
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1-2017

Enabling sustainable bulk transfer in
environmentally-powered wireless sensor networks
Alvin Cerdena VALERA
Singapore Management University, alvinvalera@smu.edu.sg

Wee-Seng SOH

Hwee-Pink TAN
Singapore Management University, hptan@smu.edu.sg

DOI: https://doi.org/10.1016/j.adhoc.2016.10.008

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
VALERA, Alvin Cerdena; SOH, Wee-Seng; and Hwee-Pink TAN. Enabling sustainable bulk transfer in environmentally-powered
wireless sensor networks. (2017). Ad Hoc Networks. 54, 85-98. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3324

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111755971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.adhoc.2016.10.008
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3324&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3324&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Enabling Sustainable Bulk Transfer in

Environmentally-Powered Wireless Sensor Networks

Alvin C. Valeraa,b, Wee-Seng Sohb, Hwee-Pink Tana

aSchool of Information Systems, Singapore Management University, Singapore 178902
bDepartment of Electrical and Computer Engineering, National University of Singapore,

Singapore 117583

Abstract

We address the problem of transferring bulk data in environmentally-powered
wireless sensor networks where duty cycle compliance is critical for their unin-
terrupted operation. We propose Pump-and-Nap, a packet train forwarding
technique that maximizes throughput while simultaneously enforcing com-
pliance to dynamic duty cycle limitations. A node using Pump-and-Nap

operates by pumping a train of packets followed by a napping period where
the node forgoes any transmission. Pump-and-Nap employs an adaptive
controller to periodically compute the optimal capacity, that is, the maxi-
mum number of packets a node can receive and transmit in a train, given its
duty cycle constraint. The controller uses prior input-output observations
(capacity allocations and their corresponding duty cycle usage) to continu-
ously tune its performance and adapt to wireless link quality variations. Its
use of local information makes the controller easily deployable in a distributed
fashion. We implemented Pump-and-Nap in TinyOS and evaluated its per-
formance through experiments and testbed simulations. Results show that
Pump-and-Nap provides high transfer throughput while it simultaneously
tracks the target duty cycle. More importantly, Pump-and-Nap enables sus-
tainable bulk transfer compared to state-of-the-art techniques that greedily
maximize throughput at the expense of downtime due to energy depletion.

Keywords: Bulk transfer; energy-harvesting; adaptive control; dynamic
duty cycling; sensor network

Email addresses: alvinvalera@smu.edu.sg (Alvin C. Valera),
elesohws@nus.edu.sg (Wee-Seng Soh), hptan@smu.edu.sg (Hwee-Pink Tan)

Preprint submitted to Elsevier June 22, 2016

ppyeo
Typewritten Text
Published in Ad Hoc Networks, January 2017, Volume 54, Pages 85–98.http://doi.org/10.1016/j.adhoc.2016.10.008

1. Introduction

Wireless sensor networks are becoming ubiquitous because of their di-
verse applications in areas such as agriculture, environmental monitoring,
industrial and home automation, military, and structural health monitoring,
to name a few [1]. A critical issue that plagues many deployments, however,
is the limited lifetime problem due to the finite battery capacity of sensor
nodes [2]. Fortunately, advances in energy harvesting and storage technolo-
gies are enabling the deployment of environmentally-powered wireless sensor
networks (EPWSN), wherein the sensor nodes harvest energy from the en-
vironment to recharge their batteries or energy stores. Recently, the use
of supercapacitors as primary energy store is becoming popular because of
their significantly higher number of recharge cycles compared to batteries [3].
Some example nodes that solely rely on supercapacitors are Everlast, Solar-
Biscuit, and Sunflower [2].

In many applications (e.g., [4, 5]), sensor nodes are tasked to record time-
series data at high sampling rates, resulting in large or bulk sensor data.
These bulk data, typically in the order of tens to hundreds of kilobytes,
need to be transferred in real-time to a gateway for eventual transmission
to the backend, where further processing and analysis can be undertaken.
Due to storage limitations in sensor nodes, bulk data must be immediately
transferred to avoid overflow and data loss. Bulk transfer in EPWSNs is
challenging because the nodes perform adaptive duty cycling to ensure un-
interrupted operation [6, 7, 8]. This is especially imperative in deployments
wherein the sensor nodes rely solely on low capacity energy stores such as
supercapacitors [2]. Such nodes must strictly operate according to a specified
duty cycle, or risk downtime due to short-term energy shortage.

In this work, we tackle the problem of bulk data transfer in EPWSNs
where adherence to duty cycle constraints is a primary concern. While sev-
eral bulk transfer schemes have been proposed [9, 10, 11, 12, 13, 14], they
focus mainly on maximizing the throughput, neglecting the duty cycle con-
straints of sensor nodes. The use of existing schemes may therefore cause
uncontrolled and rapid draining of the energy reserves, leading to the tem-
porary unavailability of nodes along the transfer path. Ultimately, this will
result in transfer disruptions which render the transfer of arbitrarily-sized
sensor data difficult, if not infeasible.

Recently, the use of packet bursting or packet trains in conjunction with
radio duty cycling [12] have been proposed to attain low power, high transfer

2

throughput. While the technique yields low energy consumption, the out-
come is incidental rather than intentional, i.e., the use of packet trains does
not actively control the energy usage to be within specified bounds. We there-
fore introduce Pump-and-Nap, a forwarding technique that uses controlled
packet trains to simultaneously maximize throughput and enforce compli-
ance to dynamic duty cycle limitations. At the heart of Pump-and-Nap

is an adaptive controller that determines a node’s optimal capacity, defined
as the maximum number of packets the node can receive and transmit in
a train within its duty cycle constraints. The controller uses prior input-
output observations (capacity allocations and their corresponding duty cycle
usage) to continuously tune its performance and adapt to wireless link quality
variations.

We implement Pump-and-Nap in TinyOS [15] and perform experiments
in the Indriya testbed [16], a 139-node indoor testbed, to evaluate its per-
formance. Experimental results show that Pump-and-Nap can adaptively
track duty cycles and provide high bulk transfer throughput at the same
time. More importantly, we demonstrate in energy harvesting experiments
and testbed simulations that Pump-and-Nap can truly enable sustainable
bulk transfer compared to state-of-the-art techniques [9, 12] that greedily
maximize throughput at the expense of downtime due to energy depletion.

The rest of the paper is organized as follows. In Section 2, we review the
state-of-the-art duty cycling and bulk transfer in sensor networks and identify
the challenges in the context of EPWSN. In Section 3, we describe Pump-

and-Nap in detail while in Section 4, we present its implementation, along
with the experiments designed to evaluate and compare its performance. In
Section 5, we present and discuss the experimental results. We conclude the
paper in Section 6 and state several possible future work.

2. State-of-the-art and Challenges

To understand how bulk transfer protocols will perform in EPWSN, we
survey the state-of-the-art in duty cycling and bulk transfer. The ultimate
aim of this section is to expose the shortcomings of existing bulk transfer
schemes when duty cycle compliance is of paramount importance.

2.1. Duty Cycling MAC Protocols

A duty-cycling node may employ any of the state-of-the-art duty cycling
medium access control (MAC) protocols to control the sleep and wakeup of

3

its radio. Duty cycling MAC protocols can be either synchronous [17, 18, 19]
or asynchronous [20, 21, 22, 23]. In the former, the nodes sleep and wakeup at
the same time while in the latter, the nodes may sleep and wakeup at different
times. In this work, we motivate our design using asynchronous schemes be-
cause they offer two distinct advantages over synchronous schemes: (i) they
do not require periodic re-synchronization which can entail significant energy
consumption [24]; and (ii) they do not require the storage and exchange of
wakeup schedules which can entail significant memory and communication
overhead [25]. Nevertheless, our resulting scheme can also be used on top of
synchronous MAC protocols after slight modifications.

In asynchronous schemes, a packet transmission is preceded either by a
beacon listening phase or a preamble(s) transmission phase1. The former is
employed in receiver-initiated schemes (e.g., [22]) while the latter is used in
transmitter-initiated schemes (e.g., [20, 21, 23]). Regardless, the transmit-
ting node always incurs this overhead before it can have the opportunity to
transmit its packets. For simplicity, we introduce a common term to refer to
either overhead:

Definition 1 (Pre-transmission Overhead). The duration from the mo-
ment a transmitting node v has a packet ready for transmission until the
time the receiving node w wakes up. During this time, v’s radio is active,
either awaiting for a beacon (receiver-initiated) or transmitting preamble(s)
(transmitter-initiated).

