query processing time, which
consists of both disk I/O time and CPU time. Each disk page
corresponds to a node in the TPR-tree and minimizing the num-
ber of node accesses is important. At the same time, CPU cost
is also significant due to the following reasons. Moving object
representation involves time parameters which add to the com-
putational cost. Moreover, checking whether a moving object
satisfies a spatial query predicate is more expensive than tradi-
tional spatial operations due to the movement of objects. There-
fore, we try to reduce both I/O and CPU costs in our design and
measure both of them in the experimental study.

If the moving objects send queries to a server for process-
ing, the communication cost may also be an important issue,
which has been addressed in some existing work such as [10].
However, this article focuses on the cost of query processing.

3. Preliminaries and Related Work

3.1. Representation of Moving Objects

Traditionally, a moving point’s movement is represented by
sampled positions on its trajectory. This approach requires fre-
quent position updates, which impose heavy workload on the
system. Sistla et al. [22] propose to model a moving point as
a linear function of time t: P(t) = P(tre f ) + V(t − tre f ), where
P(tre f ) is the point’s position at a reference time tre f , and V is
the point’s velocity. This representation allows prediction of
the point’s future positions. When an object changes its speed,
then it reports this change to the management system and the
management system will update the object’s position and speed
information. Since most objects move in a linear fashion for
short periods (e.g., cars moving on a road, people walking in the
corridor of a building), this approach requires much fewer up-
dates than the sampling-based approach and hence it is widely
adopted by subsequent studies (e.g. [14, 1, 19, 24, 16, 13]). For
example, Kollios et al. [14] considered the problem of index-
ing moving points on 1-dimensional trajectories for predictive
window queries. Agarwal et al. [1] addressed the problem in
2 and higher dimensions and proposed algorithms with good
asymptotical performance. These results are mainly theoreti-
cal. Other studies aim at structures that yield good performance
in practice. The TPR-tree [19] extends the R*-tree [2] by at-
taching time parameters to node regions so that the nodes can
bound moving objects. The TPR*-tree [24] enhances the TPR-
tree through a set of improved construction algorithms. As our
proposed structure is based on the TPR/TPR*-tree, we describe

them in more detail in Section 3.2 and 3.3, respectively. Index-
ing techniques based on non-R-tree structures are discussed in
Section 3.4. There is no existing work on processing predictive
range queries. Previous work on kNN queries is discussed in
Section 3.6.

The above discussion has focused on moving points. For a
moving object O of non-zero extent and irregular shape, O is
represented by its minimum bounding rectangle (MBR) OR at
reference time tre f , and its velocity bounding rectangle (VBR)
OV . An MBR OR is of the form {OR1−,OR1+,OR2−,OR2+}6 and
a VBR OV is of the form {OV1−,OV1+,OV2−,OV2+}. The VBR
describes how each side of the MBR moves. Then the positions
of the four sides of O can be calculated as linear functions of
time. We call this representation of O a Time-Parameterized
Bounding Rectangle (TPBR). In this article, moving objects as-
sume this general representation through TPBRs and are not
limited to moving points. The TPR-tree/TPR*-tree can handle
TPBRs straightforwardly, while the non-R-tree structures only
apply to moving points. This is one of the reasons why we have
chosen to use the TPR-tree as the indexing structure. Another
reason is that the TPR-tree provides much more efficient range
and kNN search performance than the non-R-tree structures as
shown by our analysis in Section 3.4 and experimental results
in Section 8.

3.2. The TPR-tree

Saltenis et al. [19] propose the TPR-tree (Time Parameter-
ized R-tree), which is a variant of the R*-tree for indexing mov-
ing objects. Each node of the TPR-tree is a TPBR. A non-leaf
node contains pointers to its child nodes. The MBR (VBR) of a
non-leaf node bounds the MBRs (VBRs) of all its child nodes.
A leaf node contains actual data objects and the leaf node’s
MBR (VBR) bounds these data objects’ MBRs (VBRs). The
TPR-tree essentially extends the traditional R*-tree by adding
the VBR. We also use O to denote a TPBR or a TPR-tree node
as they both represent moving objects.
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Figure 3: Moving objects

6As most real-life moving objects are in 2-dimensional spaces (such as
cars or mobile phone users moving in a city), we focus on analyses in a 2-
dimensional space in this article, although the results can be extended to higher-
dimensional spaces. Subscripts “−” and “+” stand for lower bound and upper
bound, respectively.
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Figure 3 shows an example of a non-leaf node O of a TPR-
tree at timestamp 0 (OR(0)) and its predicted status at timestamp
2 (OR(2)). Node O contains two child nodes a and b. The VBRs
of a and b are {2,2,1,1} and {3,3,-1,1}, respectively, so the VBR
of O is {2,3,-1,1}. The MBR of O at timestamp 0 (OR(0)) is
{1,3,3,6}. We can predict its MBR at time 2 by OR(0) + 2 · OV ,
which results in OR(2), {5,9,1,8}. We also notice that the MBR
may become larger than necessary as time goes on (see OR(2)).
In the TPR-tree, the MBR of a non-leaf node is tightened when
there is an insertion or a deletion to the node because this would
not add any extra node access. The insert and delete operations
of the TPR-tree are similar to those of the R*-tree, with consid-
eration of the effect of time.

3.3. The TPR*-tree

Tao et al. [24] proposed the TPR*-tree that uses a set of
improved algorithms to build the TPR-tree. They proposed a
cost model for the predictive window query and their reported
experiments show that the TPR*-tree achieves almost optimal
performance according to the cost model. We briefly explain
the cost model below (c.f. Figure 4). Consider a moving ob-
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ject O and a moving window query WQ for the time interval
[0,1]. The sweeping regions of O and WQ during the time in-
terval are shown in Figure 4(a) (the gray regions). To deter-
mine wether object O intersects WQ, Tao et al. first obtain
the transformed rectangle O′ with respect to WQ as follows
(c.f. Figure 4(b)). The MBR of O′ on the ith dimension is
{ORi− − |WQRi|/2,ORi+ + |WQRi|/2}; the VBR of O′ on the ith

dimension is {OVi−−WQVi+,OVi+−WQVi−}. Object O intersect-
ing WQ during time interval [0,1] is equivalent to the sweeping
region of the transformed rectangle of O′ intersecting the cen-
ter of WQ at timestamp 0 (which is a point). Therefore, de-
termining whether O intersects WQ is easy and the probability
of object O being accessed by the query WQ can be estimated
through the area of the transformed rectangle. Based on this,
they can estimate the cost of a query.

3.4. Indexes Based on Non-R-Tree Structures

Stripes: Stripes [16] use the dual transform to transform the
positional representation of an object in a d-dimensional space
to a 2d-dimensional point. Recall that an object is represented
by its position P(tre f ) at a reference time tre f , and its velocity

V (Section 2.3). Both P(tre f ) and V are d-dimensional vectors.
In Stripes, these two d-dimensional vectors are combined to
one 2d-dimensional vector, (V, P(tre f )). Then the moving ob-
jects represented by 2d-dimensional vectors can be indexed by
a traditional multidimensional indexing structure. In particular,
Stripes use a disk-based quadtree [20]. Accordingly, queries
are also transformed to the dual space. For example, a timeslice
window query is transformed to a parallelogram and a moving
window query is transformed to a union of two parallelograms.
The search algorithms simply search the quadtree to find vec-
tors in the transformed regions of the queries. Experiments re-
ported in [16] show that Stripes have better update and query
performance than the TPR*-tree. It is unclear how stripes can
process kNN queries.

Bx-tree: The Bx-tree [13] is a structure proposed to handle
frequent updates in moving object management while still hav-
ing efficient query processing. The positions of moving ob-
jects in space are linearized according to their corresponding
space-filling curve values and then organized in a B+-tree. To
support time parameters but avoid updating the whole tree at
each timestamp, the time axis is partitioned into equal intervals
called phases as shown in Figure 5(a). Each phase is of length
∆tmu/ j, where ∆tmu is the time duration between two manda-
tory global updates. An object updated at timestamp tu is as-
signed a label timestamp tlab = dtu + ∆tmu/ jel, where dxel re-
turns the nearest future label timestamp of x. By this means
the objects are assigned to different partitions of the time axis.
Consequently, all the points actually inserted at time 0 will be
labelled timestamp ∆tmu/2 ( j = 2) and inserted to the first parti-
tion of the Bx-tree (the shaded partition in Figure 5(a)); objects
actually inserted during time (0,∆tmu/2] are labelled timestamp
∆tmu and inserted to the second partition of the Bx-tree, and
so on. The predictive window query is processed through the

label timestamp
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Figure 5: The Bx-tree

window enlargement technique. Figure 5(b) shows an exam-
ple of how the window enlargement works. Suppose the cur-
rent time is 0 and we issue a predictive timeslice window query
WQ at time 2 (the solid rectangle). Consider moving points
a and b (the black dots) stored in the Bx-tree, which are la-
belled timestamp 5. From their velocities as shown in the fig-
ure, we can infer their positions at timestamp 2, which are a∗
and b∗ (the circles). The window enlargement technique en-
larges the query window WQ using the reverse velocities of a
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and b to get the query window at timestamp 5 (the dashed rect-
angle). In practice, histograms on a grid base are maintained
for the maximum/minimum velocity of different portion of the
data space and the query window is enlarged according to the
maximum/minimum velocity in the region it covers. Therefore
a drawback of the Bx-tree is that, if only a few objects have
very high speed, they would make the enlarged query window
unnecessarily large for most of the points, while in the TPR-
tree like structure, the high speed points have only local effects.
The Bx-tree can also process the time-slice kNN query (but not
the moving kNN query). The algorithm first issues a window
query based on an estimated kNN distance, and then the win-
dow query is enlarged gradually until the kNN are found. This
kNN algorithm suffers from the same aforementioned problem
of overly enlarged query window. Moreover, the accuracy of
kNN distance estimation gets worse for moving objects, which
further deteriorates the performance.

