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Abstract. Algorithm portfolios seek to determine an effective set of algorithms
that can be used within an algorithm selection framework to solve problems. A
limited number of these portfolio studies focus on generating different versions
of a target algorithm using different parameter configurations. In this paper, we
employ a Design of Experiments (DOE) approach to determine a promising range
of values for each parameter of an algorithm. These ranges are further processed
to determine a portfolio of parameter configurations, which would be used within
two online Algorithm Selection approaches for solving different instances of a
given combinatorial optimization problem effectively. We apply our approach on
a Simulated Annealing-Tabu Search (SA-TS) hybrid algorithm for solving the
Quadratic Assignment Problem (QAP) as well as an Iterated Local Search (ILS)
on the Travelling Salesman Problem (TSP). We also generate a portfolio of pa-
rameter configurations using best-of-breed parameter tuning approaches directly
for the comparison purpose. Experimental results show that our approach lead to
improvements over best-of-breed parameter tuning approaches.

1 Introduction

Algorithm Selection [1] concentrates on choosing the best algorithm(s) from a set of
algorithms for a given problem instance. The key idea is to build a model that provides
a mapping between instance features and performance of a group of algorithms on a
set of instances. The resulting model is used to make performance predictions for new
problem instances. In relation to algorithm selection, i.e. Algorithm Portfolios [2] pri-
marily focus on determining a set of algorithms for an algorithm selection process. The
goal is to choose these algorithms in a way that their strengths complement each other
or provide algorithmic diversity that hedge against heterogeneity in problem instances
in pretty much the same spirit as investment portfolios to reduce risks in economics
and finance [3]. Meta-learning [4] has also been proposed as a unified framework for
considering the algorithm selection problem as a machine learning problem.

The idea of algorithm selection has also been investigated in the context of param-
eter tuning or configuration [5]. The goal is to determine a configuration for a target
algorithm that will (hopefully) work well for given instances. Hyper-parameter tuning
[6] has the same tuning objective but only for machine learning algorithms. The evolu-
tionary algorithm and meta-heuristic community categorises such methods as parameter
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tuning and parameter control [7]. Parameter tuning occurs offline, while parameter con-
trol is concerned with the strategies for adapting parameters in an online manner via
some rules or learning algorithms.

SATZilla [8] is a successful example of applying algorithm portfolios to solve the
SAT problem, which has consistently ranked top in the various SAT competitions. Its
success lies in its ability to derive an accurate runtime prediction model makes effec-
tive use of the problem-specific features of SAT. Hydra [9] is another portfolio-based
algorithm selection method that combines with automatic configuration to solve com-
binatorial problems such as SAT effectively.

Several configurators have been proposed for optimisation algorithms. CALIBRA
[10] combines Taguchi fractional experimental design and local search. ParamILS [5],
as explained above, applies iterated local search to find a single parameter configura-
tion. Racing algorithms like F-Race [11] look for effective parameter values by per-
forming a race between different configurations. Instance-Specific Algorithm Configu-
ration (ISAC) [12] incorporates a G-means clustering algorithm for clustering instances
with respect to the features with an existing parameter tuning method, i.e. GGA. GGA is
used to configure an algorithm for each instance cluster and works like other case-based
reasoning related algorithm selection approaches. [13] proposed Randomized Convex
Search (RCS) with the underlying assumption that the parameter configurations (points)
lie inside the convex hull of a certain number of the best points. FocusedILS, derived
from ParamILS, has been used to provide a number of different parameter configura-
tions for a given single algorithm. It has also been applied for designing multiple pa-
rameter configurations for a planner called Fast Downward, in [14]. The results are used
for seven portfolio generation methods to build sequential portfolios. [15] proposed a
model-based approach, namely SMAC, that can be used to handle categorical param-
eters. AutoFolio [16] was developed for automated configuration at a higher level by
applying SMAC to algorithm selectors. ADVISER[17] was introduced as a web-based
platform for algorithm portfolio generation.