2.2. Bulk Transfer

Bulk transfer refers to the transmission of large amount of sensor data
from a source node to a destination node, typically a gateway or a base sta-
tion. Bulk transfer can actually be performed using generic transport pro-
tocols (Wang et al. [26] provides a good survey on this subject) but specific
application requirements and tight resource constraints in terms of mem-
ory, channel capacity and energy have led to the development of specialized
protocols for bulk transfers.

Koala [27] is one of the earliest schemes for bulk transfer. It uses round-
trip time (RTT) to control the sending rate from the source to the sink.
Specifically, Koala sends packets at a rate of RTT/2, relying on its under-
lying flexible control protocol to provide reliability. Koala supports duty

1In [23], preambles are replaced by actual data packets.

4

cycling and uses low-power probing, a technique akin to beacon transmission
in receiver-initiated MAC protocols.

Unfortunately, RTT-based rate control performs poorly over long paths.
As such, newer schemes such as Flush [9] and PIP [10] introduced the idea of
“pipelining” packets to improve throughput. Flush [9] proposed a method to
probe the interference range of a path and uses two simple rules to maximize
the sending rate of a node: (i) transmit when the successor node is free from
interference, and (ii) transmit at rate below the successor node’s sending
rate. PIP [10] took the idea of packet pipelining further through the use of
a MAC protocol that is TDMA-based, centralized, connection-oriented and
uses multiple channels. PIP essentially aims to tightly coordinate the packet
pipelining from the source to the sink and further reduce intra-flow and inter-
flow interference. The former occurs when transmissions of different nodes
from the same flow interfere with each other, while the latter occurs in the
case of transmissions from different nodes belonging to different concurrent
flows.

Flush and PIP are designed to maximize throughput without regard to
the energy consumption of the sensor nodes. To achieve the desired packet
pipelining effect, they need the radio to be turned on for the entire transfer
duration. To remedy this problem, Duquennoy et al. [12] proposed the use
of packet bursting, i.e., rapid transmission of successive packets after a single
wakeup, in conjunction with duty cycling. Results show that packet bursting
in conjunction with duty cycling in ContikiMAC [23] can provide low power
and high throughput performance. We note however that although [12] can
provide low power consumption, it is incidental rather than intentional, i.e.,
it does not actively control consumption to be within specified bounds.

2.3. Bulk Transfer in EPWSN

We can group the bulk transfer schemes that we have presented pre-
viously into two categories, namely, single packet-based and packet train-
based. Koala, Flush and PIP fall under the first category while the scheme
by Duquennoy et al. falls under the latter. In what follows, we identify the
issues of using either scheme in the context of EPWSN.

Consider a multi-hop bulk transfer from node s to t. Supposing that we
can modify the single packet-based schemes Flush and PIP to operate on top
of an asynchronous MAC, the fastest sending rate that a transmitting node
v can achieve is to transmit once every wakeup of its successor node w, or
1/(TL+TS) (cf. Figure 1). This is because v needs to wait for the ACK before

5

Figure 1: Illustrating the pre-transmission overhead of a transmission from v to w, denoted
by Dv. The shaded boxes denote the wakeup intervals of w.

it can transmit the next packet and obviously, it can only receive the ACK
when w is awake. Because of rate control, v does not transmit immediately
(after receiving an ACK) and hence, v goes back to sleep. Once v transmits
later (after an interval that is dependent on its packet sending rate), it must
wait again for w to be awake to receive the ACK.

In addition to the low throughput, every packet transmission will have a
very high pre-transmission overhead. To see why this is the case, consider
Figure 1. The moment v becomes ready to transmit, it needs to wait for
the next wakeup interval of w, which is Dv seconds into the future. If the
probability of a packet becoming ready for transmission at v is the same any
time, then

Dv ∼ U(0, TS), (1)

where U(0, TS) denotes the uniform distribution in [0, TS]. From (1), we
can see that on the average, the pre-transmission overhead is TS/2. Hence,
transmitting a single packet yields an average efficiency of τ/(τ + TS/2) =
2τ/(2τ + TS), where τ is the transmission time of a packet.

The use of packet trains can clearly remedy the deficiencies of single
packet-based schemes. Because duty cycling somewhat limits the opportuni-
ties at which nodes can exchange packets, it makes sense to transmit as many
packets as possible at every opportunity to improve efficiency. For clarity,
we define the notion of a packet train in the context of asynchronous duty
cycling as follows:

Definition 2 (Packet Train). A series of packet transmissions, where only
the first packet transmission is preceded by a pre-transmission overhead.

If L packets are transmitted in a train, the average efficiency increases to
2Lτ/(2Lτ + TS) while the throughput rises to L/(TL + TS) which is L times
that of the single packet transmission approach. There are however several

6

problems that need to be addressed in the use of packet trains in EPWSNs
where the nodes have strict duty cycle constraints:

Problem 1. What packet train length should a transmitting node use, given
the duty cycle constraints of itself and the receiving node?

Problem 2. For relay nodes, how should they allocate their respective duty
cycles between packet train reception and packet train transmission?

Problem 3. Every node along the transfer path needs to periodically review
the duty cycle allocation (and hence packet train lengths) to adapt to changes
in duty cycle target and wireless link quality, and attain optimal performance
over time.

3. Pump-and-Nap Design

In this section, we introduce Pump-and-Nap, a bulk transfer scheme
that addresses the challenges enumerated in the preceding section. In the
design of Pump-and-Nap, we assume that at most one bulk transfer is
permitted at any given time. This is the usual modus operandi in data
collection, as simultaneous transfers cause inter-flow interference which can
severely degrade the throughput performance [9] and in severely-constrained
sensor nodes, this may entail excessive resource consumption leaving insuffi-
cient resources for sensing and data processing. The recommended strategy
is to let the gateway or sink node initiate all data transfers to ensure that at
most one transfer is on-going at any point in time.

While this paper focuses on single asynchronous bulk transfers, Pump-
and-Nap can nevertheless be extended to support simultaneous transfers.
At the end of this section, we describe one approach on how this extension
can be undertaken. In the following, we introduce the fundamental design
parameters of the proposed scheme.

Epoch. Time is divided into epochs with fixed duration T . The nodes need
not be synchronized, i.e., the start of epochs in nodes u and v need not occur
simultaneously. The main reason for dividing time into epochs is to facilitate
“periodic review” of Pump-and-Nap operating parameters at the start of
every epoch.

7

Figure 2: Pump-and-Nap architecture.

Target Duty Cycle. The nodes employ adaptive duty cycling to balance the
dynamic energy supply and demand [6, 7, 8]. We let δv(k) denote the target
duty cycle of v in epoch k which indicates the fraction of time that v can be
active for reception and transmission. Note that δv(k) ∈ [0, 1].

MAC Protocol. Pump-and-Nap is designed to work with any asynchronous
scheduling scheme that supports back-to-back packet transmissions or packet
trains. We employ X-MAC [21] because of its implementation availability in
TinyOS and more importantly, it supports packet trains. In the TinyOS im-
plementation, this is possible because a duty-cycled node waits for a specified
amount of time (DELAY AFTER RECEIVE) after its last packet reception before
going back to sleep.

3.1. Architecture

Figure 2 shows the architecture of Pump-and-Nap with the major func-
tional blocks. The two main functions provided by Pump-and-Nap are
hop-by-hop packet train transmission using the pump and nap strategy, and
dynamic computation of packet train length using adaptive capacity control.
The former will be elaborated in Section 3.2 while the latter will be discussed
in detail in Section 3.3.

Pump-and-Nap is specifically designed for dynamic duty cycling sensor
networks and as such, it is assumed that an adaptive duty cycle controller
provides the optimal operating duty cycle. Nevertheless, Pump-and-Nap

8

can also be used even in static duty cycle scenarios, as will be elaborated at
the end of this section. In either case, Pump-and-Nap’s goal is to ensure
that the radio duty cycle will comply with the stipulated duty cycle to ensure
long-term sustainability. To perform packet forwarding, Pump-and-Nap re-
quires the knowledge of the successor node which can be obtained through
a routing protocol. Finally, to control the wakeup scheduling of the wire-
less transceiver and perform efficient packet transmissions, Pump-and-Nap

relies on an asynchronous MAC protocol that supports back-to-back packet
transmissions.