Bdual-tree: Similar to the Bx-tree, the Bdual-tree [29] also ex-
ploits the space-filling curve. But instead of indexing just lo-
cations of moving objects, the Bdual-tree indexes the dual trans-
form of both locations and velocities of moving objects. Yiu et
al. [29] proposed a number of optimizations on the Bdual-tree.
As a result, it has good performance in both updates and query
processing.

ST2B-tree: The ST2B-tree [7] uses a normal B+-tree to index
moving objects with a key consisting of a time component and a
space component. The time component is based on partitioning
the time axis into equi-length buckets. The space component
is based on a Voronoi-diagram partitioning of the space. The
ST2B-tree is designed with mechanisms for self-tuning so that
it can adapt to changes of data density and distribution.

3.5. Analysis and Benchmark
Most of the indexing techniques proposed can be classified

into two categories depending on whether the indexing keys are
in the primal or dual space. In the above discussed techniques,
for example, Stripes and Bdual-tree are dual methods while the
others are primal methods. Tao and Xiao [26] studied which ap-
proach is better from a theoretical point of view. Their analysis
shows that different techniques may perform the best in differ-
ent workloads. A primal index generally has low query cost but
the performance may deteriorate over time, while a dual index
has a cost much higher than the optimal value, but its perfor-
mance will always remain reasonable disregard data property
changes.

Chen et al. [6] performed a comparison on moving object
indexing techniques in a practical setting. They developed a
benchmark to generate datasets for testing indexing techniques
on moving objects, and performed experiments to compare
many notable existing techniques including the TPR-tree, the
TPR*-tree, Stripes, the Bx-tree, the Bdual-tree as well as the
R-tree, but with support for frequent updates [21]. The gen-
eral conclusion is that different techniques may be the best for
different metrics. Among all the techniques, the Bx-tree has
the highest throughput and shortest update time. TPR-tree and
TPR*-tree have very similar performance (except for concur-
rency control) and they have the shortest query processing time.

3.6. Algorithms for KNN Queries on Moving Objects

There are many studies on processing continuous kNN
queries on moving objects such as [3, 4, 17, 11, 28, 10]. Since
continuous kNN algorithms may be used for processing predic-
tive kNN queries, we discuss them in more detail below. For
simplicity, we will use NN (instead of kNN) to explain these
algorithms.

Benetis et al. [3] use a TPR-tree to index the moving ob-
jects and then use a depth-first traversal algorithm to search the
TPR-tree. The algorithm starts from the root of the tree. If a re-
trieved node is a non-leaf node, then the entries in the node are
sorted according to the metric M(R, q) =

∫ ta
t`

dq(R, t)dt, where
dq(R, t) returns the squared distance between the query point
Q and the point on a TPBR R that is the closest to Q at time
t. Then the nodes are retrieved in the sorted order recursively
down the tree. Here, sorting is a heuristic intended to retrieve
the actual NN as early as possible. A pruning squared distance
dminq(t) is maintained for every timestamp in [t`, ta] and ini-
tialized to infinity. During the traversal of the tree, if dq(R, t)
of a node is greater than dminq(t), then none of the children of
this node needs to be retrieved; otherwise, the child nodes are
retrieved in the sorted order of M(R, q). For a leaf node, the al-
gorithm determines for all timestamps in [t`, ta], whether each
entry has smaller dq(R, t) than dminq(t). If yes, then this entry
replaces the current NN candidate for the corresponding time
interval; otherwise the entry is not an NN and is skipped. This
algorithm returns the NN of every timestamp in [t`, ta], so it ac-
tually returns the continuous NN answer (recall the discussion
in Section 2.2). The algorithm involves solving quadratic in-
equalities for a list of time intervals, which is unnecessary for a
predictive NN query. Later in the journal version [4], Benetis et
al. also propose a best-first traversal algorithm and use the met-
ric mint∈[t`,ta]dq(R, t) to sort entries. The reported experiments
show that the best-first search using the mint∈[t`,ta]dq(R, t) met-
ric performs the best among the variants, however, the gain is
marginal.

Raptopoulou et al. [17] take the same paradigm as Benetis
et al.’s work [3, 4], that is, first returning continuous NN for
the querying period [t`, ta], and then updating answers for sub-
sequent timestamps. Raptopoulou et al.’s work differ in how
to find the answers. They first find the NN for the timestamp
t`. Then the continuous NN for [t`, ta] is derived by computing
intersections between the initial NN and possible candidate ob-
jects for subsequent timestamps. Again, the intersection com-
putation between the initial NN and many possible candidates
is too expensive and unnecessary for the predictive NN query.

Iwerks et al. [11] use the event driven model to process the
continuous NN query. Two kinds of events are considered: the
within event (w-event) and the order change event (oc-event).
The w-event affects the answer for the window query and the
oc-event affects the answer for the NN query. Iwerks et al. find
that window queries are easier to maintain than NN queries.
Their method is to first find initial NN for t`, then to main-
tain the NN through processing oc-events in a maintained win-
dow query. Finding the initial NN involves computing w-events
from all objects in the database for a window query and then
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compute the NN based on the objects in the window query. This
is too expensive since all objects are retrieved.

The SEA-CNN [28] is an algorithm for processing multi-
ple continuous NN queries on moving objects. It improves
efficiency and scalability through incremental evaluation and
shared execution. The moving objects and queries are orga-
nized using a grid structure and maintained in two tables sep-
arately. Multiple NN queries are executed by scanning the ob-
ject and query tables. Then the retrieved objects and queries are
joined to obtain results for all queries. The SEA-CNN has fo-
cused on how to continuously maintain the NN results and how
to share computation, but not on how to obtain the initial NN or
how to answer the predictive NN query.

Hu et al. [10] proposed a new framework for monitoring
continuous spatial queries, including kNN queries, over mov-
ing objects. They consider the problem in a client-server en-
vironment and target minimizing the communication between
the mobile clients and the server, which answers the queries.
They use the concept of safe region, which is the region that
keeps the answer of a query unchanged. The update and query
reevaluation cost is greatly reduced by safe regions. The kNN
algorithm is a best-first traversal algorithm adapted to leaf en-
tries that may be either a point or a safe region. This algorithm
can not be applied to our problems since a different framework
is assumed.

Yu et al. [30] and Mouratidis et al. [15] consider the contin-
uous kNN query when the whole dataset can be held in main
memory. Both papers assume objects update their positions pe-
riodically and are organized using linked lists based on a grid
partition of the space. These algorithms cannot be applied to
our problems since we assume that the moving objects reside
on disk.

Tao et al. [23] introduced the predictive kNN query (they
call it the spatio-temporal kNN query) and gave an analysis on
the expected nearest distance for the predictive kNN query, but
they did not provide any algorithm to process the query. Tao
et al. [25] introduced another type of query, called the time-
parameterized (TP) queries, including the TPkNN query. The
TPkNN query returns the current kNN set and its validity time
range. In effect, it returns the first < Ai,Ti > pair (see the exam-
ple of Figure 2) of the continuous kNN query. Therefore, the
TPkNN query is different from the predictive kNN query.

Recently, Zhang et al. [31] proposed a method to signifi-
cantly reduce the time range for the processing of continuous
queries. The proposed time constraint processing method ap-
plies to general continuous queries but is not helpful to predic-
tive range or kNN queries.

To summarize, most studies focused on continuous kNN
queries and their algorithms have focused on the continuous
part, while the initial kNN set is obtained by a timeslice kNN
query using traditional algorithms. Only Benetis et al.’s work
[4] has proposed specific methods trying to improve the perfor-
mance of obtaining the kNN set during a time interval and this
work is also the most recent one. Therefore, we will compare
our algorithm with Benetis et al.’s algorithm and the Bx-tree
based kNN algorithm for predictive kNN queries in our experi-
mental study.

4. The Transformed Minkowski Sum

In this section, we propose a method to determine whether
a TPBR, that is, a moving rectangle intersects a moving cir-
cle, which is essential to processing range and kNN queries.
Our method is based on a new concept called the Transformed
Minkowski Sum. The Transformed Minkowski Sum is obtained
by performing: (i) a coordinate transform according to the
movement of the query, and then (ii) the Minkowski enlarge-
ment in the transformed coordinate system. This method can be
further generalized to determine the intersection of two moving
objects of any shapes.

