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ICCDetector: ICC-Based Malware
Detection on Android

Ke Xu, Yingjiu Li, and Robert H. Deng

Abstract— Most existing mobile malware detection methods
(e.g., Kirin and DroidMat) are designed based on the resources
required by malwares (e.g., permissions, application program-
ming interface (API) calls, and system calls). These methods
capture the interactions between mobile apps and Android
system, but ignore the communications among components
within or cross application boundaries. As a consequence, the
majority of the existing methods are less effective in identifying
many typical malwares, which require a few or no suspi-
cious resources, but leverage on inter-component communication
(ICC) mechanism when launching stealthy attacks. To address
this challenge, we propose a new malware detection method,
named ICCDetector. ICCDetector outputs a detection model
after training with a set of benign apps and a set of malwares,
and employs the trained model for malware detection. The
performance of ICCDetector is evaluated with 5264 malwares,
and 12 026 benign apps. Compared with our benchmark, which is
a permission-based method proposed by Peng et al. in 2012 with
an accuracy up to 88.2%, ICCDetector achieves an accuracy
of 97.4%, roughly 10% higher than the benchmark, with a
lower false positive rate of 0.67%, which is only about a half
of the benchmark. After manually analyzing false positives,
we discover 43 new malwares from the benign data set, and
reduce the number of false positives to seven. More importantly,
ICCDetector discovers 1708 more advanced malwares than the
benchmark, while it misses 220 obvious malwares, which can be
easily detected by the benchmark. For the detected malwares,
ICCDetector further classifies them into five newly defined mal-
ware categories, which help understand the relationship between
malicious behaviors and ICC characteristics. We also provide a
systemic analysis of ICC patterns of benign apps and malwares.

Index Terms— ICC, malware detection, Android.

I. INTRODUCTION

MANY existing malware detection methods are designed
to detect malwares based on required resources, such

as permissions, suspicious API calls and system calls. For
example, Kirin [1] detects malwares by matching their
required permissions against pre-defined security rules.
DroidMiner [2] and DroidAPIMiner [3] build malware detec-
tion models based on API-related features. Most of these
methods treat the detected applications as standalone entities
in Android platforms.
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However, in order to bypass existing detection methods,
malwares move to another direction by conducting malicious
operations without requiring suspicious resources. As observed
by [4]–[7], malwares may conduct multiple attacks (e.g., Con-
fused Deputy attacks and Collusion attacks) by manipulating
other apps. In fact, instead of being independent to each
other, Android applications may communicate through the
Inter-Component Communication (ICC) mechanism provided
by Android, which is designed to reduce the developers’
burden and promote functionality reuse [8]. Although ICC
facilitates inter-application collaboration, it can be exploited
by malwares to obfuscate malicious behaviors and bypass
existing detection methods. For example, consider a malware
(com.jx.theme) which aims to install APK files during
runtime. Instead of requiring the corresponding permission
(android.permission.INSTALL_PACKAGE), which
should not be used by third-party apps, and thus
can be detected by most existing detection methods,
this malware generates an Explicit Intent, sends
it to Package: com.android.packageinstaller,
Class: com.android.packageinstaller. Pack
ageInstallerActivity, and manipulates the latter
to install some APK files from SD cards. It is difficult to
detect such malwares from their required resources without
inspecting the ICC information involved.

As a pioneer to address such challenge, we systemically
analyze ICC patterns of benign apps and malwares, and
propose ICCDetector, an effective and accurate malware
detection method, which detects malwares based on not their
required resources, but their ICC patterns. The ICC patterns of
an app represent how it use the ICC mechanism, and can be
extracted from the app’s APK file. ICCDetector is trained with
the ICC patterns extracted from some benign apps and those
from certain malwares before it outputs a detection model. The
detection model is used to detect a malware based on its ICC
patterns. By looking into the ICC patterns, ICCDetector not
only examines the communications between applications and
Android system, but also the interactions between applications.
Because of this, ICCDetector is especially useful for detecting
those “advanced malwares” which invalidate most existing
malware detection methods by exploiting the ICC mechanism
instead of requiring suspicious resources.