This paper seeks to extend the literature on automatic algorithm configuration. The
experiments were conducted for combinatorial optimization problems. Rather than pro-
viding a single parameter configuration that works well in general or a pre-set schedule
of algorithms, we work in the space of online algorithm selection and feeds this pro-
cess with a portfolio of parameter configurations derived from Design of Experiments
(DOE). Our aim is to develop a generic approach for designing algorithm portfolio of
parameter configurations for use within an online algorithm selection process to solve
combinatorial optimization problems. In particular, we consider generating different
parameter configurations for a given target algorithm as the algorithm portfolio.

Our contributions are listed as follows:
· We apply DOE to build algorithm portfolios of parameter configurations for a given

target algorithm. Unlike configurators like ParamILS, F-Race or CALIBRA that
provide single value for each parameter, DOE provides a subregion of values for
each parameter (that are statistically important compared to other regions).

· We propose a random sampling approach to determine a portfolio of parameter
configurations from the subregions. Even though methods like ISAC [12] and Hy-
dra [9] already deliver portfolios of configurations, these techniques run a tuner for
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multiple times, resulting in huge computational overheads. In our case, DOE and
sampling is done once, which reduces computational overheads tremendously.

· We employ two online algorithm selection methods, namely Simple Random and
Learning Automata. Again, the aforementioned portfolio-based methods that make
use of parameter configurations are usually performed offline without any solution
sharing, while our approach combines the strengths of multiple configurations by
selecting them online and operating them on the same solution, which is differ-
ent from standard algorithm configuration scenarios. Although dynamic portfolio
methods [18] perform online selection, they also ignore solution sharing. The em-
pirical results on two NP-hard problems, namely the Quadratic Assignment Prob-
lem (QAP) and Travelling Salesman Problem (TSP), show the advantage of using
multiple configurations and solution sharing in algorithm selection.

2 Algorithm Configuration Problem

The algorithm configuration problem (ACP) [19] is about configuring a given target
algorithm TA to perform well on a set of problem instances. The goal is to configure
k parameters to set, P = {pr1, . . . , prk}, where each parameter has a range of values
to be set, pri ∈ Di. The configuration space involves C = D1× . . .×Dk many possible
configurations. The objective is to come up with a configuration from such a, usually,
large set to provide the best performance on an instance set, I. Thus, the ACP can
be considered an optimisation problem where a solution is a configuration ci of the
algorithm TA on I. One issue with this idea is on solution evaluation. For assessing the
quality of a ci, TA with ci should run on I. Although the required computational time for
this task varies w.r.t. TA, I and the problem domain of I, it is computationally expensive
in general. Heuristic-based search and optimisation techniques such as GGA [20] and
ParamILS [5] have been employed in order to overcome this issue.

Such tuning methods are eligible to deliver an effective configuration for a given
algorithm. The idea of algorithm portfolios [2] have been used to take advantage of
such techniques for building strong algorithm sets including algorithms with different
configurations. Existing tuning based portfolio approaches like ISAC [12] and Hydra
[9] were designed to address the offline algorithm selection problem. They pursue to
the goal of specifying the best single algorithm configuration for solving a particular
problem instance. These systems require a set of features representing instances to se-
lect algorithms after delivering a set of configurations derived from a computationally
expensive training phase. For instance, Hydra mentions that it took 70 CPU days to con-
struct a portfolio of configurations. A similar tool used for a SAT solver, i.e. SATenstein
[21], spent 240 CPU days.

Unlike these cases, the aim of this study is to build a portfolio of configurations
that can be used in an online setting. The online nature of our approach can allow
changing configurations while a selected configuration is fixed for the offline ones. Our
system performs like a parameter tuning tool where any domain specific features are not
needed. Besides that, the tuning process is faster since the tuning operation is performed
once while the tuners used in the aforementioned portfolio approaches run for multiple
times. Although our approach is not directly comparable with these offline portfolio
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methods due to its distinct design, a state-of-the art parameter tuning approach, i.e.
ParamILS which is also used in Hydra, is experimented for comparison.

3 Design of Experiments (DOE)

DOE is a well-studied statistical technique used in scientific/engineering decision-making
to select and determine the key parameters of a particular process [22]. Some typical ap-
plications of DOE include 1) evaluation and comparison of basic design configurations,
2) evaluation of different materials, and 3) selection of design parameters.