As discussed in Section 3.3, a TPBR O intersecting a moving
window query WQ is equivalent to (that is, necessary and suf-
ficient condition of) the transformed rectangle O′ intersecting
the center of WQ (which is a point). This equivalent condi-
tion makes determining whether O intersects WQ much eas-
ier. One only needs to check whether O′ contains the center of
WQ. However, this approach cannot be straightforwardly ex-
tended to range or kNN queries, because now the query region
is a circle instead of a rectangle. It is unclear how to enlarge
a moving rectangular node by a moving circle. Our strategy to
overcome this difficulty is to make the moving circle static first.
Specifically, we apply a coordinate system transformation to
make the query point static and located at the origin (the radius
is still changing with time). The following example illustrates
this process. Figure 6 shows a TPR-tree node O, which is a
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Figure 6: A TPBR and a query circle

TPBR, and a moving range query Q, which is a moving circle
(with changing radius). Initially at timestamp 0, the MBR of
the node OR(0) is {2, 4, 3, 5} and the VBR of the node OV is
{−1, 0,−1, 1}; the query point Q is {9, 9} and the velocity of the
query point QV is {−3,−3}; the radius of the query r is 1 and the
speed of the changing radius rv is 1. The querying period QT

is [0,1]. The initial states of both O and Q are drawn in thick
solid lines. Their final states (at timestamp 1) are drawn in thin
solid lines. At timestamp 1, OR becomes {1, 4, 2, 6}, the query
point moves to {6, 6} and its radius becomes 2. The gray regions
represent the sweeping regions of the TPBR and the moving
circle, respectively, during the period [0,1]. The 2-dimensional
position space and the 2-dimensional velocity space compose
a 4-dimensional space. At timestamp 0, the query point’s co-
ordinates in this 4-dimensional space is {9, 9,−3,−3}. Based
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on these coordinates, we apply the coordinate transformation
{−9,−9,+3,+3} to the 4-dimensional space so that the query
point is located at the origin and becomes static. As a result
of the coordinate transformation, OR becomes {−7,−5,−6,−4}
at timestamp 0 and the OV becomes {2, 3, 2, 4}; then we can
obtain OR at timestamp 1 in the transformed coordinate system,

O   (1)
R

sweeping
region of Q

S
Q   (0)

Q   (1)
S

sweeping
region of O

−8 −4−6 x’

y’

−2

−4

−6

−8

−2

2 3

2

4

1

O   (0)
R

Figure 7: Coordinate transformation

{−5,−2,−4, 0}. The TPBR and the moving circle in the trans-
formed coordinate system are shown in Figure 7.

After the coordinate transformation, we use the Minkowski
sum [8] to derive the intersection between the TPBR and the
moving circle. The Minkowski sum of two sets A and B in a
vector space is the union of adding every element of A to every
element of B, that is, the set A ⊕ B = {a + b : a ∈ A, b ∈ B}.
For example, in Figure 8, the Minkowski sum of the rectangle R
and the circle S is the gray region (assuming the center of S is
at the origin). Another way to obtain the same Minkowski sum

R
S

Figure 8: The Minkowski sum

is to roll S along the surface of R, and then the trajectory of the
center of S is the boundary of the Minkowski sum of R and S
as shown in Figure 9.Here we actually enlarge R by the radius
of S , therefore the Minkowski sum is also called the Minkowski
enlargement. Observe Figure 9. It is easy to prove that:

R

Figure 9: Another way of obtaining the Minkowski sum

Lemma 1. If R intersects any point of S , then the Minkowski
enlargement (sum) of R with regard to S intersects the center of
S , and vice versa.

This lemma has been used before such as in [5]. We can
further have the following lemma.

Lemma 2. The closest distance between R and S , is the closest
distance between the Minkowski enlargement (sum) of R with
regard to S and the center of S .

Proof: The proof is provided in Appendix A.
Continue with the example in Figure 7. We can obtain the

Minkowski sum of O and Q in the transformed coordinate
system at every timestamp and union these Minkowski sums
to get the sweeping region of the Minkowski sum. We call
this Minkowski sum in the transformed coordinate system the
Transformed Minkowski Sum of O with regard to Q (the formal
definition is given later), denoted by TMS(O,Q). Further, we
denote the Transformed Minkowski Sum of O with regard to Q
at timestamp t by TMS(O,Q,t). The above process is illustrated
in Figure 10.

sweeping
region of R

TMS(R(0),Q(0))

 c
Q

TMS(R(1),Q(1))

−8 −4−6 x’

y’

−2

−4

−6

−8

−2

Figure 10: The sweeping region of the Transformed Minkowski Sum

At any timestamp in QT , if T MS (O,Q) intersects the origin
(that is, the query point in the transformed coordinate system),
then O intersects Q according to Lemma 1. In other words,
during QT , if the sweeping region of T MS (O,Q) intersects the
origin, then O intersects Q. On the other hand, if the sweep-
ing region of T MS (O,Q) does not intersect the origin, then
T MS (O,Q) does not intersect the origin at any timestamp, and
then O does not intersect Q during QT . Therefore, during QT ,
the sweeping region of T MS (O,Q) intersecting the origin is
equivalent to O intersecting Q. Consequently, we have the fol-
lowing theorem.

Theorem 1. (Equivalent Condition): Given a TPBR O, a
moving range query Q and a querying period QT , the sweeping
region of T MS (O,Q) intersecting the origin during QT is the
necessary and sufficient condition of O intersecting Q during
QT .

The proof follows the early discussion.
Formally, the Transformed Minkowski Sum of a TPBR with

regard to a moving circle is defined as follows:
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Definition 5 (Transformed Minkowski Sum). Consider
the 4-dimensional coordinate system G, which consists of
2 dimensions from the position space and 2 dimensions
from the velocity space. Given a TPBR O and a moving
range query Q, we apply the coordinate transformation
{−QC1,−QC2,−QV1,−QV2} to G and obtain the transformed
coordinate system G′. The Transformed Minkowski Sum of O
and Q is defined as the Minkowski sum of O with regard to Q
in G′.

This definition can be generalized to the Transformed
Minkowski Sum of two moving objects of any shapes. For two
TPBRs, the Transformed Minkowski Sum becomes the trans-
formed TPBR as discussed in Section 3.3.

In the rest of this article, we denote the sweeping region of
TMS(O,Q) during time [t`, ta] simply as S R(O,Q, t`, ta), and it
is formally defined as S R(O,Q, t`, ta) =

⋃
t`≤t≤ta T MS (O,Q, t).

5. Processing Predictive Range Queries

In this section, we give our algorithm for processing predic-
tive range queries based on the Transformed Minkowski Sum.
There are three kinds of predictive range queries as discussed in
Section 2.1. We only present the algorithm for the most general
version, that is, the moving range query (Definition 3). Given
a moving range query Q, we need to find all the objects in-
tersecting Q in QT . According to Theorem 1, the equivalent
condition of an object O intersecting Q during QT = [t`, ta]
is S R(O,Q, t`, ta) intersecting the origin. This equivalent con-
dition enables us to use a tree traversal algorithm to process
predictive range queries. The algorithm is called RangeSearch
and runs as follows. It traverses the tree starting from the root.
For every accessed node, the algorithm checks whether any
child of the node intersects the query. If yes, the algorithm
retrieves that child node and performs the above operations re-
cursively until the leaf node level. Figures 11 and 12 show the
detailed steps of the algorithm.

RangeSearch(Node root, RangeQuery Q, Period QT )
1 A← ∅ // the answer set
2 RangeSearchNode(root,Q, t`, ta) // [t`, ta] = QT

3 return A
End RangeSearch

Figure 11: Algorithm RangeSearch

This algorithm makes it possible to identify exactly those ob-
jects that intersect Q, which is not achieved by previous algo-
rithms; issuing a predictive window query that bounds Q can
only give a superset of the answer set and there is no existing
way to tell which objects actually intersect Q.

The algorithm needs to determine if S R(O,Q, t`, ta) intersects
the origin, which is not a trivial derivation. We show this deriva-
tion in Section 5.2. Before that, we first prove that the algorithm
is optimal for the predictive range query in terms of the number
of node accesses in Section 5.1.

RangeSearchNode(Node O,Q, t`, ta)
1 if O is a non-leaf node
2 for every entry e of O
3 if S R(e.TPBR,Q, t`, ta) intersects the origin
4 retrieve e.node
5 RangeSearchNode(e.node)
6 if O is a leaf node
7 for every entry e of O
8 if S R(e.TPBR,Q, t`, ta) intersects the origin
9 A← A ∪ e.ob ject
End RangeSearchNode

Figure 12: Algorithm RangeSearchNode

5.1. Optimality of Algorithm RangeSearch

Lemma 3. Any correct algorithm for the predictive range
query must access every node whose TPBR intersects the query
range during QT .

Proof: For every node whose TPBR intersects the query
range during QT , we must retrieve it to know whether it con-
tains any object that satisfies the query. Otherwise, we may
miss an object that should be in the answer set. 2

Theorem 2. The number of node accesses of algorithm Range-
Search is optimal for the predictive range query.