3.2. Operation

Pump-and-Nap is a forwarding technique that can be used in conjunc-
tion with existing bulk transport protocols. As such, Pump-and-Nap fo-
cuses on two areas: (i) the computation of packet train lengths, and (ii) the
manner by which packet trains are exchanged at every hop, from the source
to the sink. In what follows, we describe the operation of Pump-and-Nap

in a multihop bulk transfer from s to t along a path Pst. We assume that
every node has a queue for storing packets. We also assume that the transfer
has been initiated, and that every node v ∈ Pst has started the operation
of its adaptive controller, the details of which are presented in Section 3.3.
For now, it is sufficient to know that the adaptive controller is responsible
for computing rv(k) and tv(k) at every epoch k, the maximum number of
packets that v can receive and transmit, respectively, given its current duty
cycle δv(k).

To commence the transfer, s starts a nap cycle timer which will time out
after T seconds (1 epoch). Node s then sends a train request to its successor
node, say v. When v receives the request, it sends back a train reply to s
indicating rv(k), the maximum number of packets that v can receive in the
current epoch. Node s then pumps at most ρs(k) packets back-to-back to v,
where ρs(k) = min[ts(k), rv(k)]. After this pumping session, s takes a nap,
i.e., stops transmissions until the next cycle. If rv(k) < Qv(k), where Qv(k)
is the queue length of v at k, then the remaining packets will stay in its queue
and will be transmitted in the next epoch.

3.2.1. Basic Packet Train Forwarding

Let us look at how an arbitrary relay node v will perform packet trans-
missions. After receiving a train of packets from its predecessor node u, v
performs its own pump-and-nap transmission strategy to its successor node

9

w. That is, v sends a train request to w. After receiving a train reply which
indicates rw(k), v pumps at most ρv(k) packets back-to-back to w, where

ρv(k) = min[tv(k), rw(k)],

and immediately takes a nap after this. Note a subtle difference between how
s and v performs the pump-and-nap strategy: while s uses a nap timer to
trigger pumping sessions, v does not employ any such timer. This is because
v’s trigger for its pumping session is the end of its packet train reception
from u. In the ideal case, the duty cycle usage of v, denoted by dv(k), is

dv(k) :=
τv(k)

T
, (2)

where τv(k) is the total time that v has been active. This includes the packet
train reception time from u, pre-transmission overhead, train request/reply
overhead, and packet train transmission time to w.

3.2.2. Wakeup-Synchronized Packet Train Forwarding

In the preceding approach, v commences packet train transmission to w
immediately after completing a packet train reception from u, regardless of
whether w is asleep or awake. Note that it is possible for v to optimize its
duty cycle usage by timing its transmission to begin at the moment that w
wakes up. This requires v to know the exact wakeup intervals of w. But for
transferring large bulk data, this overhead is justified because it will reduce, if
not eliminate, the pre-transmission overhead. This will result in v consuming
a lower duty cycle for the same packet train length.

Regardless of whether the basic or wakeup-synchronized packet train
transmission is employed, the hop-by-hop packet train transmission strat-
egy is repeated until the sink node t. Pump-and-Nap relies on the link
layer for reliability and error detection. When a node v fails to receive an
ACK for the latest transmitted packet (that is part of the train), and after
exhausting the specified retransmission limit, the packet being transmitted is
not dropped; rather, v stops the packet train transmission and immediately
takes a nap. Note that when a packet train transmission is abnormally ter-
minated due to such failures, the subsequent packet train transmission will
commence from the last unsuccessful packet.

10

3.3. Adaptive Capacity Control

We shall now discuss the design of an adaptive controller that can simul-
taneously address the three problems posed in Section 2. In our design, we
adapted the methodology described by Goodwin and Sin [28]. First, we seek
a dynamic model that describes the evolution of the quantity that we want to
control, i.e., the node duty cycle usage. This dynamic model will contain an
unknown system parameter. Second, we formulate the problem as two parts:
estimation of the unknown parameter, and calculation of optimal control law
using the parameter estimate.

The motivating problem at node v is to determine rv(k) and tv(k), the
maximum number of packets that v can receive and transmit, respectively,
given its current duty cycle δv(k). Taken together, the sum of rv(k) and tv(k)
is the node capacity Cv(k), that is,

Cv(k) := rv(k) + tv(k).

The goal of the adaptive capacity controller is to let the duty cycle usage
{dv(k)} track the target duty cycle {δv(k)}, for all epoch k, while at the
same time maximize {Cv(k)}.

3.3.1. Input-Output Model

As a matter of convention, we assume that control decisions are done at
the start of every epoch k. There is a unit epoch delay before the effects
of the control decision can be observed. Thus, if v decides to receive rv(k)
packets and transmit tv(k) packets at epoch k, we can only ascertain the
corresponding duty cycle usage at epoch k + 1, denoted by dv(k + 1), which
can be obtained by measuring the active time of the radio and using (2).

If α and β are the duty cycle ‘consumed’ for every successful packet recep-
tion and transmission, respectively, then dv(k + 1) = αrv(k) + βtv(k). Note
however that this formulation ignores two overheads: (i) the pre-transmission
overhead as discussed in Section 2.1; and (ii) the duty cycle used for the inter-
vals at which v wakes up to listen for transmissions (for transmitter-initiated
schemes) or transmit beacons (for receiver-initiated schemes). Denoting Uv

for the former and Lv for the latter, we have

dv(k + 1) = αrv(k) + βtv(k) + Uv(k + 1) + Lv. (3)

The parameter Lv can be treated as a constant since v incurs the same over-
head at every epoch. Because there is at most one packet train transmission

11

(a) (b)

(c)

Figure 3: Modeling of the system for adaptive feedback control: (a) input-output model;
(b) simplified model; and (c) system with adaptive controller.

every epoch, the duty cycle usage of pre-transmission overhead is simply

Uv(k) =
Dv(k)

T
,

where Dv(k) is a random variable defined in (1). With this, Uv(k) is effec-
tively uniform in [0, TS/T]. Note that the index of Uv is k+ 1 in (3) because
of the fact that its effect is only measured together with the measurement
of dv(k + 1). Uv(k) can actually be expressed as the sum of a constant and
uniform random variable, that is,

Uv(k) =
TS

2T
+Wv(k),

where Wv(k) ∼ U(−TS/2T, TS/2T). Lumping together all the constants as
K, (3) can be rewritten as

dv(k + 1) = αrv(k) + βtv(k) +Wv(k + 1) +K, (4)

where K := Lv + TS/(2T). A block diagram representation of (4) is shown
in Figure 3(a).

3.3.2. Simplified Model

In what follows, we refine (4) to address important considerations such
as queue stability and capacity maximization.

12

Queue Stability. Ensuring that queues are stable is important to reduce
packet loss due to buffer overflows. For the queue at v to be stable in the
long-run, the number of incoming packets must be at most equal to the
number of packets that v can transmit [29], or

rv(k) ≤ tv(k). (5)

Capacity Maximization. As mentioned, a key objective of the adaptive con-
troller is to maximize node capacity Cv(k). Given the constraint provided
by (5), it is easy to see that in order to maximize Cv(k), v must be allowed
to receive as much as possible. That is,

rv(k) = tv(k). (6)

From (6), by letting uv(k) denote either rv(k) or tv(k) and introducing a
parameter b, that is

uv(k) := rv(k) = tv(k), (7)

b := (α + β), (8)

(4) can be rewritten as

dv(k + 1) = buv(k) +Wv(k + 1) +K. (9)

We remark that as b encapsulates the “duty cycle cost” to successfully receive
and transmit a packet, it is affected by the variations of its incoming and
outgoing wireless links. For convenience, we make the following change of
variables:

yv(k) := dv(k)−K. (10)

Substituting this into (9) yields

yv(k + 1) = buv(k) +Wv(k + 1) (11)

which is our desired form and is pictorially depicted in Figure 3(b). Note that
the original control objective is to let {dv(k)} track {δv(k)}, for all epoch k.
But because dv(k) is ‘hidden’ in (11) due to the change of variables, we also
define the following for convenience:

y∗
v
(k) := δv(k)−K. (12)

The above essentially means that the equivalent control objective is for
{yv(k)} to track {y∗

v
(k)}.