Let us consider, in order to solve a particular problem, an algorithm (called the tar-
get algorithm) that requires a set of parameters to be set prior to the execution of the
algorithm, a DOE-based framework was proposed in [23] to find ranges of parameters
values which serve as input to existing configurators such as ParamILS [5]. The main
goal is to find a parameter setting that performs best over a set of training instances
and subsequently verifies the quality of this setting on a set of testing instances. In this
paper, we utilize the first two phases of the framework, namely screening and exploita-
tion phases, to provide promising sub-regions for the parameter configurations. These
phases are briefly explained below.

3.1 Screening Phase

Suppose we have k parameters of a target algorithm to be tuned, where each parame-
ter pi (discrete or continuous) lies within a numeric interval. In the screening phase, a
complete 2k factorial design is applied to identify m parameters (m≤ k) which have sig-
nificant effects to the performance of the target algorithm (the ”important” parameters).
This requires n×2k observations where n represents the number of replicates. Experi-
ments are replicated to help identify the sources of variability and to better estimate the
true effects of treatments.

In a 2k factorial design, we examine the magnitude and direction of the effects to
determine which parameters are likely to be important. The importance of a particular
parameter pi can be defined by conducting the test of significance on the main effect
of the parameter with a significance level, e.g. α = 10%. Furthermore, the ranking of
the critical parameters is determined by the absolute values of the main effects of those
parameters. The direction of the parameter effects are determined by the sign of the
values of the main effects. For instance, if the objective function of the target algorithm
is a minimizing function, the value of a particular parameter should be set to a low
value if its coefficient of the main effect is positive. The output of this phase consists of
a reduced range for each important parameter and all unimportant parameters will be
set to a constant value.

3.2 Exploration Phase

In the exploration phase, we treat the m important parameters determined from the
screening phase, with the aim to find a promising range for them. We start exploring a
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larger space where the linear relationship is held and apply the standard approach for
linear model checking and diagnosis [22].

The target algorithm is run with respect to the parameter configuration space θ

which contains (2m+1) possible parameter configurations with an additional setting
defined by the centre points of the m important parameters. By adding centre points,
protection against curvature is provided.

The form of the relationship between the objective function and the parameters is
initially unknown. Thus, the first step is to assume a first-order (planar) model of the
response surface. The planar model is given by the following approximating function:

Y = Xβ+ ε (1)

where:
Y is the vector of (n×2k) responses/objective function values
X is the ((n×2k)×m) matrix
β is a vector of size (m×1)
ε is the ((n×2k)×1) error vector
Model adequacy checking involves two statistical tests, namely the interaction and

curvature tests, are required. The planar model can still be applied as long as either one
of them is not statistically significant. Otherwise the region of planar local optimality
has been reached and the promising region has been found. We then continue the pro-
cess by applying the steepest descent, in order to bring the parameter to the vicinity
of the optimum values. Once the region of the optimum has been found (e.g. one of
two statistical tests is statistically significant), the planar model is invalid and we can
assume that we are in the promising range for each important parameter. The details of
this framework can be referred to [23].

4 Solution Approach

Algorithm portfolios are often used with offline algorithm selection strategies. This
work was inspired by hyper-heuristic and operator selection studies which encourage
to use online algorithm selection [24]. Our approach is basically in two parts - portfolio
generation and online selection. The portfolio generation part involves finding varying
instantiations, as configurations, of the same algorithm with diverse problem solving
capabilities. A resulting portfolio involving configurations of a particular algorithm is
then used by online algorithm selection.