Proof: RangeSearch only accesses a node O if O satisfies
that S R(O,Q, t`, ta) intersects the origin, which is equivalent to
O’s TPBR intersects the query range during QT . Therefore,
RangeSearch only accesses the nodes that must be accessed ac-
cording to Lemma 3. 2

5.2. Determining Whether S R(O,Q, t`, ta) Intersects the Origin

We classify the motion of OR into 4 basic cases by the direc-
tions that the opposite sides of OR move in:

Case A

The left and the right sides move in opposite directions;
the top and the bottom sides move in opposite directions,
too.

Case B

The left and the right sides move in the same direction;
the top and the bottom sides move in opposite directions.
Without loss of generality, we assume both the left and the
right sides move right.

Case B’

The left and the right sides move in opposite directions;
the top and the bottom sides move in the same direction.
Without loss of generality, we assume both the top and the
bottom sides move upwards.
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Case C

The left and the right sides move in the same direction; the
top and the bottom sides move in the same direction, too.
Without loss of generality, we assume both the left and the
right sides move right, and both the top and the bottom
sides move upwards.

When we consider the Minkowski sum of the rectangle with
respect to a circle whose radius is changing with time, the mo-
tion of the rectangle becomes more complicated, because by
comparing the speed of the radius with the velocities of the
sides, the cases listed above are divided into more sub-cases.
As a result, we have 10 sub-cases in total for the shape of
S R(O,Q, t`, ta) as shown in Figures 13 and 147. During QT ,
the initial (final) MBR of O is plotted as light (dark) gray re-
gions in the figures, respectively. Each of the 10 sub-cases rep-
resents one particular position of the Minkowski sum of the ini-
tial MBR with respect to the initial radius and that of the final
MBR with respect to the final radius. For each sub-case, we
analyze the shape of S R(O,Q, t`, ta) as follows.

Case A (Figure 13(a))

In this case, the final MBR encloses the initial MBR.
As the radius does not decrease, the final Minkowski
sum encloses the initial Minkowski sum and therefore
S R(O,Q, t`, ta) is the final Minkowski sum. We only need
to determine if the final Minkowski sum intersects the ori-
gin.

Case B

There are two sub-cases as follow:

B.1 (Figure 13(b)) In this case, the speed of the radius is
less than the speed of the left side. S R(O,Q, t`, ta)
is bounded by the initial Minkowski sum, the fi-
nal Minkowski sum, and two tangent line segments
which are common to the pair of upper left arcs
or the pair of lower left arcs. Thus to determine
whether the origin intersects S R(O,Q, t`, ta), we have
to determine whether the origin intersects the ini-
tial Minkowski sum, the final Minkowski sum or the
trapezoid formed by the two tangent line segments.

B.2 (Figure 13(c)) In this case, the speed of the radius
is greater than or equal to the speed of the left
side. The final Minkowski sum encloses the initial
Minkowski sum and therefore S R(O,Q, t`, ta) is the
final Minkowski sum.

Case B’

This case is very similar to the previous one, except for
replacing the comparison between the speed of the radius
and the speed of the left side by the comparison between

7Since S R(O,Q, t`, ta) is obtained in the transformed coordinate system, the
following discussions based on these figures refer to the transformed coordinate
system.

the speed of the radius and the speed of the bottom side.
There are also two sub-cases as follow. How to determine
whether S R(O,Q, t`, ta) intersects the origin is similar to
case B, so we do not repeat the discussion here.

B’.1 (Figure 13(d)) In this case, the speed of the radius is
less than the speed of the bottom side.

B’.2 (Figure 13(e)) In this case, the speed of the radius is
greater than or equal to the speed of the bottom side.

Case C
In this case, we have to consider the comparison between
the speed of the radius and the speed of the left side as
well as the comparison between the speed of the radius
and the speed of the bottom side. For the first three sub-
cases described below, S R(O,Q, t`, ta) is bounded by the
initial and the final Minkowski sum and two common tan-
gent line segments. They differ in the position of the two
tangent line segments.

C.1 (Figure 13(f)) In this case, both the speed of the left
side and the speed of the bottom side are greater than
the speed of the radius. One tangent line segment
is common to the pair of the upper left arcs and the
other one is common to the pair of the lower right
arcs.

C.2 (Figure 13(g)) In this case, the speed of the left side is
greater than the speed of the radius, while the speed
of the bottom side is less than or equal to the speed
of the radius. One tangent line segment is common
to the pair of the upper left arcs; the other is common
to the pair of the lower left arcs.

C.3 (Figure 13(h)) In this case, the speed of the bottom
side is greater than the speed of the radius, while the
speed of the left side is less than or equal to the speed
of the radius. One tangent line segment is common
to the pair of the lower left arcs; the other is common
to the pair of the lower right arcs.

C.4 (Figure 13(i)) In this case, the root sum square of the
speed of the left side and the speed of the bottom side
is less than or equal to the speed of the radius. The
final Minkowski sum encloses the initial Minkowski
sum.

C.5 (Figure 14) In this case, both the speed of the left
side and the speed of the bottom side are less than or
equal to that of the radius, but their root sum square
is greater than the speed of the radius. This is a very
special case, as the initial Minkowski sum has a small
corner which is not covered by the final Minkowski
sum; both tangent line segments are common to the
lower left corner with different angles.

The shapes of S R(O,Q, t`, ta) of all the above sub-cases
fall into three classes: Shape 1, S R(O,Q, t`, ta) is the final
Minkowski sum, including cases A, B.2, B’.2 and C.4; Shape 2,
S R(O,Q, t`, ta) is bounded by the initial Minkowski sum, the fi-
nal Minkowski sum and two common tangent line segments on
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(a) Case A (b) Case B.1 (c) Case B.2

(d) Case B’.1 (e) Case B’.2 (f) Case C.1

(g) Case C.2 (h) Case C.3 (i) Case C.4

Figure 13: Shape of S R(O,Q, t`, ta) (Part1)
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Figure 14: Shape of S R(O,Q, t`, ta) (Part 2), Case C.5

two pairs of arcs, including cases B.1, B’.1, C.1, C.2 and C.3;
Shape 3, S R(O,Q, t`, ta) is bounded by the initial Minkowski
sum, the final Minkowski sum and two common tangent line
segments on the same pair of arcs, including only case C.5.
Next, we show how to determine whether S R(O,Q, t`, ta) in-
tersects the origin for one case from each shape class. The
other cases in the same shape class can be derived similarly.
In what follows, let {OaR1−,O

a
R1+

,OaR2−,O
a
R2+
} be the final MBR

and {OV1−,OV1+,OV2−,OV2+} the VBR of O; let r1 (r2) be the
initial (final) radius of Q, respectively.

Shape 1: Case A, B.2, B’.2 and C.4
We need to determine whether the origin is inside (that is, in-

4

1

2

5

3

Figure 15: S R(O,Q, t`, ta) of Case A (Shape 1)

tersects) the final Minkowski sum. The origin is enclosed by
the final Minkowski sum if and only if the following two con-
ditions are both satisfied:
(1) OaR1− − r2 ≤ 0 and OaR1+

+ r2 ≥ 0 and OaR2− − r2 ≤ 0 and
OaR2+

+ r2 ≥ 0;
(2) OaR1− ≤ 0 ≤ OaR1+

or OaR2− ≤ 0 ≤ OaR2+
or

min(|OaR1−|, |OaR1+
|)2 + min(|OaR2−|, |OaR2+

|)2 ≤ r2
2.

See Figure 15. Condition (1) ensures that the origin lies within
the rectangle in thick solid lines. Condition (2) ensures that the
origin either lies in the rectangles 1 to 5, or if the origin falls
in the four squares on the corners, it does not fall in the gray
regions. Therefore, the two conditions together are equivalent
to the origin being inside S R(O,Q, t`, ta).

Shape 2: Case B.1, B’.1, C.1, C.2 and C.3
As shown in Figure 16, S R(O,Q, t`, ta) is bounded by the ini-

tial Minkowski sum, the final Minkowski sum, and four trape-
zoids (regions 6, 7, 10 and 11). We first use the method de-
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Figure 16: S R(O,Q, t`, ta) of case C.1 (Shape 2)

scribed in Case A to determine whether the origin is inside the
initial Minkowski sum or the final Minkowski sum. Then we
check whether the origin is inside the four trapezoids. Given
an n-sided polygon in a 2-dimensional plane with vertices
(x1, y1), (x2, y2), . . . , (xn, yn), arranged in counter-clockwise or-
der, the origin is inside this n-sided polygon if and only if (i)
xiyi+1 − yixi+1 ≥ 0,∀i = 1, ..., n − 1, and (ii) xny1 − ynx1 ≥ 0.
Therefore, as long as we know the four vertices of a trapezoid,
we can determine whether the origin is inside it by testing a few
inequalities. For regions 6 and 7, we know their four vertices
from the initial and final MBRs. For regions 10 and 11, we find
their vertices as follows. Let w1 (w2) and h1 (h2) be the width
and height of the initial (final) Minkowski sum, respectively, as
shown in Figure 16. We have: r1 = r(t`) = rre f + vr(t` − tre f ),
w1 = (OaR1+

− OaR1−) + (OV1+ − OV1−)(t` − ta),
h1 = (OaR2+

− OaR2−) + (OV2+ − OV2−)(t` − ta),
r2 = r(ta) = rre f + vr(ta − tre f ),
w2 = OaR1+

− OaR1−,
and h2 = OaR2+

− OaR2−.