13

3.3.3. Estimation and Control

We shall now use (11) to obtain the optimal control uv(k) that maximizes
the capacity of v while ensuring that the duty cycle usage {yv(k)} tracks the
target duty cycle {y∗

v
(k)}, for all epoch k. We structure the control system

as in Figure 3(c). A key component of the control system is the parameter
estimator, which is responsible for estimating the value of b and essentially
makes the controller adaptive. Because (11) is linear and the “noise” term
has zero mean (i.e., E[Wv(k)] = 0), the least squares estimate of b, denoted
by b̂, is given by [30]

b̂ =

∑

k−1
i=0 yv(i+ 1)uv(i)

∑

k−1
i=0 u

2
v
(i)

. (13)

The optimal control law can be obtained by invoking the principle of certainty
equivalence [30]. It means that we use b̂ as though it were the true parameter
b. Hence, uv(k) can be obtained by replacing yv(k + 1) and b in (11) with
y∗v(k + 1) and b̂, respectively, and cancelling Wv(k). This yields uv(k) =
y∗
v
(k + 1)/b̂. Noting that uv(k) must be an integer, we simply take the floor

and obtain

uv(k) =

⌊

y∗v(k + 1)

b̂

⌋

. (14)

3.3.4. Estimation and Control for Wakeup-Synchronized Scheme

The estimator b̂ in (13) and control law uv(k) in (14) are applicable when
the basic packet train forwarding scheme is employed. When the wakeup-
synchronized approach is used, we need to slightly modify the parameter
estimate and control law. Note that in the latter, the pre-transmission over-
head vanishes, hence, we can rewrite (9) as

dv(k + 1) = buv(k) +Xv(k + 1) + Lv,

where Xv(k) denotes the uncertainty between the time that v commences
packet transmission and the exact time that w exactly wakes up. This un-
certainty is present because even though v transmits at the wakeup intervals
of w, errors in clocks of both v and w are still possible. Following the same
arguments as in Section 3.3.1 and assuming that Xv(k) are i.i.d. for all k
with mean X̄v, the above can be rewritten as

dv(k + 1) = buv(k) + W̃v(k + 1) + K̃,

14

where W̃v(k) is a zero-mean random variable and K̃ = Lv + X̄v. We can
therefore define analogues of (10) and (12) as:

ỹv(k) := dv(k)− K̃ (15)

ỹ∗v(k) := δv(k)− K̃ (16)

Finally, the corresponding parameter estimator for the wakeup-synchronized
packet train forwarding is

b̃ =

∑

k−1
i=0 ỹv(i+ 1)uv(i)

∑

k−1
i=0 u2

v
(i)

(17)

while the optimal control law is given by

uv(k) =

⌊

ỹ∗
v
(k + 1)

b̃

⌋

. (18)

We have just completed the design of the adaptive controller at v, which
will allocate uv(k) packets for both reception and transmission in the current
epoch k. To ensure that v can store all the packets in a train, it must limit
the number of packets that it indicates to its predecessor node to

rv(k) = min[uv(k), Q−Qv(k)],

where Q is the maximum queue size and Qv(k) is the queue length at v.
Before ending the discussion, we remark the following desirable properties of
the controller.

Applicability to any node type. The controller was initially designed for a
relay node v. However, the use of a single control uv(k) makes the model
applicable for the source and sink nodes as well. In the latter two types, uv(k)
provides the optimal transmit and receive allocations, respectively, without
any change.

Adaptation to wireless link variations. As mentioned, the parameter b encap-
sulates the effect of link quality variations. Since b is continuously estimated,
the control uv(k) also automatically adjusts to the link quality fluctuations.

Support for synchronous and asynchronous MAC. Our design assumed that
the underlying MAC is asynchronous. By removing the third term (due to
pre-transmission overhead) in (3) and slightly re-defining yv(k) and y∗v(k), we
can use the controller in conjunction with synchronous MAC protocols.

15

Usability in static and dynamic duty-cycling. In the development of the con-
troller, we did not make any assumption about the target duty cycle δv(k),
other than δv(k) ∈ [0, 1]. As such, the controller can also be used in situations
where δv(k) is constant, i.e., static duty cycling.

3.4. Supporting Simultaneous Transfers

At the start of Section 3, we remarked that Pump-and-Nap is designed
to work well in data collection scenarios wherein the bulk data transfer is
managed by a single entity (i.e., the gateway node) and that this single
entity ensures that every node in the network is involved in at most one
bulk transfer. Nevertheless, Pump-and-Nap can be extended to support
simultaneous data transfers through the following modifications.

Suppose that a node v is currently supporting a single bulk transfer, and
it currently allocates rv(k) for reception and tv(k) for transmission. When v
receives another train request, it simply divides rv(k) equally into 2. Likewise,
if the successor node is different, v divides tv(k) equally into 2. This process
can be repeated for every new bulk transfer, dividing rv(k) and tv(k) equally
among the distinct number of predecessor and successor nodes, respectively.

We note that the above modifications pose some challenges on the per-
formance of the adaptive capacity controller especially in the case of the
basic forwarding scheme. This is because in the design of the controller, only
one pre-transmission overhead per epoch is considered. If a node v needs
to perform packet train transmissions to several successor nodes, then every
such successor node will entail a pre-transmission overhead. As such, the
extension of Pump-and-Nap to support simultaneous bulk transfers will
only work well for the wakeup-synchronized forwarding scheme. The ba-
sic scheme can only be employed in scenarios where there is a single data
collection point.

4. Implementation and Experimental Design

We conducted experiments to characterize the performance of Pump-

and-Nap and to compare it with state-of-the-art bulk transfer schemes. In
this section, we briefly describe our implementation of Pump-and-Nap, the
experiment settings used, and details about the experiment setups.

16

4.1. Pump-and-Nap Implementation

We implemented Pump-and-Nap in TinyOS 2.1.2 [15] and deployed it in
TelosB motes. TelosB uses the CC2420 (an IEEE 802.15.4-compliant radio)
which is duty cycled by a component called PowerCycle. To measure the
duty cycle usage, we implemented two event “hooks” that are invoked from
PowerCycle, namely radioStarted() and radioStopped() to indicate the
exact instances at which the radio is turned on and off, respectively.

To implement the wakeup-synchronized scheme, we used a TinyOS com-
ponent called CC2420TimeSyncMessageC which enables a node v to inform
another node u of the exact time at which an event has occurred. Note that
this timing information is piggy-backed in data packets, thus, no additional
message overhead is generated. In our implementation, v always piggy-backs
its last wakeup interval in any data packet transmission. This enables a re-
ceiving node u to deduce all future wakeup intervals of v, since TL and TS

(cf. Figure 1) are fixed.

4.2. Experiment Settings

Pump-and-Nap and the underlying X-MAC protocol have several impor-
tant parameters that need to be specified prior to deployment. For X-MAC,
the wakeup interval TL is set to 15 ms while the sleep interval TS is varied
between 485, 235, and 110 ms. These values correspond to wakeup rates of
2, 4 and 8 wakeups/second, respectively. The 15 ms wakeup interval was
chosen because it provided a good trade-off between overhead and preamble
reception probability. For reliability, we used CC2420 software-based ACKs
(default setting) and set the retry limit to 7.

For Pump-and-Nap, the epoch duration T and packet buffer space Q
are the two key parameters. We chose T = 3 s in our evaluation. Select-
ing a lower T requires more frequent computations but faster reaction to
environmental changes while a longer T requires less frequent computations
but slower reaction to environmental changes. T also has a direct impact on
the efficiency of packet trains. A shorter (longer) T implies shorter (longer)
packet trains and therefore lower (higher) efficiency. However, supporting
longer packet trains requires nodes to maintain larger packet buffer space.
In this work, we used a buffer size of 60 packets which was more than suffi-
cient for the tested scenarios.

We focused our evaluation on the performance of the adaptive controller
and packet train forwarding scheme so we used fixed network topologies. In
addition, we used a packet size of 64 bytes for transmitting fragments of the

17

bulk data, which is generated on-the-fly at the source nodes. The choice of
64-byte packet is guided by recent results which show that in the context of
IEEE 802.15.4, this size provides a good trade-off between efficiency and loss
probability[31, 32].