4.1 Portfolio Design

Recall that DOE provides a promising range for each parameter pi based on steepest
descent of a linear response surface. More precisely, we have the promising interval [li,
ui] for each parameter pi. Given these intervals, we propose three different methods to
generate a portfolio of parameter configurations. The first is to simply use a constant
step size, namely, [li, li +δ, li +2δ, . . . ,ui] where δ is a constant step size.
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Algorithm 1: Online Portfolio-Based Algorithm Selection
TA: target algorithm with k parameters, θ: configuration space defined by the initial
ranges of each parameter pi (∀i = 1,2, . . . ,k), I: instances, z: portfolio size
Portfolio Design

1 Run DOE to obtain a promising range [li,ui] for each parameter pi
2 Generate a portfolio of z parameter configurations from the promising ranges

Online Algorithm Selection
3 Apply a selection method (Simple Random (SR) or Learning Automata (LA)

The second method is to perform intensification on the promising configuration
space via random sampling. First, we generate n random samples of parameter config-
urations from the promising space. A contour plot is then generated where all sampled
points (parameter configurations) having the same response are connected to produce
the contour lines of the surface. This contour plot provides an approximate fitness land-
scape from which we can sample z points randomly, with a probability that decreases
from one contour line to the next. More precisely, if the contour plot is divided into y
contour lines, then we draw zi samples from the region bounded by contour lines i and
i+1, where z = z1 + z2 + . . .+ zy and zi > zi+1 for all 1≤ i≤ y−1.

As a more informed strategy compared to using the contour plots, a clustering ap-
proach is utilized as the final approach. The k-means clustering is employed while k,
i.e. the number of clusters, is determined by the Silhouette score [25]. Inspired from
OSCAR[26], the idea is to cluster configurations w.r.t. their performance, i.e. solution
quality, on the training instances. The performance measure used in our study is the
percentage of deviation of the objective function value obtained by a particular param-
eter configuration from the best known solution. Normalized performance values are
used as features characterizing configurations, similar to landmarking [27]. Finally, the
configuration with the highest average rank from each cluster is then included in the
portfolio.

4.2 Online Algorithm Selection

Even though the No Free Lunch theorem [28] states that there is no one algorithm
performs well on all possible problem instances that are closed under permutation, it
is usually the case that the search spaces of target problem instances do not have the
property of ’closure under permutation’. Using multiple mutation operators in an evo-
lutionary algorithm setting is theoretically shown to be effective by [29]. The advantage
of using more than one algorithm in a hyper-heuristic environment is theoretically ex-
plained in [30]. As a consequence, both experimental and theoretical studies suggest
that online algorithm selection is useful for better performance.

In this section, we propose two approaches to perform online algorithm selection.
First, Simple Random (SR) [31] randomly chooses a parameter configuration at each
iteration. Although this is very naive approach, it can effectively manage a small-sized
algorithm set. Second, Learning Automata (LA), a.k.a. stateless reinforcement learning,
has been used to perform heuristic selection in [32] due to its nice convergence property
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to a Nash equilibrium. Formally, a learning automaton is described by a quadruple
{Ã,β, p,U}. Ã= {ã1, . . . , ãn} is the set of actions available. p maintains the probabilities
of choosing each of these actions. β(t) is a random variable between 0 and 1 for the
environmental response. U is a learning scheme used to update p [33].

A learning automaton operates iteratively by evaluating the feedback provided as
the result of a selected action. The feedback from the environment is stated as the envi-
ronmental response (β(t)) referring whether a selected action is favorable (β(t) = 1) or
unfavorable (β(t) = 0). This feedback is then used to update the corresponding action
probabilities. The Boolean feedback is only used in this online algorithm selection. The
update operation will depend on the choice of the update scheme (U), namely linear
reward-penalty, linear reward-inaction and linear reward-ε-penalty are the common
update schemes which vary in the degree of rewarding or penalising a selected action
with respect to the environmental response. All these update schemes use the following
equations:

pi(t +1) = pi(t) +λ1 β(t)(1− pi(t))

−λ2(1−β(t))pi(t) (2)
if ãi is the action taken at time step t

p j(t +1) = p j(t) −λ1 β(t)p j(t)

+λ2(1−β(t))[(r−1)−1− p j(t)] (3)
if ã j 6= ãi

where r is the number of actions in Ã.
The λ1 and λ2 values are the learning rates used to update the selection probabilities.

The first one is used to reward an action while the latter parameter is to penalise an
unfavorable action. The aforementioned three update schemes are determined based on
how these two learning rates are set. If they are equal, the update scheme is described
as linear reward-penalty (LR−P). When the second rate is set to zero, the system is
defined as linear reward-inaction (LR−I). In the case of λ2 < λ1, it is defined as linear
reward-ε-penalty (LR−εP).