Further, we define l1 =
√
|OV1+|2 + |OV2−|2(ta − t`), and l2 =√

|OV1−|2 + |OV2+|2(ta − t`), where l1 (l2) is the length of one
side of the trapezoid in region 10 (11), respectively, as shown
in the figure. Then we can define the following angles: α1 =

cos−1 r2−r1
l1

,
α2 = cos−1 r2−r1

l2
,

θ1 = α1 − tan−1 |OV2− |
|OV1+ | ,

and θ2 = α2 − tan−1 |OV2+ |
|OV1− | .

With these angles known, we can easily find the four tangent
points (A, B, C and D in the figure), two on each trapezoid
. Two tangent points and two points from the initial and final
MBRs compose the four vertices of each of the two trapezoids
(regions 10 and 11).

If the origin is inside (that is, intersects) the initial or the
final Minkowski sum, or any of the four trapezoids, then
S R(O,Q, t`, ta) intersects the origin, otherwise not.

Shape 3: Case C.5
Case C.5 is shown in Figure 14 and a close view on its lower

12



left corner is given in Figure 17. S R(O,Q, t`, ta) is bounded by
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Figure 17: Close look on the corner of Case C.5

the initial Minkowski sum, the final Minkowski sum, trapezoids
MEFN (Figure 17(a)) and MNIJ (Figure 17(b)). We define l =√
|OV1−|2 + |OV2−|2(ta − t`) and α = cos−1 r2−r1

l , where l is the
length of MN and α is the angle between the parallel sides of
the trapezoids and MN. Then we have ∠AME = tan−1 |OV2− |

|OV1− | −α
and ∠DMB = tan−1 |OV1− |

|OV2− | − α. With these two angles known,
we can compute the coordinates of points E, F, I and J, and
once the four vertices of the trapezoids are known, we can test
whether the origin is in them.

If the origin is inside (that is, intersects) the initial or the
final Minkowski sum, or any of the two trapezoids, then
S R(O,Q, t`, ta) intersects the origin, otherwise not.

6. Processing Predictive KNN Queries

In this section, we give our algorithm for processing predic-
tive kNN queries. There are three kinds of predictive kNN
queries as discussed in Section 2.2. We only present the al-
gorithm for the most general version, that is, the moving kNN
query (Definition 4). Given a moving kNN query Q, we need
to find the k objects that will be closest to the query point dur-
ing the querying period QT . Moreover, we would also like to
know when the k objects are closest to Q. For example, when
a working robot needing maintenance finds out which main-
tenance robot will come closest to it within the next 10 min-
utes, the working robot also wants to know the exact time when
maintenance robot is closest to it.

Observe that the only difference between the moving kNN
query and the traditional kNN query is the function used to
rank the objects, that is, closest(O,Q,QT ) rather than the Eu-
clidian distance. Therefore, we can plug closest(O,Q,QT ) as
the distance function into an existing kNN search algorithm
based on R-trees. Two popular traditional kNN search algo-
rithms are the depth-first algorithm proposed by Roussopoulos
et al. [18] and the best-first algorithm proposed by Hjaltason
and Samet [9]. We only present the best-first algorithm, called
KNNSearchBF, for predictive kNN queries as shown in Figure
18. The depth-first algorithm (KNNSearchDF) can be obtained
similarly by replacing the distance function in the traditional
depth-first kNN search algorithm. Together with the k nearest
objects, we also return the timestamps at which they are the kth

nearest objects.

The input of KNNSearchBF are: the root node of the TPR*-
tree root, the moving kNN query Q and the querying period
QT . First, the answer set A is initialized to ∅ and the pruning
distance pd is initialized to∞. The algorithm traverses the tree
nodes and data objects in order of their closest(O,Q,QT ), using
a priority queue L to maintain the entries (pointers to nodes or
objects) to be accessed. Initially the entries in the root node
are all inserted in L and then entries in L are dequeued one
after another. If a dequeued entry e points to a non-leaf node,
the non-leaf node is retrieved and any entry e′ in it is inserted
back into L provided that closest(e′.TPBR,Q,QT ) is less than
or equal to the pruning distance pd. If a dequeued entry e points
to a leaf node, all objects in the leaf node are retrieved and the k
objects with the smallest closest(O,Q,QT ) are maintained in a
candidate set A. When the number of candidates reaches k, pd
is accordingly updated as the largest closest(O,Q,QT ) of the
objects in A. The function MaxClosest(A,Q) returns the object
in A that has the largest closest(O,Q,QT ). The above process
continues until L becomes empty or closest(e.TPBR,Q,QT ) >
pd for the next dequeued entry e. Then A is the answer set.
In line 14, the function closest time(O,Q,QT ) returns a pair
< dn, tn >, where dn is closest(O,Q,QT ) and tn is the timestamp
this closest distance happens.

We have yet to show: given O, Q and QT , how to calcu-
late closest(O,Q,QT ) and the timestamp at which this distance
happens. We derive closest(O,Q,QT ) in Section 6.2 and the
timestamp in Section 6.3. Before those, we prove that algo-
rithm KNNSearchBF is optimal in terms of the number of node
accesses in Section 6.1.

6.1. Optimality of Algorithm KNNSearchBF
We first introduce the concept of the kNN search circle,

which is used in the proof of the optimality of the algorithm.
In KNNSearchBF, node entries are accessed in increasing order
of closest(O,Q,QT ), where an entry in a node is denoted by
O and it corresponds to either a lower level node or a data ob-
ject. Let dk denote the closest(O,Q,QT ) of the kth NN for the
predictive kNN query; dk equals MaxClosest(A,Q).dn when
KNNSearchBF terminates. The query point Q and dk defines a
moving circle (with Q as center and dk as radius) which covers
the searched space. We call this moving circle the kNN search
circle (for a predictive kNN query).

Lemma 4. Any correct algorithm for the predictive kNN query
must access every node whose TPBR intersects the kNN search
circle.

Proof: For every node whose TPBR intersects the kNN
search circle during QT , we must retrieve it to find out whether
it contains any object that satisfies the query. Otherwise, we
may miss an object that has smaller closest(O,Q,QT ) than dk

and hence should be in the answer set. 2

Theorem 3. The number of node accesses of algorithm
KNNSearchBF is optimal for the predictive kNN query.

Proof: Since KNNSearchBF accesses the node entries in in-
creasing order of closest(O,Q,QT ) and when KNNSearchBF
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stops, the last accessed entry’s closest(O,Q,QT ) is dk, only the
nodes with closest(O,Q,QT ) smaller than dk are accessed. Ac-
cording to Lemma 4, these are the nodes that must be accessed
to guarantee correctness. Therefore, KNNSearchBF only ac-
cesses the nodes that must be accessed. 2

KNNSearchBF(Node root, KNNQuery Q, Period QT )
1 A← ∅ // the answer set
2 pd ← ∞ // pruning distance
3 insert all entries of root to L /* L is a list sorted

on closest(e.T PBR,Q,QT ) */

4 do
5 remove the first entry e from L
6 if e.node is a non-leaf node
7 retrieve e.node
8 for every entry e′ in e.node
9 if closest(e′.TPBR,Q,QT ) ≤ pd
10 insert e′ to L
11 if e.node is a leaf node
12 retrieve e.node
13 for every object O in e.node
14 < dn, tn >← closest time(O,Q,QT )
15 if |A| < k
16 A← A∪ < O, dn, tn >
17 if |A| = k
18 pd ← MaxClosest(A,Q).dn

19 else if dn < pd // already k candidates
20 A← A − MaxClosest(A,Q)
21 A← A∪ < O, dn, tn >
22 pd ← MaxClosest(A,Q).dn

23while L is not empty and for the first entry e of L,
closest(e.TPBR,Q,QT ) ≤ pd

24Return A
End KNNSearchBF

Figure 18: Algorithm KNNSearchBF

6.2. Closest Distance
Theorem 4. Given a TPBR O, a predictive kNN query Q
and a querying period QT = [t`, ta], the closest distance be-
tween Q and O during QT equals the closest distance between
S R(O, q, t`, ta) and the origin.

Proof: Given Lemma 2 and the observation that coordinate
transformation does not change distances between objects at
any time point, then the closest distance between Q and O at any
timestamp t is the closest distance between T MS (O,Q, t) and
the origin. The closest distance between Q and O at all times-
tamps in QT is the minimum of the closest distances between
T MS (O,Q, t) and the origin for all timestamps t ∈ QT , which
equals the closest distance between

⋃
t`≤t≤ta T MS (O,Q, t) and

the origin, that is, the closest distance between S R(O,Q, t`, ta)
and the origin. 2.