Our implementation of Pump-and-Nap, together with the above-mentioned
packet buffer and all the necessary software stack, generates a firmware that
requires 26,960 bytes ROM and 9,944 bytes RAM. Note that this can fit in
a TelosB mote which has 48 kilobytes ROM and 10 kilobytes RAM.

4.3. Experiments

We conducted three sets of experiments to rigorously evaluate the per-
formance of Pump-and-Nap and to compare it with state-of-the-art bulk
transfer schemes. Experiments to characterize the performance of Pump-

and-Nap and simulate energy harvesting scenarios were carried out in the
139-node Indriya indoor testbed [16] while energy-harvesting experiments
were conducted in indoor and outdoor locations.

4.3.1. Characterization of Pump-and-Nap Performance

To evaluate the performance of the controllers proposed in Sections 3.3.3
and 3.3.4, we performed experiments in the Indriya testbed involving 3 nodes,
namely a source, a relay, and a sink. We selected 10 sets of combinations
from the testbed, where the link delivery probabilities from source to relay,
and from relay to sink were more than 0.8. The source and sink duty cycles
were fixed at 50% whereas the relay duty cycle was changed every minute to
a random value in [1%, 30%] that had not yet been previously selected. This
setup ensured that all possible duty cycle values in the range were tested, and
that the relay duty cycle was the bottleneck. We did not use a sequentially
increasing (or decreasing) relay duty cycle as we wanted to determine the
response of the controller to abrupt duty cycle changes.

To see the effect of hop count, we ran experiments where the number of
hops from the source to the sink is varied from 1 to 5 hops. For every hop
count, we tested three duty cycle targets, namely 10%, 20%, and 30%. Each
experiment was run for 1 minute and repeated 10 times.

4.3.2. Energy Harvesting Experiments

We performed experiments involving a real energy-harvesting node to de-
termine whether Pump-and-Nap can indeed provide sustainable bulk trans-
fer. The setup involves a 2-hop bulk transfer: the source and sink nodes are

18

Figure 4: Energy harvesting experimental setup.

powered through the USB port while the relay node uses energy-harvesting.
Figure 4 shows the schematic diagram of the energy-harvesting relay node.
It uses 4 solar panels that can generate up to 22 mW, and a 1 Farad supercap
as energy store2. BQ25504 EVM [33] is a power management circuit that
controls the supercap charging and energy supply to the mote. It is config-
ured to charge the supercap to 3.1 V. We implemented a simple voltage-duty
cycle mapping to generate the target duty cycle δ(k) at every epoch k, given
by

δ(k) = max[V (k)− 2.5, 0],

where V (k) denotes the supercap voltage at epoch k. This simple mapping
allows a maximum duty cycle of 60% since V (k) ≤ 3.1. Note also that when
V (k) < 2.5, δ(k) = 0 because based on our observations, the node stops
functioning when the supercap voltage drops below 2.5 V.

Two energy harvesting scenarios were used: (a) indoor scenario – so-
lar panel was exposed to a lamp with 10 klux illuminance; and (b) outdoor
scenario – solar panel was exposed under direct sunlight with 100 klux illumi-
nance. (The Extech HD450 Lux Meter was used to measure the illuminance.)
Every scheme was run 10 times, and every run was scheduled for at most 2
hours for practical reasons. For fairness, all experiments under (b) were per-
formed when the sun was unobstructed by any cloud. We checked that the
supercap was at 3.1 V prior to the start of every run.

We compared Pump-and-Nap with state-of-the-art bulk transfer tech-
niques presented in Section 2.2: (i) packet train-based transmissions which

2Compared to SolarBiscuit [2], our energy-harvesting node has the same storage ca-
pacity and roughly four times the energy harvesting capacity.

19

is employed in [12], and (ii) Flush [9]. For the former, we tested both un-
synchronized and wakeup-synchronized.

Rationale for Using 10 klux and 100 klux. We used these values because based
on our measurements, outdoor daytime illuminance ranges from 10–100 klux
during a fair sunny day. It is easy to consistently obtain 100 klux outdoors
(which happens when the sun is not obstructed by any cloud at around 1-
4 pm) but difficult to obtain a consistent 10 klux. Hence, we performed
indoor experiments with a lamp that was placed at a distance such that the
illuminance reaching the solar panel is around 10 klux. By choosing these two
values, we can use the results to infer that (i) the scheme should be able to
provide sustainable bulk data transfer within 10–100 klux of illuminance on
a fair sunny day, and (ii) the scheme automatically adjusts the throughput
according to the variations in energy availability.

4.3.3. Energy Harvesting Simulations

To further study the effect of energy harvesting rate and path length in a
controlled setting, we performed experiments in the Indriya testbed, wherein
the energy harvesting and consumption processes are emulated.

Harvesting Process. We model the energy harvesting process after the energy
harvesting node shown in Figure 4. To characterize its harvesting process,
the load (i.e., the TelosB mote) is disconnected and the voltage across the
supercap is sampled at every epoch (3 s), as the solar panel is exposed to
10 klux, and then repeating this for 100 klux light. The supercap is first
discharged to around 2 V prior to the characterization. Figure 5 shows the
voltage over time across the supercap. We only consider the charging rate
at and above 2.5 V because once a node goes below this voltage, it becomes
non-operational. Now, from elementary circuit theory,

I(t) = C
dV (t)

dt
,

where V (t) is the supercap voltage at time t, C is the capacitance, and I(t)
is the current flowing in or out of the supercap. Since C = 1, the harvesting
rate is simply I(t) = dV (t)/dt or the slope of V (t). From Figure 5, we
can see that the voltage increases almost linearly with time from 2.5–3.1 V,
suggesting that the harvesting rate can be approximated by a constant value
within this region. Using the measurements obtained, the average charging

20

50 100 150 200

2.6

2.8

3

3.2

Time, t (s)

V
o

lt
ag

e,
 V

(t
)

(V
)

illum=10k
illum=100k

Figure 5: Voltage across the supercap, under 10 klux and 100 klux illuminance.

current at 10 klux and 100 klux are 3.81 and 6.48 mA, respectively. In the
simulations, we vary the harvesting rate from 3.8–6.5 mA to mimic the above
conditions.

Energy Consumption Process. To emulate the energy consumption, we mea-
sured the current consumption of TelosB at 3 V in three modes of operation
and obtained the following: (i) MCU is active and radio is in deep sleep:
I1 = 2 mA; (ii) MCU is active and radio is in receive mode: I2 = 23 mA;
and (iii) MCU is active and radio is in transmit mode at 0 dBm: I3 = 21
mA. These are similar to the findings in [34].

We implemented a TinyOS module to emulate the above harvesting and
consumption processes. Briefly, the supercap voltage V (k) evolves according
to this difference equation:

V (k) = QC(k − 1)−QD(k − 1) + V (k − 1), (19)

where QC(k) denotes the charge accumulated at k due to the energy harvest-
ing process while QD(k) denotes the total discharge at k due to the energy
consumption process. Eq. (19) is the discrete version of the well-known rela-
tion V (t) = 1

C

∫

t

t0
I(t)dt+ V (t0) =

∫

t

t0
I(t)dt+ V (t0) since C = 1 in our case.

To mimic the uncertainty in the harvesting process,

QC(k) = ICT + ω(k),

where IC ∈ [3.8, 6.5] mA is the simulated charging current, T is the epoch
duration, and ω(k) is a random number generated using the RandomC com-
ponent. Note that ω(k) ∼ U(−Ω,Ω), where Ω is chosen to capture the
variability of the harvesting rate on an epoch by epoch basis. We make

21

this simplification because TinyOS only provides modules that can generate
uniformly distributed random numbers. Meanwhile,

QD(k) = I1T + I2τrx(k) + I3τtx(k),

where τrx(k) and τtx(k) are the times spent in receive and transmit modes at
epoch k, respectively.

We ran simulations in the Indriya testbed for Pump-and-Nap (wakeup-
synchronized), packet train (wakeup-synchronized) and Flush, and fixed the
X-MAC wakeup rate to 4 per second. All nodes in the simulations are emu-
lated to be powered by energy harvesting. Every scheme was run 10 times.

5. Results

In this section, we present and discuss the results that we have obtained
from the three sets of experiments that we have conducted, the details of
which are presented in Section 4.3. The error bars in plots indicate the 95%
confidence interval.