We collect 5,264 recent malwares and 12,026 benign apps
to evaluate the effectiveness and accuracy of ICCDetector.
For comparison, we choose a highly cited malware detec-
tion method [9] as a benchmark, which detects malwares
according to their required permissions. With the same dataset,
the evaluation result indicates that ICCDetector achieves an
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accuracy of 97.4%, roughly 10% higher than the benchmark.
Furthermore, ICCDetector produces a false positive rate
of 0.67%, which is only about one half of the benchmark.
After manually analyzing false positives, we discover 43 new
malwares from the benign dataset, and reduce the number false
positives to seven.

For detected malwares, ICCDetector further classifies
them into five new malware categories according to their
ICC patterns. The classification clarifies the relationship
between malware behaviors and ICC characteristics. In addi-
tion, we test the runtime performance of ICCDetector, identify
the performance bottleneck and specify the directions for
performance improvement.

The rest of the paper is organized as follows. Section II
describes ICC patterns of apps. Section III details the system
design of ICCDetector. Section IV evaluates ICCDetector in
different aspects, including a comparison with a benchmark,
a analysis of detection performance, a classification of
malwares, and runtime measurement. Section V discusses
some recent work on Android malware detection and the
limitations of ICCDetector. Section VI summarizes the related
work, and Section VII concludes the paper.

II. ICC PATTERNS

In this section, we identify the ICC patterns of benign apps
and malicious apps, provide systemic analysis of ICC patterns,
and clarify how ICC patterns can be used to distinguish
between benign apps and malicious apps.

A. App Components

An Android application consists of four types of com-
ponents, Activity, Service, Broadcast Receiver, and Content
Provider. Activity provides a screen with which users can
interact in order to do something. All visible portions of
applications are Activities. Service can perform long-running
operations in the background and does not provide a user
interface. Content Provider manages access to a structured set
of data. Broadcast Receiver receives information sent from
multiple applications. An application must declare the names
of its Activity, Service and Content Provider components in its
manifest file. However, application developers are allowed to
register Broadcast Receiver at run time to listen for specific
broadcasts during a specified period of time. That is, applica-
tions can declare Broadcast Receiver both in manifest
file and in java code.

Number of Components: In reality, malwares tend to reg-
ister more Broadcast Receivers and less Activities, Services
and Content Providers than benign apps do. A large num-
ber of Broadcast Receivers enables malwares to monitor
system-events, such as network connectivity changes and
battery changes. Although some malwares provide legiti-
mate functionalities to end users, these functionalities are
limited, which means the number of Activities, Services
and Content Providers declared by malwares are relatively
small. For example, without declaring any Activity or Content
Provider, a malware (com.android.update) registers
only one Service (com.android.update.Updater) to

stealthily download and install malicious APK files to its
fetched devices.

Name of Components: Since code reuse is common
in the development of malwares, the malwares belonging
to the same malware family tend to conduct similar
malicious behaviors and reuse some components. For
example, four malwares with different package names
(BatteryUpgrade-Tap-To-Start, Battery_Upg-
rade−−Tap_to_start,BatteryUpgrade-Tap-To-
Start-2, com.extend.battery) share some malicio-
us components to conduct similar attacks, such as com.ext-
end.battery.Splash, com.extend.battery.Ba-
tteryService and com.extend.battery.Boot
Receiver.

Interestingly, we discover that malwares are more likely to
register some components with similar confusing names so
as to fool end users around or evade from detections. For
example, com.gp.geekadoo is a malware which pretends
to be a card game application in markets, and is capa-
ble of gaining super user privileges, rewriting system files,
and connecting to a command and control server. Specially,
com.gp.geekadoo includes several components with con-
fusing names, such as com.google.update.Dialog,
com.google.update.UpdateService, and com.go-
ogle.update.Receiver. Without expert knowledge, end
users might be confused by these names, and treat this
malware as an updated version of Android or a patch of
Google.

Moreover, in the Android system, when multiple Activities
match a single Implicit Intent, the user of the system will
be prompted to choose which component should receive and
respond to the Intent [10]. With confusing names, the user
may be tricked to choose malicious applications.

B. Intents

In the ICC mechanism, Intents are used to link components,
and can be sent between Activities, Services, and Broadcast
Receivers. The major functionality of Intents is to start
Activities, start and stop Services, and deliver broadcast infor-
mation to Broadcast Receivers.