Theorem 4 means that we just need to calculate the
distance between S R(O, q, t`, ta) and the origin to obtain

closest(O,Q,QT ). The predictive kNN query is a moving point.
Therefore, S R(O, q, t`, ta) reduces to the sweeping region of the
TPBR O and T MS (O,Q, t`) (T MS (O,Q, ta)) becomes the ini-
tial (final) MBR of O, respectively, in the transformed coordi-
nate system. Figure 198 shows the typical cases with regard
to the relative positions between the initial MBR and the final
MBR of O. Any other case is similar to one of them, so we
only present how to obtain the distance between S R(O, q, t`, ta)
and the origin for these cases. Figure 19(a) is the case where
each pair of parallel sides is moving in the same direction. Fig-
ure 19(b) is the case where one pair of parallel sides is mov-
ing in the same direction, while the other pair is moving in
opposite directions. Figure 19(c) is the case where each pair
of parallel sides is moving in opposite directions. In this case,
S R(O, q, t`, ta) is totally contained in the final MBR.

For cases A and B, S R(O,Q, t`, ta) is a hexagon bounded
by two rectangles and two line segments. For case C,
S R(O,Q, t`, ta) is a rectangle. For any case, we can easily find
out all vertices of S R(O,Q, t`, ta) and check whether the ori-
gin is inside S R(O,Q, t`, ta) using the n-sided polygon method
described in Section 5.2. If yes, then closest(O,Q,QT ) is 0;
otherwise, the closest distance must be one of the following:

(1) The closest distance to the initial MBR,
(2) The closest distance to the final MBR,
or (3) The closest distance to one of the two line segments.

We calculate all these three distances and the minimum of
them is the closest distance between S R(O,Q, t`, ta) and the ori-
gin. For example, if the origin is at position U1 in Figure 19(a)
or 19(b), the closest distance (from the origin) is to the initial
MBR. If the origin is at position U1 in Figure 19(c), the closest
distance is to the final MBR. If the origin is at position U5 in
Figure 19(a) or 19(b), the closest distance is to a line segment.

The closest distance to an MBR is the smallest one among
the closest distances to the four sides of the MBR. Every side
of the MBR is a line segment. Therefore, all the above closest
distances reduce to the calculation of the closest distance to a
line segment.

For a line segment L with two ends (x1, y1) and (x2, y2), we
draw a perpendicular line to L from the origin and let the per-
pendicular foot be Z. Z lies on the line segment if and only if
the origin is bounded by the two normals of line L at (x1, y1)
and (x2, y2), or mathematically, ((x2 − x1)x1 + (y2 − y1)y1)((x2 −
x1)x2 + (y2 − y1)y2) < 0. In this case, the closest distance is

|x1y2−x2y1 |√
(x2−x1)2+(y2−y1)2

. If Z is not on the line segment, the closest dis-

tance is the smaller one of the distances to the two ends of L,

that is, min(
√

x2
1 + y2

1,
√

x2
2 + y2

2).
For example, in Figure 19(a), point U5 is bounded by the two

normals of the line segment AB, so the closest distance from
U5 to AB is the distance from U5 to the perpendicular foot.
Point U1 is not bounded by the two normals of the line segment
CD, so its closest distance to CD is the distance to the nearer
end C. However, U1C is larger than the distance of U1 to the

8The following discussions based on this figure refer to the transformed
coordinate system.
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Figure 19: The closest distance

initial MBR, therefore the closest distance is calculated using
the initial MBR.

6.3. The Timestamp for the Closest Distance

In addition to the closest distance between Q and O, we are
also interested in the timestamp when this closest distance hap-
pens. There are two cases:

(1) If O intersects Q during QT , we request the first times-
tamp at which the intersection happens;

(2) If O does not intersect Q, we request the timestamp at
which closest(O,Q,QT ) happens.

We still consider the transformed coordinate system, so Q is
at the origin. For case (1), if the initial MBR contains the origin
(for example, the origin is at point U2 in Figure 19(a), 19(b)
or 19(c)), then the requested timestamp is t`. Otherwise, the
remaining part of S R(O,Q, t`, ta) (the gray regions in Figures
19(a), 19(b) and 19(c)) is divided into two to four trapezoids by
the trails of the vertices of the MBR. The origin must be in one
of these trapezoids. The requested time is the time when the
moving MBR touches the origin, which is the time when one
of the parallel sides of a trapezoid “sweeps” over it. Take point
U3 in Figure 19(a), 19(b) or 19(c) for example. The parallel
sides of the trapezoid that contains it are vertical. The requested
timestamp is thus when the vertical side of the trapezoid meets
U3 (the vertical dashed line). For point U4 in the figures, the re-
quested timestamp is when the horizontal side of the trapezoid
touches U4. Therefore, to find out the requested timestamp, we
first identify the trapezoid the origin is in and the correspond-
ing parallel side. Then we calculate the requested timestamp
according to the initial position and the velocity of the side.

For case (2), the closest distance (from the origin) must be
to the initial MBR, the final MBR, or two line segments as dis-
cussed in the previous subsection. If the closest distance is to
the initial MBR or the final MBR, the timestamp is t` or ta,
respectively. Point U1 in Figure 19(a), 19(b) or 19(c) is an ex-
ample. Otherwise, the closest distance is to one of the two line
segments on the boundary of S R(O,Q, t`, ta). It happens when
the moving MBR touches the perpendicular foot from the origin
to its closest line segment on S R(O,Q, t`, ta). Point U5 in Figure
19(a) or 19(b) is an example. As explained in Section 6.2, we
can find the position of the perpendicular foot from U5. Then

the timestamp can be obtained according to the initial position
of the MBR and the velocities of the sides of the MBR. The
perpendicular foot from U5 to line segment AB divides AB into
two parts of lengths 1:2. Therefore, the timestamp when the
closest distance happens is 2t`+ta

3 . If the perpendicular foot is
not on the line segment, the closest distance must be to either
the initial or the final MBR.

7. Cost Model

In this section, we develop a cost model to estimate the cost
of predictive range queries, which again makes use of the Trans-
formed Minkowski Sum and its sweeping region. We also dis-
cuss how the cost model for predictive range queries can help
estimate the cost of predictive kNN queries.

7.1. Cost Model for Predictive Range Queries

To compute the expected number of nodes accessed by a
predictive range query Q, we sum up the probability of every
node intersecting Q. According to Theorem 1, a node O inter-
secting Q during the querying period QT [t`, ta] is equivalent to
S R(O,Q, t`, ta) intersecting the origin. Assume that the center
of Q distributes uniformly in the data space. Then the proba-
bility of S R(O,Q, t`, ta) intersecting the origin equals the area
of S R(O,Q, t`, ta) divided by the area of the data space. With-
out loss of generality, let the area of the data space be 1. Let
Area(g) denote the area of a region g. Then we have the fol-
lowing theorem.

Theorem 5. (Cost model for the predictive range query):
Let Q be a predictive range query whose center is uniformly
distributed in the data space, then the expected number of node
accesses for answering Q is

Cost(Q) =
∑

every node O

Area(S R(O,Q, t−, t+)) (1)

The proof is clear from the above discussion. Next we show
how to compute Area(S R(O,Q, t−, t+)). We still consider the
sub-cases categorized into three classes as described in Sec-
tion 5.2 and use the same notation as those used there.
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Shape 1: Case A, B.2, B’.2 and C.4
S R(O,Q, t−, t+) is the final Minkowski sum as shown in Fig-
ure 15. Area(S R(O,Q, t−, t+)) is the sum of the area of the rect-
angle (dark gray part), the area of the four marginal rectangles
(light gray part) and the four quarter sectors.

Area(S R(O,Q, t−, t+)) = (OaR1+ − OaR1−)(OaR2+ − OaR2−)

+2(OaR1+ − OaR1−)r2 + 2(OaR2+ − OaR2−)r2 + πr2
2.

Shape 2: Case B.1, B’.1, C.1, C.2 and C.3
As shown in Figure 16, S R(O,Q, t−, t+) consists of 11 regions:
the initial MBR (region 1), four marginal rectangles surround-
ing the initial and final rectangles (regions 2 to 5), two trapez-
iums (regions 6 and 7), two sectors (regions 8 and 9) and
two irregular shapes (regions 10 and 11). The two irregular
shapes here are the most complicated parts. Each of them is
divided further into two sectors and one trapezium. The lower
right irregular shape is divided into two sectors whose areas
are 1

2θ1r2
1 and 1

2 ( π2 − θ1)r2
2, and one trapezium whose area is

1
2 (r1 + r2)l1 sinα1. The upper left irregular shape is divided into
two sectors whose areas are 1

2θ2r2
1 and 1

2 ( π2 − θ2)r2
2, and one

trapezium whose area is 1
2 (r1 + r2)l2 sinα2. Computation of the

areas of the other regions are straightforward, so we provide the
result as follows.

Area(S R(O,Q, t−, t+)) =

w1h1 + r1h1 + r1w1 + r2h2 + r2w2 +
1
2

(w1 + w2)OV2+(t+ − t−)

+
1
2

(h1 + h2)OV1+(t+ − t−) +
1
4
πr2

1 +
1
4
πr2

2

+
1
2

(θ1 + θ2)r2
1 +

1
2

(π − θ1 − θ2)r2
2

+
1
2

(r1 + r2)l1 sinα1 +
1
2

(r1 + r2)l2 sinα2,

where r1, r2,w1, h1,w2, h2, l1, l2, α1, α2, θ1 and θ2 have been de-
rived in Section 5.2.