5.1. Characterization of Pump-and-Nap Performance

The first set of experiments was aimed at evaluating the performance of
the controller designs presented in Sections 3.3.3 and 3.3.4 and was divided
into two parts. The first part focused on the dynamic performance (i.e.,
performance with respect to changing duty cycle targets) while the second
part focused on the multihop performance.

5.1.1. Dynamic Performance

Figures 6 and 7 show the duty cycle usage and relay capacity, respectively,
as functions of the duty cycle target, of basic and wakeup-synchronized under
different X-MAC wakeup rates. These results indicate that both schemes
can follow the duty cycle target, except at lower duty cycles. The latter
is due to the X-MAC wakeup overhead and pre-transmission overhead (in
the case of basic). To illustrate, at 4 wakeup/s, the wakeup overhead is
(4 × 15)/1000 = 6%, hence we can see in Figure 6(b) that the usage of
wakeup-synchronized does not go below 6%. For basic, there is an additional
overhead of roughly TS/(2T) = 235/(2×3000) ≈ 4%, hence, its usage is 10%
at the minimum.

Another noticeable aspect is that basic shows higher variability especially
at lower wakeup rates while wakeup-synchronized provides highly consistent

22

0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.2

0.3

Duty Cycle Target

D
u
ty

 C
y
cl

e
U

sa
g
e

basic
wakeup−sync
target=usage

(a) 2 wakeup/s

0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.2

0.3

Duty Cycle Target

D
u
ty

 C
y
cl

e
U

sa
g
e

basic
wakeup−sync
target=usage

(b) 4 wakeup/s

0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.2

0.3

Duty Cycle Target

D
u
ty

 C
y
cl

e
U

sa
g
e

basic
wakeup−sync
target=usage

(c) 8 wakeup/s

Figure 6: Comparing the duty cycle tracking performance of basic and wakeup-
synchronized under different X-MAC wakeup rates.

0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

Duty Cycle Target

R
el

ay
 C

ap
ac

it
y
 (

p
k
t/

s)

basic
wakeup−sync

(a) 2 wakeup/s

0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

Duty Cycle Target

R
el

ay
 C

ap
ac

it
y
 (

p
k
t/

s)

basic
wakeup−sync

(b) 4 wakeup/s

0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

Duty Cycle Target

R
el

ay
 C

ap
ac

it
y
 (

p
k
t/

s)

basic
wakeup−sync

(c) 8 wakeup/s

Figure 7: Comparing the relay capacity of basic and wakeup-synchronized under different
X-MAC wakeup rates.

23

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

Time (s)

D
u
ty

 C
y
cl

e

basic
wakeup−sync
target

(a) 2 wakeup/s

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

Time (s)

D
u
ty

 C
y
cl

e

basic
wakeup−sync
target

(b) 4 wakeup/s

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

Time (s)

D
u
ty

 C
y
cl

e

basic
wakeup−sync
target

(c) 8 wakeup/s

Figure 8: Snapshot of controller response when duty cycle target abruptly changes, under
different X-MAC wakeup rates.

performance regardless of the X-MAC wakeup rate. The higher variability
of basic is expected because the uncertainty due to the pre-transmission over-
head is significantly higher than the clock uncertainty in wakeup-synchronized.
Moreover, the former is sensitive to the X-MAC wakeup rate, i.e., at lower
wakeup rates, the variability is higher because TS is larger (cf. Figure 1).
To emphasize the sensitivity of basic, we show a snapshot of the controller
response when the duty cycle target changes abruptly from 15% to 25% (and
vice versa) every minute in Figure 8. Note the stable dynamic response of
wakeup-synchronized, regardless of the X-MAC wakeup rate. Compare this
with basic which is highly oscillatory because of the high pre-transmission
overhead uncertainty. The lower the wakeup rate, the higher the uncertainty
which ultimately results in wider oscillations.

With respect to the relay capacity, we can observe that both schemes
provide consistent (low variability) capacity. At lower duty cycles, both
schemes yield negligible capacity because the X-MAC wakeup overhead and
pre-transmission overhead (in the case of basic) use up the entire duty cy-
cle. The advantage of synchronization is noticeable, as wakeup-synchronized
shows better performance compared to basic in all wakeup rates due to the
elimination of pre-transmission overhead. Its advantage is higher at lower

24

wakeup rates because of the lower X-MAC wakeup overhead in those set-
tings. At 8 wakeup/s, the performance of both schemes are comparable
because the X-MAC wakeup overhead becomes dominant.

5.1.2. Multihop Performance

Figure 9 shows the throughput of basic and wakeup-synchronized, for
duty cycles of 10%, 20%, and 30%, as the hop count is varied from 1 to
5. Except for the settings that yielded negligible throughput (caused by
the usage of the entire duty cycle for X-MAC wakeup overhead and pre-
transmission overhead), we can see a big drop from 1 to 2 hops for the rest,
with the latter throughput being just around half of the former. This is
expected because for single hop transfers, the source (sink) does not need to
allocate any duty cycle for reception (transmission) and that it can allocate its
entire duty cycle for transmission (reception). For 2–5 hops, the throughput
is almost the same for every scheme, due to the fact that the relay nodes
are able to maximize the allocated duty cycle. Once again, we can see the
distinct advantage of wakeup-synchronized, as its throughput is higher than
basic especially at lower X-MAC wakeup rates. The lower throughput of
basic is due to the pre-transmission overhead, which is relatively higher at
lower wakeup rates.

The flat throughput results for 2–5 hops is counter-intuitive. We have
expected it to decrease because as the number of hops increases, intra-flow
interference worsens. To understand the result, we pictorially analyze the
“airtime usage” of a 5-hop bulk transfer in Figure 10. We define airtime
usage as the total time (in an epoch) that the nodes used for transmission
and reception of packet train from the source to the sink. Suppose that the
target duty cycle of all the nodes is 30%. Then node 1 will allocate all of its
duty cycle, i.e., 30% for transmission. Relay nodes 2, 3 and 4 will split their
duty cycles accordingly, say 15% for reception and 15% for transmission, for
simplicity. Finally, sink node 5 will allocate its entire 30% for reception.
While node 1 could have utilized 30% to transmit to node 2, it will only
be able to use 15% because node 2 limits the packet train transmission.
Likewise, while node 5 can use 30% for reception, node 4 limits its usage to
only 15%. Thus, the total airtime usage is 60% of the epoch duration which
is the sum of the following: 15% from node 1 to 2; 15% from node 2 to 3; 15%
from node 3 to 4; and 15% from node 4 to 5. We can use the same figure
to analyze the airtime usage of 2, 3, and 4 hops to show that the airtime
usage of these transfers are well below 100% and will therefore sidestep the

25

1 2 3 4 5
0

5

10

15

20

25

Number of Hops from Sink

T
h
ro

u
g
h
p
u
t

(p
k
t/

s)

wakeup−sync (dc=30%)

wakeup−sync (dc=20%)

wakeup−sync (dc=10%)

basic (dc=30%)

basic (dc=20%)

basic (dc=10%)

(a) 2 wakeup/s

1 2 3 4 5
0

5

10

15

20

25

Number of Hops from Sink

T
h
ro

u
g
h
p
u
t

(p
k
t/

s)

wakeup−sync (dc=30%)

wakeup−sync (dc=20%)

wakeup−sync (dc=10%)

basic (dc=30%)

basic (dc=20%)

basic (dc=10%)

(b) 4 wakeup/s

1 2 3 4 5
0

5

10

15

20

25

Number of Hops from Sink

T
h
ro

u
g
h
p
u
t

(p
k
t/

s)

wakeup−sync (dc=30%)

wakeup−sync (dc=20%)

wakeup−sync (dc=10%)

basic (dc=30%)

basic (dc=20%)

basic (dc=10%)

(c) 8 wakeup/s

Figure 9: Throughput performance of basic and wakeup-synchronized under different X-
MAC wakeup rates.

problem of intra-flow interference. To clarify why intra-flow interference will
not occur, note that because the airtime usage is below 100%, all packet train
transmissions by nodes 2–4 have already completed before node 1 initiates a
new packet train in the next epoch.

We now want to emphasize the following: for all transfers involving 2, 3,
4 and 5 hops, the relay nodes limit the packet train size or duration to 15%
of the epoch duration. Since the source is allowed to initiate 1 packet train
transmission every epoch, then the throughput is determined by the packet
train duration. This explains the flat throughput for 2–5 hops.