Applying the above to online algorithm selection, the actions are associated with the
choice of algorithms during run time. In this paper, we have chosen the (LR−I) update
scheme, which means that λ2 is set to 0. Moreover, the probability update process is
performed based on two feedbacks, which are finding a new best solution and deliv-
ering an improved solution respectively. This means that two values are chosen for λ1
depending on which of two feedbacks are received.

5 Experimental Results

In order to empirically show the performance of our proposed algorithm selection meth-
ods, we perform experiments on two classical combinatorial optimization problems -
the Quadratic Assignment Problem (QAP) and Traveling Salesman Problem (TSP).
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For each experiment, we perform six different selection methods: 1) SR with con-
stant step size (SR-Constant), 2) SR with random sampling from the contour plot (SR-
Contour), 3) LA with constant step-size (LA-Constant), 4) LA with random sampling
from the contour plot (LA-Contour), 5) SR with clustering (SR-Cluster), and 6) LA with
clustering (LA-Cluster). The learning rate (λ1) for LA is set to 0.1 and 0.01 respectively
for the feedbacks of finding a new best solution or improving the current solution.

5.1 Quadratic Assignment Problem

The QAP is interested in the minimum cost allocation of facilities to locations, taking
the costs as the sum of all distance-flow products. A Simulated Annealing - Tabu Search
(SA-TS) hybrid meta-heuristic [34] is used as the target algorithm with four parameters.
Table 1 gives the details about the parameter configurations from [23].

Table 1: The parameter space of the QAP
Parameters Initial range DOE Range Step size Contour Plot Clustering

Init. temperature (Temp) [100, 7000]
Group I [4378, 6378] 250 5 values 2 values

Group II [4238, 6238] 250 5 values 2 values
Group III [4000, 6000] 250 5 values 6 values

Cooling factor (Al pha) [0.5, 0.95]
Group I [0.935, 0.945] 0.005 5 values 2 values

Group II [0.935, 0.945] 0.005 5 values 2 values
Group III [0.85, 0.95] 0.05 5 values 6 values

Tabu list length (TabuLngth) [5, 10]
Group I 5 - - -

Group II 6 - - -
Group III 6 - - -

Diversification factor (Limit) [0.01, 0.1]
Group I 0.01 - - -

Group II 0.1 - - -
Group III 0.1 - - -

The QAP benchmark instances are from QAPLIB [35]. The instances are grouped
into four classes: unstructured instances (Group I), grid-based distance matrix (Group
II), real-life instances (Group III) and real-life-like instances (Group IV). Due to the
limitation of the target algorithm that can only handle symmetrical distance matrix, we
only focus on instances from the first three classes. By referring to [23] for classify-
ing instances into training and testing instances, we conduct the experiments for two
different set of instances: 1) testing instances and 2) all instances (training + testing
instances). Instance classes consist of 11, 24, 14 training and 5, 11, 7 testing instances,
respectively. Those instances are selected randomly.

The application of DOE screening phase yields the following result for Group III
(Figure 1). It reveals that two parameters (Temp and Al pha) are statistically significant
(with p-value ≤ 5%), while the effect of other parameters: TabuLngth and Limit are
insignificant. Based on the coefficient value obtained, we determine the constant value
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Fig. 1: Screening Phase (Group III)

Fig. 2: Contour Plot (Groups I, II and III, respectively)

for each insignificant parameter, e.g. the effect of parameter Limit is 0.137, so the value
of this parameter is set to its lower bound value, which is 0.01 (Table 1).

Using this information in the DOE exploration phase, we find the promising planar
region for both parameters (Temp and Al pha). The final ranges for both parameters
are summarized in Table 1. The contour plots generated from random sampling for
instances are as shown in Figure 2. From the plots, we pick three and two different
parameter configurations randomly from two promising regions, A and B, respectively.

Unlike the contour plots case, in the clustering based portfolio generation approach,
the number of configurations used in the resulting portfolio is automatically determined.
The last three columns show details on step sizes, number of random samples used to
generate the portfolio and number of parameter settings generated by the clustering
method.