Explicit Intents: Explicit Intents specify the components
to start with by including targeted package names and class
names. Typically, Explicit Intents are used to connect com-
ponents within the same application and designed for internal
application communications [10].

However, malwares can abuse Explicit Intents by sending
them to other applications (i.e., external components). For
example, a benign application makes its components exposed
in order to receive system-generated Intents. In this case, a
malware can directly send Explicit Intents to these exposed
components. Without strict action check and appropriate
permission protections, these benign components will be
directly launched and manipulated by malwares.

In order to avoid being detected by traditional malware
detection approaches which can capture suspicious permission
usages and API calls, malwares find an effective solution
by including or dynamically installing additional APK files.



1254 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 6, JUNE 2016

Fig. 1. Example of Intent Spoofing Attack.

These newly installed APK files are responsible to conduct
actual malicious actions. In this case, the original malwares
will not be detected since their malicious behaviors can-
not be captured by monitoring permissions and API calls.
However, these malwares may communicate with the dynam-
ically installed malwares using Explicit Intents, which can be
inferred from their ICC patterns.

In addition, malwares tend to send more Explicit Intents
to Android system than benign applications do. In our
experiments, we discover that many malwares send
Explicit Intents to an Android component, Package:
com.android.packageinstaller, Class: com.-
android.packageinstaller.PackageInstaller-
Activity, which is responsible to install APK files saved
on SD cards. However, none of the 12,026 popular benign
applications which we collected from GooglePlay create such
Explicit Intents.

Implicit Intents: Unlike Explicit Intents, Implicit Intents
do not name any specific components, but instead declare
general actions to perform. When an application creates an
Implicit Intent, the Android system finds the appropriate
component to start by comparing the contents (i.e., action,
category, and data) of the Intent to the declared Intent Filters.
If the Intent matches an Intent Filter, the system starts that
component and delivers it the Implicit Intent object. There
is a variety of system Intent actions and categories defined
in the Intent class, and applications can define their own
actions using their package names as prefixes. This results in
two types of actions in Android: system action (prefix:
android.- or com.android.-) and user-defined
action (prefix: package_name.-). In particular, it is
unusual and suspicious for an application generating Implicit
Intent containing actions defined by other applications.

Different from the standard process, malwares may send
malicious Implicit Intents to the exposed components of
benign applications. These components are exposed to receive
system-generated Intents or internal Implicit Intents (which is
not recommended by Android due to security consideration).
Without necessary action check or permission protections, the
exposed components may be launched and manipulated by
malwares via Implicit Intents.

For example, a malware may launch an Intent Spoofing
attack [8] by misusing Implicit Intents as shown in Fig. 1.
Component A is exposed to receive internal Intents and
perform an action (com.example.benign.MODIFY).
Misusing the Implicit Intent mechanism, malicious
Component B may trick Component A to receive

an external Intent (i.e., malicious Intent e) instead of
the internal Intent (i.e., benign Intent i), and perform
com.example.benign.MODIFY accordingly.

Although it is challenging for normal applications to get
the knowledge of other applications’ exposed components, it
is relatively easy for well-prepared or colluded malwares to
attain the knowledge. Malware authors may analyze popular
applications and exploit the ICC vulnerabilities in designing
their malwares. Also, the same malware authors may develop
multiple malwares, which make use of each other’s exposed
components to perform Collusion attacks.

Although Android provides permission checks for
sending out Implicit Intents with sensitive action
strings (e.g., android.intent.action.CALL, and
android.intent.action.REBOOT) and recommends
developers to protect their exposed components (especially
Services) with permissions, this is not an effective way to
prevent Implicit Intents from being misused.

C. Intent Filters

Intent Filters are used to match with Implicit Intents in
Android system. The use of Intent Filters in malwares is
significantly different from their use in benign applications.

Intercepting Implicit Intents: Malwares may intercept
Implicit Intents with Intent Filters in Component Hijacking
attacks [8], where malicious components are launched in
place of the expected benign components. Malwares may
also intercept Implicit Intents to read the data included in
the Intents, connect to certain applications, or even inject
false information into the response returned. As illustrated
in Fig. 2, malwares may register appropriate Intent Filters so
as to intercept external Intents generated by benign apps.