5.2. Energy Harvesting Experiments

The second set of experiments involved the use of a real energy harvest-
ing node, and was intended to determine the throughput and sustainabil-
ity of Pump-and-Nap, packet train and Flush. Figures 11 and 12 show
the throughput and mean time before the relay node failed due to energy

26

Figure 10: Airtime usage of a packet train transmission from the source to the sink. If the
target duty cycle of the nodes is 30%, then each packet train requires 15% of the epoch.
Hence the total airtime is 4× 15 = 60% of the epoch duration.

exhaustion, in indoor and outdoor scenarios, respectively. p-train and p-
train (sync) denote unsynchronized and wakeup-synchronized packet train
forwarding schemes, respectively. In either scenarios, Flush yields the high-
est throughput at around 28 pkt/s because it does not incur sleep latency
from duty cycling. However, the transfer is short-lived, lasting for only 16.8 s
indoors and 36.4 s outdoors. Meanwhile, the use of packet trains can indeed
improve the energy-efficiency of bulk transfer. Although its throughput is
slightly lower than Flush by at most 18%, packet train can last more than
twice that of the former in both illuminance conditions. Comparing packet
train and wakeup-synchronized packet train, we can observe a slight advan-
tage of the latter. While both schemes yield comparable throughput, the
latter can last slightly longer by at most 17 s, due mainly to the energy
savings from pre-transmission overhead.

As for Pump-and-Nap, it is the only scheme that can provide uninter-
rupted transfer, regardless of illuminance and X-MAC wakeup rate (the relay
node did not run out of energy for the entire 2-hour experiment duration). It
accomplishes this by adjusting its throughput according to the energy avail-
ability. This is evident in the results as we observe that the throughput of
both basic and wakeup-synchronized in indoor experiments are around 1/2
that of outdoor experiments. Although Pump-and-Nap’s best throughput

27

basic wakeup−sync p−train p−train (sync) flush
0

10

20

30

T
h
ro

u
g
h
p
u
t

(p
k
t/

s)

2 wakeup/s
4 wakeup/s
8 wakeup/s

(a) Throughput

p−train p−train (sync) flush
0

50

100

T
im

e
T

o
 F

ai
lu

re
 (

s)

(b) Mean Time to Failure

Figure 11: Throughput of Pump-and-Nap, packet train and Flush, and mean time to
relay node failure of the latter two, in indoor scenario (10 klux).

basic wakeup−sync p−train p−train (sync) flush
0

10

20

30

T
h
ro

u
g
h
p
u
t

(p
k
t/

s)

2 wakeup/s
4 wakeup/s
8 wakeup/s

(a) Throughput

p−train p−train (sync) flush
0

50

100

T
im

e
T

o
 F

ai
lu

re
 (

s)

(b) Mean Time to Failure

Figure 12: Throughput of Pump-and-Nap, packet train and Flush, and mean time to
relay node failure of the latter two, in outdoor scenario (100 klux).

28

is around 1/4 and 1/2 that of packet train in indoor and outdoor scenarios,
respectively, the transfer can last for an indefinite amount of time. This will
enable Pump-and-Nap to transfer bulk data of any size.

5.3. Energy Harvesting Simulations

The third and final set of experiments was purported to study the effects
of energy availability and hop count on the throughput and sustainability of
Pump-and-Nap, packet train and Flush.

5.3.1. Influence of Energy Availability

We conducted testbed simulations where the harvesting rate is varied
from 3.8–6.5 mA, representing the energy that can be scavenged from 10–
100 klux. Figure 13(a) shows the throughput of the three schemes, while
Figure 13(b) shows the mean time to failure of packet train and Flush.
Pump-and-Nap is not included in the latter plot because it can sustain
the bulk transfer indefinitely. The results are obtained using a 5-hop bulk
transfer.

The throughput results suggest that Pump-and-Nap is the only scheme
that adapts to energy availability. While packet train and Flush respectively
yields the same throughput regardless of the harvesting rate, Pump-and-
Nap shows a throughput that increases as the harvesting rate increases.
Specifically, its throughput almost doubles from 5.5 pkt/s at 3.8 mA to 10.9
pkt/s at 6.5 mA. This important result demonstrates the effectiveness of
employing the adaptive capacity controller to automatically adjust the relay
capacity of nodes according to what energy availability can support.

In terms of the mean time to failure, we can observe that Flush performs
poorly compared to packet train. Moreover, its performance seems to be
almost the same regardless of the harvesting rate. A closer inspection of the
results, however, reveal that Flush slightly improves its performance from
24.6 s at 3.8 mA to 37.2 s at 6.5 mA. Whereas, the effect of harvesting rate is
significantly noticeable in the case of packet train. In fact, its bulk transfer
at 6.5 mA lasts 334.8 s, almost three times that at 3.8 mA which only lasts
112.2 s. The advantage of packet train over Flush can be attributed to its
use of duty cycling.

5.3.2. Influence of Hop Count

Figure 14(a) shows the throughput of the Pump-and-Nap, packet train
and Flush, as the number of hops between the source and the sink increases

29

4.1 4.7 5.3 5.9 6.5
0

5

10

15

Harvesting Rate (mA)

T
h
ro

u
g
h
p
u
t

(p
k
t/

s)

pump−and−nap

p−train

flush

(a) Throughput

4.1 4.7 5.3 5.9 6.5
0

100

200

300

400

Harvesting Rate (mA)

T
im

e
to

 F
ai

lu
re

 (
s)

p−train
flush

(b) Mean Time to Failure

Figure 13: Throughput of Pump-and-Nap, packet train and Flush, and mean time to
relay node failure of the latter two, of a 5-hop bulk transfer, as a function of energy
harvesting rate.

from 1 to 5. Meanwhile, Figure 14(b) plots the mean time to failure of packet
train and Flush. Once again, Pump-and-Nap is not included in Figure 14(b)
because it can sustain the bulk transfer indefinitely. The results simulate 6.5
mA harvesting rate, which is equivalent to the harvesting rate at 100 klux.

The throughput of packet train and Flush are comparable, and both
show a decline as the path length increases. This is expected because as the
path length increases, the increasing contention due to intra-flow interference
causes these transfer schemes to throttle down their respective sending rates.
For Pump-and-Nap, we observe a slightly different trend. We can see a
big drop from 1 to 2 hops, with the latter throughput being just around
half of the former. This is expected because for single hop transfers, the
source does not need to allocate any duty cycle for reception and that it can
allocate its entire duty cycle for transmission. For 2–5 hops, the throughput
remains flat because of the effect of controller action to limit the usage of the

30

radio. Essentially, the duty cycle enforced is sufficiently low that intra-flow
interference is avoided.

With respect to the mean time to failure, Flush shows a flat response
regardless of the path length. This is because in Flush, the radios are always
on, resulting in roughly the same energy consumption regardless of the path
length. As for packet train, we observe an interesting trend where the nodes
last longer as the number of hops increases. This curious result is due to
the fact that as the number of hops increases, the frequency of packet train
transmissions decreases, as evidenced by the decreasing throughput. This
leads to the reduction of the amount of time that the radios need to be ac-
tive. In other words, the duty cycle usage of packet train is highly dependent
on the path length, with the duty cycle usage decreasing as the number of
hops increases. This indicates the possibility for packet train to attain sus-
tainable data transfer at a certain number of hops. We however remark that
such sustainability is achieved incidentally, compared with the sustainability
provided by Pump-and-Nap that is attained intentionally at all hop counts.

6. Conclusion and Future Work

This work addresses the problem of bulk data transfer in environmentally-
powered wireless sensor networks where duty cycle compliance is critical.
While several bulk transfer schemes have been proposed in the literature,
they focus mainly on maximizing the transfer throughput, neglecting the
duty cycle constraints of sensor nodes.