In order to compare the performance of our proposed approach, we also run the
target algorithm with constant parameter values generated by RCS and ParamILS. Both
configurators also use the same inputs from DOE range (Table 1). The parameter values
are obtained from [23].

For each instance within a particular group, we perform 10 runs and compare the
percentage deviations of the average objective function value of the solutions obtained



10 Aldy Gunawan, Hoong Chuin Lau and Mustafa Mısır

Table 2: The performance of the tested approaches on the QAP instances with respect
to the best known solutions (P: ParamILS, Cs: Constant, Ct: Contour, Cl: Cluster)

Instances Metric Methods
RCS P SR-P LA-P SR-Cs LA-Cs SR-Ct LA-Ct SR-Cl LA-Cl

Group I

% Dev Avg (Test) 0.606 0.692 0.779 0.509 0.535 0.492 0.473 0.471 0.512 0.534
% Dev Best (Test) 0.314 0.345 0.416 0.350 0.378 0.340 0.301 0.325 0.331 0.359
% Dev Avg (All) 0.880 0.973 1.011 0.756 0.737 0.734 0.716 0.700 0.709 0.748
% Dev Best (All) 0.505 0.581 0.618 0.470 0.449 0.444 0.444 0.476 0.556 0.465

Group II

% Dev Avg (Test) 0.214 0.210 0.394 0.139 0.168 0.134 0.149 0.151 0.157 0.136
% Dev Best (Test) 0.030 0.024 0.061 0.025 0.022 0.018 0.012 0.032 0.028 0.029
% Dev Avg (All) 0.262 0.247 0.417 0.183 0.192 0.189 0.189 0.183 0.188 0.195
% Dev Best (All) 0.068 0.060 0.103 0.038 0.045 0.031 0.030 0.031 0.033 0.043

Group III

% Dev Avg (Test) 1.231 1.196 1.990 0.667 0.744 0.767 0.636 0.935 0.704 0.866
% Dev Best (Test) 0.000 0.191 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
% Dev Avg (All) 2.921 2.848 3.414 1.620 2.563 1.824 2.516 1.700 1.737 1.590
% Dev Best (All) 1.114 0.873 0.278 0.252 1.170 0.241 0.266 0.231 0.239 0.251

and the best objective function value obtained against the best known/optimal solutions.
In order to ensure the fairness among approaches, we use the same computational bud-
get for each one. For example, ParamILS uses z time units so others also use z time
units.

The results are summarized in Table 2. In general, we see that we can obtain better
results by generating a portfolio of algorithms with different parameter configurations,
either by applying Simple Random (SR) or Learning Automata (LA), compared against
constant parameter values (RCS or ParamILS). The best performers are SR-Contour
and LA-Constant. SR and LA with clustering (SR-Cluster and LA-Cluster) are also
comparable with others. Those constant parameter values (RCS and ParamILS) do not
perform well.

Table 3: Wilcoxon Signed Rank Test of Table 2 results
Methods Group I Group II Group III
RCS 5 5 5
ParamILS 6 5 5
SR-ParamILS 7 6 6
LA-ParamILS 3 1 1
SR-Constant 4 4 2
LA-Constant 2 1 2
SR-Contour 1 2 1
LA-Contour 1 2 4
SR-Cluster 3 3 1
LA-Cluster 4 1 3
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We also run ParamILS five times in order to generate five parameter configurations.
Both selections methods, simple random and learning automata (SR-ParamILS and LA-
ParamILS), are used to compare with others. The purpose of this comparison is to show
how generating a portfolio of algorithms with different parameter values generated from
the contour plot and the clustering method outperforms a portfolio of algorithms using
constant step-size and best-of-breed parameter tuning approaches (e.g. ParamILS). The
results are summarized in SR-ParamILS and LA-ParamILS columns of Table 2.