Intent Filters With Sensitive Actions: Compared with benign
applications, malwares especially care about the system-wide
events (i.e., system broadcast information). Some of system
broadcasts can only be sent by Android system, but can
be received by any components with appropriate Intent
Filters. Malwares tend to register more Intent Filters for
broadcast information related to phone states, such as
android.intent.action.BOOT_COMPLETED, and
android.intent.action.SMS_RECEIVED. Some
of the Intent Filters that are often misused by malwares
are given in Table I, from which we observe that the
percentage of malwares registering such Intent Filters
is significantly different from the percentage of benign
applications registering such Intent Filters. For example,
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Fig. 2. Example of Component Hijacking Attack.

TABLE I

PERCENTAGE OF BENIGN APPS AND MALICIOUS APPS REGISTERING INTENT FILTERS WITH SENSITIVE ACTIONS

none of the benign application in the benign dataset
(including 12,026 benign applications) register Intent Filter
to receive broadcast information related to changes of signal
strength (i.e., android.intent.action.SIG_STR),
while 12.2% of malwares intend to intercept such event.

Number of Intent Filters: Malwares may conduct Compo-
nent Hijacking attacks by exposing their malicious components
with Intent Filters. Therefore, it is more likely for malwares
to register Intent Filters for their Activities and Services. In
our experiments, 29.32% of malwares declare Intent Filters
for Services, while only 7.0% of benign apps make Services
exposed. Furthermore, it is common for malwares to register
more Intent Filters, which allows malwares to reliably launch
malicious components or payloads.

Registration Mode of Intent Filters: The Registration mode
of Intent Filters can serve as an indicator to differentiate
between benign apps and malicious apps. The registration of
Intent Filters for Activities and Services must be recorded
in the manifest file, while the registration of Intent Filters
for Broadcast Receivers is flexible, which can be static and
dynamic. Android enforces dynamic registration of Intent
Filters to keep applications informed with system changes
during runtime. However, the dynamic Intent Filters make it
possible for malwares to capture specific events in runtime and
make necessary responses as required to perform malicious
operations.

In our experiments, it is extremely common that malwares
dynamically register Intent Filters to capture sensitive broad-
casts, such as android.intent.action.BOOT_COMP-
LETED, android.intent.action.BATTERY_CHAN-
GED and android.intent.action.PACKAGE_ADDED.

Table II summarizes the ICC patterns of benign apps and
malicious apps. Benign applications use the ICC mechanism
mainly for linking internal components and communicating
with the Android system. However, malwares usually manip-
ulate the ICC mechanism for monitoring system events, and
creating Intents and Intent Filters to interact with external
components.

III. SYSTEM DESIGN

ICCDetector consists of two phases, including Training
Phase and Detection Phase as shown in Fig. 3. In the
training phase, ICCDetector extracts ICC-related features by
analyzing the ICC sources and sinks of certain benign
apps and malwares, and generates feature vector for every
processed app. A classification method is used to take its
input from the generated feature vectors of benign apps
and malwares, and outputs a detection model. This detection
model can be used to differentiate between benign apps and
malwares, and it is transmitted to the detection phase. In the
detection phase, ICCDetector generates a feature vector for
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TABLE II

ICC PATTERNS OF BENIGN APPS AND MALICIOUS APPS

Fig. 3. ICCDetector System Architecture.

each app being detected and feeds the feature vector into the
detection model, which outputs whether the detected app is
benign or malicious.

A. Training Phase

Feature Extraction: In the first step of the training phase,
ICCDetector extracts all of the ICC-related features from a
given app. To achieve this, we develop a tool named Parser
on top of any ICC analysis tool which outputs all ICC sources
and sinks from the app’s APK file. Examples of such ICC
analysis tools include ComDroid [8], Amandroid [11] and
EPICC [12]. We choose EPICC for Parser in this work. Parser
defines various categories of ICC-related features, and formats
of these features. Given an app’s APK file, Parser extracts the
ICC-related features for each category, and represents the
extracted features in corresponding formats. ICC-related
features are defined in the following four categories:

1) Components: Given an application, Parser extracts
the names and types of its components. For Broadcast
Receiver-s, Parser also records the registration modes
(i.e., static or d-ynamic). After that, Parser represents
the ICC-related features in the following format:
component_name(activity/s-ervice/provider),
component_name(receiver_static), component
_name(receiver_dynamic), num_of_activity/
service/provider, num_of_receiver(static),
num_of_receiver(dynamic). For example, if an
app dynamically registers a Broadcast Rece-
iver: com.bwx.bequick.receivers.Airplane
ModeReceiver, then Parser extracts an ICC-related

feature com.bwx.bequick.receivers.Airplane
Mode-Receiver(receiver_dynamic) from this app.