Shape 3: Case C.5
Case C.5 is shown in Figure 14. The total area of other regions
than the lower left corner is

(OaR1+ − OaR1−)(OaR2+ − OaR2−) + 2(OaR1+ − OaR1−)r2

+ 2(OaR2+ − OaR2−)r2 +
3
4
πr2

2. (2)

The lower left corner as shown in Figure 17 can be calcu-
lated by adding up the two light gray regions (one in Figure
17(a) and one in Figure 17(b)), and then subtracting their inter-
section. Their intersection is the quarter sector of the smaller
radius (among the initial radius and the final radius). Each
light gray region is divided into two sectors and one trapez-
ium. The area of the light gray region in Figure 17(a) is
1
2∠AME · r2

2 + 1
2∠FND · r2

1 + 1
2 (r1 + r2)l sinα; the area of the

light gray region in Figure 17(b) is 1
2∠BMJ · r2

2 + 1
2∠INC · r2

1 +
1
2 (r1 + r2)l sinα, where l = MN, and α = ∠EMN = ∠JMN.
Note that ∠AME + ∠BMJ = π

2 − 2α and ∠FND + ∠INC =
π
2 + 2α, so the sum of the area of the two light gray regions is

1
2 ( π2 + 2α)r2

1 + 1
2 ( π2 − 2α)r2

2 + (r1 + r2)l sinα. By subtracting
the area of their intersection π

4 r2
1, the total area of the lower left

corner is

αr2
1 +

1
2

(
π

2
− 2α)r2

2 + (r1 + r2)l sinα (3)

By adding (2) and (3), we get

Area(S R(O,Q, t−, t+)) =

(OaR1+ − OaR1− + 2r2)(OaR2+ − OaR2− + 2r2)

+ (π − 4)r2
2 + αr2

1 − αr2
2 + (r1 + r2)l sinα,

where l =
√
|OV1−|2 + |OV2−|2(t+ − t−), and α = cos−1 r2−r1

l .

7.2. Discussion on the Cost Model of Predictive kNN Queries

As explained in the proof of Theorem 3, for a predictive kNN
query Q, only the nodes with closest(O,Q,QT ) smaller than dk

are accessed. Let tk be the time when the kth NN is found.
Consider a range query Q′ that has Q as its center, QV as its
velocity, [tc, tk] as the querying period QT , dk as the radius and
rv = 0 (i.e., the radius does not change). We can prove the
following theorem.

Theorem 6. During QT , a moving object O intersects Q′ if and
only if O’s closest(O,Q,QT ) is less than or equal to dk.

Proof: If O intersects Q′ during QT , then there must exist a
timestamp in QT when O has a distance to Q smaller than or
equal to dk, so O’s closest(O,Q,QT ) is less than or equal to dk.
On the other hand, if O’s closest(O,Q,QT ) is less than or equal
to dk, O must intersect Q′ when closest(O,Q,QT ) happens. 2

The above theorem implies that Q′ accesses only and all the
nodes with closest(O,Q,QT ) less than or equal to dk, which
are the same nodes accessed by Q using our KNNSearchBF
algorithm. If we know dk, then we can use Q′ and the cost
model for predictive range queries to estimate the number of
node accesses for predictive kNN queries. However, estimat-
ing kNN distance has been a difficult problem even for static
objects [5, 27]. Little work has been done on estimating kNN
distance for moving objects. A full investigation on this topic is
beyond the scope of this paper and we defer it to future work.

8. Experiments

This section reports our experimental results. We present the
results on our predictive range search algorithm in Section 8.1
and the results on our predictive kNN search algorithm in Sec-
tion 8.2. Finally we evaluate our cost model in Section 8.3.

We have generated datasets and queries using the benchmark
data generator proposed by Chen et al. [6]. The parameters
of the datasets are described as follows. The moving objects
are populated in a 2-dimensional 100,000×100,000 coordinate
space and 100 “hotspots” are uniformly distributed in the space.
The moving objects gather around these hotspots and their dis-
tances to the hotspots follow a Gaussian distribution. By de-
fault, we use a dataset with 100,000 moving objects. There are
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10 ring-shaped speed zones around each hotspot and the highest
speed is 100. The speeds of objects are generated according to
the speed zone and also in a way that guarantees the Gaussian
distribution (please refer to [6] for more details). The horizon
H of the TPR*-tree is 120 time units. Note that the benchmark
data generator does not insert the 100,000 objects all at once
at timestamp 0. Instead, their initial insertions are spread in
time [0, 120] and there are updates of already inserted objects
interleaved with the insertions. When the 100,000 objects are
all inserted at timestamp 120, about 80,000 updates besides the
insertions have been performed.

The centers of the queries follow the same distribution as the
data. For every set of the experiments, we run 100 queries gen-
erated as above and report the average I/O and CPU time as the
results. We will describe the query workloads as we discuss
each particular experiment. The tree node size is 4096 bytes.
All the techniques were implemented in C++. All the exper-
iments were run on a desktop computer with Intel Duel Core
2.4GHz CPU and 2GB RAM.

8.1. Evaluation of the Range Search Algorithm
In this subsection, we evaluate the performance of our pro-

posed range search algorithm RangeSearch presented in Sec-
tion 5. Since there was no previous study on the range query,
a naive method is to first perform a window query that is the
minimum TPBR of the range query, and then check all the re-
trieved objects against the range query to remove false posi-
tives. However, it should be noted that the false positives have
to be pruned using our proposed method in Section 5 because
no existing method can determine whether a TPBR intersects a
moving range query. To process the window query, we use two
recent algorithms. One is the window query algorithm for the
TPR*-tree [24], the other is the window query algorithm for
the Bx-tree [13]. We compare these two approaches with our
algorithm RangeSearch.

In this set of experiments, the locations of the centers of the
range queries follow the data distribution. The centers’ speeds
are randomly distributed in [0, 100]. The query radii are ran-
domly distributed in [0, QRmax]. The default value for QRmax

is 5,000. The starting time ts for the querying period is ran-
domly generated in the range [120, 240]. We first let the length
of the querying period QT be 0. The I/O and CPU costs as
functions of the number of updates are plotted in Figure 20.
As there are about 80,000 updates at the time when all objects
are inserted (i.e.,120), the horizontal axis starts with 80,000 up-
dates. In the figure, “TW” represents the TPR*-tree window
query based approach; “TR” represents our range search algo-
rithm; “BW” represents the Bx-tree window query based ap-
proach. We observe that TR always has less I/Os than TW and
BW. This is because we only access the pages that intersect the
query range while TW and BW access all the pages that inter-
sect the TPBR of the query range, which is always larger than
the query range. BW has the largest number of I/Os because
it needs to expand the query window according to the highest
speed in the query area to guarantee no false dismissals; this
pessimistic approach results in a actual search range larger than
the necessary minimum query window. The CPU time plot has

(a) Page accesses (b) CPU time
Figure 20: Range queries, varying updates

a similar trend to the I/Os in general. BW accesses more search
space and therefore has more computation than TW and TR.
We also observe that TW and TR have similar CPU time. Al-
though the analysis in Section 5.2 for TW seems complicated,
actually only a few inequalities need to be checked to decide
whether a node needs to be accessed for each case. We can see
that TW has the best overall performance among all the com-
petitive techniques. Interestingly, both the IO and CPU time of
TR and TW decrease slightly as updates increase. This may be
because the insertions tighten the tree nodes and result in bet-
ter performance. The costs of Bx-tree sometimes increase and
sometimes decrease as the number of updates change (which
corresponds to time change). This phenomenon conforms with
the periodic behavior of Bx-tree’s query performance observed
in other studies [29, 6].

We also compare the three techniques using other query
workloads. We vary QRmax from 2,500 to 10,000 at the step of
2,500 to see the effect of the query size. We use the dataset with
80,000 updates while the other parameters remain the same as
above. The I/O and CPU costs as functions of QRmax are shown
in Figure 21. It is expected that the costs of all the techniques

(a) Page accesses (b) CPU time
Figure 21: Range queries, varying QRmax

increase as QRmax increases. Their relative performance has the
same trend as the previous experiment.

Next, we vary the length of the querying period QT from 0
to 60. QRmax is 5,000 and the other parameters remain the same
as above. The result is shown in Figure 22. It is expected that
the costs of all the techniques increase as QT increases. Again,
their relative performance has the same trend as the previous
experiment.

In summary, our RangeSearch algorithm based on the Trans-
formed Minkowski Sum is the only one that can return the exact
answer to predictive range queries, and moreover, it is more ef-
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(a) Page accesses (b) CPU time
Figure 22: Range queries, varying QT

ficient than other techniques.