We proposed Pump-and-Nap, a packet train forwarding technique that
uses adaptive feedback control to calculate the optimal packet train length
for both reception and transmission. The adaptive feedback control aims
to control the duty cycle usage of a node, modeled as a linear system with
zero-mean disturbance. The latter is mainly due to the uncertainty induced
by the pre-transmission overhead in asynchronous wakeup scheduling. We
designed a controller that uses prior input-output observations (capacity al-
locations and their corresponding duty cycle usage) to continuously tune its
performance and adapt to wireless link quality variations. Because of its
reliance on local information, the controller is amenable to distributed im-
plementation. We implemented Pump-and-Nap in TinyOS and evaluated
its performance in real energy harvesting experiments and testbed simula-
tions. Results show that Pump-and-Nap provides high transfer throughput
while it simultaneously tracks the target duty cycle. More importantly, en-

31

1 2 3 4 5
0

20

40

60

Number of Hops from Sink

T
h
ro

u
g
h
p
u
t

(p
k
t/

s)

pump−and−nap

p−train

flush

(a) Throughput

1 2 3 4 5
0

100

200

300

400

Number of Hops from Sink

T
im

e
to

 F
ai

lu
re

 (
s)

p−train

flush

(b) Mean Time to Failure

Figure 14: Throughput of Pump-and-Nap, packet train and Flush, and mean time to
relay node failure of the latter two, at harvesting rate of 6.5 mA, as a function of path
length.

ergy harvesting experiments show Pump-and-Nap is the only scheme that
can provide sustainable bulk transfer compared to the other state-of-the-art
techniques that we have tested, as the latter greedily maximize throughput
at the expense of high and uncontrolled energy consumption.

To the best of our knowledge, this work is the first to consider duty
cycle compliance as the primary aim. In the future, we will explore suitable
methods to incorporate end-to-end reliability and flow control into Pump-

and-Nap and study other control mechanisms to provide dynamic duty cycle
compliance.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor
networks: a survey, Computer Networks 38 (4) (2002) 393–422.

32

[2] S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: Survey
and implications, IEEE Communications Surveys Tutorials (99) (2010)
1–19.

[3] F. Simjee, P. H. Chou, Efficient charging of supercapacitors for extended
lifetime of wireless sensor nodes, IEEE Trans. Power Electronics 23 (3)
(2008) 1526–1536.

[4] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees,
M. Welsh, Deploying a wireless sensor network on an active volcano,
IEEE Internet Computing 10 (2) (2006) 18–25.

[5] K. Chebrolu, B. Raman, N. Mishra, P. K. Valiveti, R. Kumar, Brimon:
A sensor network system for railway bridge monitoring, in: Proc. ACM
MobiSys, 2008, pp. 2–14.

[6] A. Kansal, J. Hsu, S. Zahedi, M. B. Srivastava, Power management in
energy harvesting sensor networks, ACM Trans. Emb. Comput. Sys. 6
(2007) 1–38.

[7] C. Vigorito, D. Ganesan, A. Barto, Adaptive control of duty cycling
in energy-harvesting wireless sensor networks, in: Proc. IEEE SECON,
2007.

[8] T. Zhu, Z. Zhong, Y. Gu, T. He, Z.-L. Zhang, Leakage-aware energy
synchronization for wireless sensor networks, in: Proc. ACM MobiSys,
2009.

[9] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, I. Stoica, Flush: A reliable bulk transport protocol for mul-
tihop wireless networks, in: Proc. ACM SenSys, 2007, pp. 351–365.

[10] B. Raman, K. Chebrolu, S. Bijwe, V. Gabale, PIP: A connection-
oriented, multi-hop, multi-channel tdma-based mac for high throughput
bulk transfer, in: Proc. ACM SenSys, 2010, pp. 15–28.

[11] G. Ekbatanifard, P. Sommer, B. Kusy, V. Iyer, K. Langendoen, Fast-
forward: High-throughput dual-radio streaming, in: Proc. IEEE MASS,
2013, pp. 209–213.

33

[12] S. Duquennoy, F. Österlind, A. Dunkels, Lossy links, low power, high
throughput, in: Proc. ACM SenSys, 2011, pp. 12–25.

[13] M. Doddavenkatappa, M. C. Chan, P3: A practical packet pipeline using
synchronous transmissions for wireless sensor networks, in: Proc. IEEE
IPSN, 2014, pp. 203–214.

[14] A. Varshney, L. Mottola, M. Carlsson, T. Voigt, Directional transmis-
sions and receptions for high-throughput bulk forwarding in wireless
sensor networks, in: Proc. ACM SenSys, 2015, pp. 351–364.

[15] J. Hill, R. Szewczyk, A. Woo, P. Levis, K. Whitehouse, J. Polastre,
D. Gay, S. Madden, M. Welsh, D. Culler, E. Brewer, Tinyos: An oper-
ating system for sensor (2003).

[16] M. Doddavenkatappa, M. Chan, A. Ananda, Indriya: A low-cost, 3d
wireless sensor network testbed, in: Proc. TRIDENTCOM, 2011.

[17] W. Ye, J. Heidemann, D. Estrin, An energy-efficient mac protocol for
wireless sensor networks, in: Proc. IEEE INFOCOM, Vol. 3, 2002, pp.
1567–1576.

[18] T. van Dam, K. Langendoen, An adaptive energy-efficient mac protocol
for wireless sensor networks, in: Proc. ACM SenSys, 2003, pp. 171–180.

[19] T. Zheng, S. Radhakrishnan, V. Sarangan, PMAC: An adaptive energy-
efficient mac protocol for wireless sensor networks, in: Proc. IEEE Par-
allel and Distributed Processing Symposium, 2005.

[20] J. Polastre, J. Hill, D. Culler, Versatile low power media access for
wireless sensor networks, in: Proc. ACM SenSys, ACM, New York, NY,
USA, 2004, pp. 95–107.

[21] M. Buettner, G. V. Yee, E. Anderson, R. Han, X-MAC: A short pream-
ble mac protocol for duty-cycled wireless sensor networks, in: Proc.
ACM SenSys, 2006, pp. 307–320.

[22] Y. Sun, O. Gurewitz, D. B. Johnson, RI-MAC: A receiver-initiated asyn-
chronous duty cycle mac protocol for dynamic traffic loads in wireless
sensor networks, in: Proc. ACM SenSys, 2008, pp. 1–14.

34

[23] A. Dunkels, L. Mottola, N. Tsiftes, F. Österlind, J. Eriksson, N. Finne,
The announcement layer: Beacon coordination for the sensornet stack,
in: Proc. EWSN, 2011.

[24] Y. Wu, S. Fahmy, N. Shroff, Optimal sleep/wake scheduling for time-
synchronized sensor networks with qos guarantees, IEEE/ACM Trans.
Networking 17 (5) (2009) 1508–1521.

[25] A. C. Valera, W.-S. Soh, H.-P. Tan, A survey on wakeup scheduling in
environmentally-powered wireless sensor networks, Computer Commu-
nications 52 (2014) 21–36.

[26] C. Wang, K. Sohraby, B. Li, M. Daneshmand, Y. Hu, A survey of trans-
port protocols for wireless sensor networks, Network, IEEE 20 (3) (2006)
34–40.

[27] R. Musaloiu-E., C.-J. M. Liang, A. Terzis, Koala: Ultra-low power data
retrieval in wireless sensor networks, in: Proc. IEEE IPSN, 2008, pp.
421–432.

[28] G. Goodwin, K. S. Sin, Adaptive Filtering Prediction and Control,
Dover Publications, 1984.

[29] M. J. Neely, Stochastic Network Optimization with Application to Com-
munication and Queueing Systems, Morgan & Claypool, 2010.

[30] P. Kumar, P. Varaiya, Stochastic Systems: Estimation, Identification,
and Adaptive Control, Prentice-Hall, 1986.

[31] J. Paek, R. Govindan, Rcrt: Rate-controlled reliable transport protocol
for wireless sensor networks, ACM Trans. Sensor Networks 7 (3) (2010)
20.

[32] M. Doddavenkatappa, M. C. Chan, B. Leong, Splash: Fast data dis-
semination with constructive interference in wireless sensor networks,
in: Proc. USENIX NSDI, 2013, pp. 269–282.

[33] BQ25504 Battery Management Evaluation Board, [Online]. Available:
http://www.ti.com/tool/bq25504evm-674 [Accessed: Jan 22, 2016].

[34] J. Polastre, R. Szewczyk, D. Culler, Telos: enabling ultra-low power
wireless research, in: Proc. IEEE IPSN, 2005.

35

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2017

	Enabling sustainable bulk transfer in environmentally-powered wireless sensor networks
	Alvin Cerdena VALERA
	Wee-Seng SOH
	Hwee-Pink TAN
	Citation

	pump_n_nap.dvi