2) Explicit Intents: In this category, Parser records the
total number of generated Explicit Intents and the number
of external Explicit Intents. As explained in Section II, it
is important to check the Explicit Intents’ targets, including
internal components and external components. Parser labels
an Explicit Intent as external if it is sent to another
app (i.e., the targeted package name is not included in
the sender’s APK file). The ICC-related features in this
category are represented as num_of_explicitintent,
num_of_external_explicitintent, external_
package_name(external_explicitintent). For
example, the package name of an app is com.jx.
theme, which sends out an Explicit Intent to package:
com.android.packageinstaller, class: com.
android.packageinstaller.PackageInstaller
Activity, then Parser retrieves an ICC-related fea-
ture as com.android.packageinstaller(external
_explicitintent). Note that, Parser does not record the
package names of internal Explicit Intents. Since internal
Explicit Intents are designed for intra-application
communications, they are not very useful for detecting
malwares.

3) Implicit Intents: For each Implicit Intent of an app,
Parser matches it with the Intent Filters retrieved from the
same app following the process defined by Android. If a
match exists, Parser labels the Implicit Intent as internal,
which is used to connect components within the same app.
Otherwise, Parser regards this Implicit Intent as external,
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TABLE III

SUMMARY OF ICC-RELATED FEATURES

Fig. 4. Process of Feature Vector Generation.

and checks its action field. If the action is defined by other
apps (i.e., the action is user-defined and its prefix is
different from the sender’s package name), Parser labels it
as external_userdefined_action; otherwise, Parser
labels it as external_system_action.

For each Implicit Intents, Parser retrieves its action string
and identifies the potential target, and outputs the fol-
lowing ICC-related features: num_of_implicitintent,
num_of_internal_implicitintent, num_of_ex-
ternal_implicitintent(userdefined_action),
num_of_external_implicitintent(system_act-
ion), action_string(internal), action_str-
ing(external_userdefined_action), and action
_string(external_system_action). For instance,
a malware (package name: net.mujee.www) generates
an Implicit Intent with android.intent.action.DIAL.
However, none of its Intent Filter is registered to
receive this Intent. Parser retrieves an ICC-related feature
android.intent.action.DIAl(external_system
_action) in this case.

4) Intent Filters: Similar to Implicit Intents, Intent Filters
are represented with the included action strings. In addition,
Parser records the types of components which Intent Filters
are registered for. Especially, if an Intent Filter is registered for
a Broadcast Receiver, Parser checks whether the registration
is dynamic or static. The ICC-related features in this category
include action_string(for_activity/service),
action_string(for_receiver_static), action
_string(for_receiver_dynamic), num_of_int-

entfilter_for_activity/service, num_of_in-
tentfilter_for_receiver(static), num_of_
intentfilter_for_receiver(dynamic), and num_
of_total_intentfilter. For example, given an
application which dynamically registers two Intent Filters
with the s-ame action string (android.provider.
Telephony.SMS_RECEIVED), Parser extracts an
ICC-related feature android.provider.Telephony.
SMS_RECEIVED(for_receiver_dynamic), and sets
its corresponding value to two.

Table III summarizes the formats of ICC-related features.
For all the ICC-related features retrieved from benign apps
and malwares by Parser, ICCDetector stores them separately
in the Attribute Database. In addition, ICCDetector stores the
output of Parser for each analyzed application, which includes
the extracted ICC-related features and the corresponding
values.