8.2. Evaluation of the KNN Search Algorithm

In this subsection, we evaluate the performance of
our proposed kNN search algorithms KNNSearchBF and
KNNSearchDF presented in Section 6. As discussed in Sec-
tion 3, the most reasonable competitors are the Bx-tree based
kNN algorithm (we call it B-KNN) and the continuous kNN
algorithm proposed by Benetis et al. [4] (we call it BJKS-
KNN). Therefore, we compare our algorithms with these two
algorithms in the experiments. For BJKS-KNN, the best-first
traversal with the mint∈[t`,ta]dq(R, t) metric is used since it is re-
ported to be the best variant in [4]. For the first two sets of
experiments, the length of QT is set to 0 so that the continuous
nature of BJKS-KNN does not incur any unnecessary cost for
predictive queries, but we will set QT as non-zero to see the
effect in the remaining experiments. The locations of the kNN
queries follow the data distribution. The queries’ speeds are
randomly distributed in [0, 100].

As discussed in Section 3.4, B-KNN can only process time-
slice kNN queries rather than moving kNN queries. For the
sake of performance comparison, we let all the kNN queries be
static in this first set of experiments. The length of QT is 0 and
the starting time ts of QT is uniformly distributed in the period
[120, 240]. The I/O and CPU costs as functions of k are plotted
in Figure 23. “PKNN-BF” and “PKNN-DF” represent our al-

(a) Page accesses (b) CPU time
Figure 23: KNN queries, varying k

gorithms KNNSearchBF and KNNSearchDF, respectively. We
observe that PKNN-BF has fewer I/Os than PKNN-DF because
PKNN-BF is optimal in terms of node accesses. PKNN-BF
has the same I/Os as BJKS-KNN. This is because when the
length of QT is 0, the query becomes a snapshot query and the
mint∈[t`,ta]dq(R, t) metric also becomes I/O optimal for snapshot

queries. All the above three algorithms have much fewer I/Os
than B-KNN. The reason is as follows. The Bx-tree enlarges
the query window according to the object of the highest speed,
which may lead to unnecessarily large search range. Its kNN
query performance may be even worse since it depends on an
initial estimate of the kNN distance, which may be larger than
the actual kNN distance. In terms of CPU cost, both PKNN-DF
and PKNN-BF show notable improvements over BJKS-KNN.
The reason is as follows. Our algorithms only need to com-
pute closest(O,Q,QT ) between entries and the query in the tree
traversal, which can be obtained through computing a few dis-
tances between points and line segments (Section 6.2), while
BJKS-KNN needs to solve a number of quadratic inequalities
(Section 3.6). This was verified by a profiling analysis. PKNN-
BF has slightly higher CPU cost than PKNN-DF when k is
small and then lower CPU cost than PKNN-DF when k is large.
The reason is that PKNN-BF needs to maintain a priority queue
for the NN candidates. When k is small, the benefit of retrieving
slightly fewer pages is less than the overhead of maintaining the
queue, but the benefit overweighs the overhead when k is large.
The Bx-tree is much worse than the other algorithms in terms
of CPU time for similar reasons discussed above. We do not
show the results of B-KNN in the remaining experiments for
presentation purposes. The I/O and CPU cost of all techniques
increase as k increases, because the larger the k, the more ob-
jects need to be accessed and evaluated.

In the second experiment, we see how the performance
changes with updates. As in the predictive range query experi-
ments, we vary the number of updates from 80,000 to 200,000.
We set k as 10 and keep the other parameters the same as above.
The comparative results between PKNN-DF, PKNN-BF and
BJKS-KNN as shown in Figure 24 are similar to those in Fig-
ure 23. We do not observe much performance change as the
number of updates increases.

(a) Page accesses (b) CPU time
Figure 24: KNN queries, varying updates

In the third experiment, we see how the querying period
length affects the performance. We vary the length of the query-
ing period QT from 0 to 60. We use the dataset with 80,000
updates while the other parameters remain the same as above.
The I/O and CPU costs as functions of QT are plotted in Fig-
ure 25. The relative performance between PKNN-DF, PKNN-
BF and BJKS-KNN are similar to the previous results except
a few differences. First, the difference between them become
larger as the querying period length increases. This is because
BJKS-KNN is a continuous kNN algorithm, which computes
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(a) Page accesses (b) CPU time
Figure 25: KNN queries, varying QT

the kNN for all the timestamps in the querying period. As the
querying period becomes longer, there are more different kNN
result changes in the querying period and hence more process-
ing costs. Another difference from the previous two sets of
experiments is that BJKS-KNN is no longer optimal in terms
of page access cost when the length of the querying period is
nonzero. This is because BJKS-KNN finds the kNN set for any
time point in the querying period, which results in both extra
I/O and CPU cost. Therefore, BJKS-KNN has more I/Os than
both PKNN-BF and PKNN-DF when the length of the query-
ing period becomes nonzero. When the querying period is 60
time units long, the number of I/O of BJKS-KNN is about 50%
more than those of PKNN-DF and PKNN-BF; the CPU time of
BJKS-KNN is 8 times those of PKNN-DF and PKNN-BF. This
confirms our statement that it is inefficient to use continuous
kNN algorithms to process predictive kNN queries.

8.3. Evaluation of the Cost Model
In this subsection, we evaluate the accuracy of the cost model

developed in Section 7.1 for predictive range queries. The
queries are generated in the same way as before except that the
radius is just one value Qr rather than being distributed in the
range [0, QRmax]. This is because the cost model estimates the
cost for a given query size. We still use the 100,000 objects
dataset with 80,000 updates. In the first experiment, we vary
Qr from 2,500 to 10,000. The actual number of node accesses
and the number computed by the model (Equation 1) are shown
in Figure 26 (a). The corresponding relative errors are shown in
Figure 26 (b). We can see that the relative errors are all below
8%, which shows the high accuracy of our cost model.

(a) Actual vs. model (b) Relative error
Figure 26: Cost model, varying Qr

In another experiment, we fix Qr as 5,000 but vary the size of
the dataset from 25,000 objects to 100,000 objects. The other

parameters of the datasets are the same as those for the dataset
of 100,000 objects. The comparison between the actual and
estimated numbers of nodes, as well as the relative errors are
shown in Figure 27. The errors are all below 10%. The accu-

(a) Actual vs. model (b) Relative error
Figure 27: Cost model, varying dataset size

racy gets higher as the dataset size gets larger. We have varied
other parameters and done similar experiments. The relative
errors are all less than 10%.

9. Conclusions and Discussions

In this article, we introduced the Transformed Minkowski
Sum (TMS) technique for determining the intersection of two
moving objects of arbitrary shapes. We have exemplified the
usage of this technique by applying it to two typical types of
queries on moving objects, that is, the predictive range and kNN
queries. Based on the TMS, we proposed an I/O optimal algo-
rithm for the predictive range query, which can return exactly
the objects that intersect a moving circular region; this has not
been achieved by any previous algorithm. We also proposed
an I/O optimal algorithm for the predictive kNN query based
on the TMS. Furthermore, we derived a cost model based on
the TMS for estimating the number of node accesses of predic-
tive range queries and showed how this model can help estimate
the cost of predictive kNN queries. Through experiments, we
have verified the effectiveness of the technique and shown that
the proposed algorithms outperform competitive techniques in
both I/O and CPU costs. The experiments also showed that our
cost model has high accuracy.

Since the objects trajectories are represented as linear func-
tions of time, it is possible to compute the shortest distance of
objects and a range query through solving an equation system
(note that it is not that trivial since there is a time range which
causes complexities in boundary cases). Then we may use this
as the pruning distance in the tree traversal to have an I/O opti-
mal algorithm. A full investigation of this approach is deferred
as future work. However, the TMS method is still preferable
as a convenient, intuitive and generic tool for analyzing mov-
ing spatial objects. Moreover, it provides highly efficient algo-
rithms which mostly need only a few inequality checks.

A. Lemma 2

Given a rectangle R and a circle S , the closest distance be-
tween R and S , is the closest distance between the Minkowski
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enlargement (sum) of R with regard to S and the center of S .
Proof: (A) If R intersects S :

According to Lemma 1, the Minkowski sum (we omit “of R
and S ” when the meaning is clear) intersects the center of S .
The closest distance between R and S is 0. The closest distance
between the Minkowski sum and the center of S is also 0.

(B) If R does not intersect S :
The Minkowski sum does not intersect the center of S . We
extend the four sides of R and divide the plane outside R into
eight regions as shown in Figure 28(a). There are two scenarios
as follow.

(B.1) If the center of S is in regions 1, 3, 6 and 8:
For example, the center of S is at point E as shown in Figure
28(b). The closest corner of R to E is B. Line BE intersects
S at F and the boundary of the Minkowski sum at G. It is
easy to show that: the closest distance between R and S is |BF|;
the closest distance between the Minkowski sum and E is |EG|.
|EF| equals |BG|, so |BF| equals |EG|.
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Figure 28: Lemma 2

(B.2) If the center of S is in regions 2, 4, 5 and 7:
For example, the center of S is at point I as shown in Figure
28(b). The closest side of R to I is BD. We can draw a line
perpendicular to BD from I, intersecting BD at point J. Line IJ
intersects S at M and the boundary of the Minkowski sum at N.
It is easy to show that: the closest distance between R and S is
|JM|; the closest distance between the Minkowski sum and I is
|IN |. |IM| equals |JN |, so |JM| equals |IN |. 2.
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