For further analysis, Wilcoxon Signed Rank Test is used to test all pairwise differ-
ences between each algorithm selection approach in terms of %Dev Avg (Test) values.
The ranks are summarized in Table 3. Some methods have the same rank values, mean-
ing that those methods are statistically indifferent. We observe that algorithm selection
with LA methods outperforms other methods in all groups of testing instances. SR also
performs well in Group III instances in terms of the percentage of average deviations for
testing instances. In general, using the contour plot to generate a portfolio of promising
parameter values outperforms other approaches.
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Fig. 3: The effect of learning automata on parameter configuration selection while solv-
ing a QAP instance, tho150

Lastly, we provide a glimpse of the effectiveness of the generated portfolio by ex-
amining the frequency distribution of selection, as shown in Figure 3. As shown in the
figure, the cumulative frequency of choosing each parameter configuration vary over
iterations, suggesting that different configurations are effectively used throughout the
online selection process. And considering that LA outperformed both ParamILS and
SR, we can conclude that the LA’s learning process pays off.
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5.2 Travelling Salesman Problem

The Travelling Salesman problem (TSP) requires finding a tour that visits all cities
exactly once that minimises the total distance travelled. In our experiment, Iterated
Local Search (ILS) with a 4-Opt perturbation [36] is used as the target algorithm.

Table 4: The parameter space of the TSP
Parameters Initial range DOE Range Step size Contour Plot Clustering

Maximum # iterations (Itermax) [100, 900] [400, 600] 50 5 values 2 values
Perturbation strength (Ps) [1, 10] [1, 3] 1 5 values 2 values

Non-improving moves tolerance (T lnip) [1, 10] [4, 6] 1 5 values 2 values
Perturbation choice (Pc) [3, 4] 3 - - -

Table 4 summarizes the list of the parameters to be tuned, the initial and final ranges
for each parameters after applying DOE. Similar to QAP, the last column provides how
we generate the algorithm portfolio. We only compare with ParamILS since RCS does
not perform well in solving the QAP (Section 5.1). 47 TSP instances out of 70 instances
from TSPLIB are used as the training instances while the rest (23 instances) are treated
as testing instances.

The experiment result is presented in Table 5. We observe that our approach works
well compared to existing configurators. In particular, the selection method using LA-
Contour outperforms others. The performance of algorithm selection methods are ranked
based on Wilcoxon Signed Rank Test as follows: LA-Contour ≈ LA-Constant ≈ SR-
Cluster� LA-ParamILS≈ SR-Constant� LA-Cluster≈ SR-ParamILS� SR-Contour
� ParamILS.

Table 5: The performance of the tested approaches on the TSP instances with respect to
the best known solutions (P: ParamILS, Cs: Constant, Ct: Contour, Cl: Cluster)

Metric Methods
P SR-P LA-P SR-Cs LA-Cs SR-Ct LA-Ct SR-Cl LA-Cl

% Dev Avg (Test) 1.742 1.331 1.321 1.325 1.295 1.377 1.291 1.295 1.332
% Dev Best (Test) 0.852 0.752 0.787 0.792 0.704 0.768 0.664 0.749 0.880
% Dev Avg (All) 1.671 1.259 1.211 1.262 1.272 1.304 1.207 1.252 1.277
% Dev Best (All) 0.838 0.736 0.702 0.815 0.717 0.770 0.684 0.800 0.800

Similar to QAP, we also generate five parameter configurations using ParamILS
and compare against five points generated from the contour plot, as shown in Table
5 (SR-ParamILS and LA-ParamILS columns). We again conclude that our proposed
approach using the contour plot outperforms the portfolio with configurations generated
by ParamILS.
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6 Conclusion

This paper shows that Design of Experiments (DOE) coupled with random sampling
can automatically generate good portfolios of parameter configurations that can be used
by an online algorithm selection process. The computational results on two classical
combinatorial optimisation problems showed the strength of our proposed method com-
pared to state-of-the-art configurators such as ParamILS. We show that the proposed
approach lead to improvements to two combinatorial optimization problems, QAP and
TSP, compared against single configurations.

Many interesting problems arise from this research. For example, how to set the
learning rates in the learning automaton? How to improve our proposed schemes at
generating portfolios? Will our generic approach perform well in other problems? How
to speed up the process through parallelization?
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