Feature Vector Generation: In the training phase,
ICCDetector leverages any two-class classification method
(e.g., SVM [13], Decision Tree [14] and Random Forest [15])
to learn the ICC patterns from benign apps and malwares,
respectively. In particular, ICCDetector treats each of
the extracted ICC-related features as a detection feature.
Therefore, the number of detection features is equal to the
size of Attribute Database. If the size of Attribute Database
is X, ICCDetector defines an X-dimensional vector space.
For each app, ICCDetector constructs a feature vector by
mapping its Parser output to the X-dimensional vector space
as shown in Fig. 4.
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Usually, a typical Android app generates roughly
100 none-zero ICC-related features; therefore, its feature
vector is sparse. ICCDetector represents the feature vectors
sparsely using hash tables [16]. In comparison, existing
works [2], [17] use Boolean expression to represent feature
vectors, which indicates whether an app includes a feature
or not. Since ICCDetector records the exact value for each
ICC-related feature in generating feature vectors, ICCDetector
has more accurate information to differentiate between benign
apps and malicious apps.

Learning: As described in Feature Extraction and
Feature Vector Generation, ICCDetector extracts
ICC-related features as many as possible from given
apps and constructs feature vectors by mapping Parser out to
the vector space. Some of these extracted ICC-related features,
however, are correlated to each other. Note that the number of
extracted ICC-related features decides the dimensionality of
feature vectors. If ICCDetector extracts too many ICC-related
features in Feature Extraction, it leads to high dimensional
feature vectors in Feature Vector Generation, which may
contain a high degree of irrelevant and redundant information,
and thus degrade the performance of learning algorithms. As a
preprocessing step to machine learning, feature selection is
effective in reducing dimensionality, removing irrelevant and
redundant features, and mitigating overfitting. In this work,
we apply a well-known feature selection method, Correlation-
based Feature Selection (CFS) [18], in ICCDetector. CFS iden-
tifies and removes irrelevant and redundant features according
to the correlation between features. After the process,
CFS keeps a subset of original features, which are sufficient
for the classification of Android applications. Consequently,
CFS effectively reduces the dimensionality of feature vectors.

Given the input of reduced-dimension feature vectors
generated from benign apps and malwares, respectively,
ICCDetector applies any two-class classification method and
outputs a detection model, which separates the feature vectors
from benign and malicious. The detection model is then
transmitted to detection phase.

B. Detection Phase

In the detection phase, ICCDetector extracts the ICC-related
features from an app being detected, generated its feature
vector, and feeds the feature vector to the detection model. The
detection model decides whether the detected app is benign or
malicious.

IV. EVALUATION

We evaluate the performance of ICCDetector in different
aspects with real data, including comparison with a bench-
mark, analysis of detection performance, classification of
detected malwares, and runtime measurement.

A. Data Collection

We built an initial dataset of 14,264 benign apps by crawling
GooglePlay from July 2014 to August 2014. To exclude
potential malicious apps from this initial dataset, we sent each

app to VirusTotal [19], which is an antivirus service with
fifty-four antivirus scanners. We labeled an app in the original
dataset as benign if and only if no antivirus scanner raises any
alarm for the app. We also excluded potential malicious apps
such as adwares, and spywares from the initial dataset so as
to generate the benign dataset, which consists of 12,026 apps.

An existing malware dataset [17], which consists of
5,264 malwares is used as the ground truth in our evaluation.
This malware set is one of the largest and newest datasets of
Android malwares which are publicly available today.

B. Feature Selection and Analysis
From 12,026 benign apps and 5,264 malwares,

ICCDetector extracts 121,621 ICC-related features in total.
Since the extracted features contain redundant information
due to correlation between features, we apply CFS to
identify and remove the redundant features according to the
correlation between features. After the process, CFS chooses
5,000 ICC-related features, which are subsequently used for
the classification of malicious and benign applications.

A majority of the ICC-related features that are removed
by CFS belongs to Component. When design names for
components, app developers usually include package names
in components names. For example, an application with pack-
age name com.bwx.bequick includes several components
named as com.bwx.bequick.EulaActivity, com.b-
wx.bequick.ShowSettingsActivity, and com.bw-
x.bequick.MainSettingsActivity. Since it is com-
mon to include package names in component names in mobile
application development, our ICCDetector extracts numerous
unique ICC-related features from component names. We notice
that a majority of ICC-related features in this category only
appear once in single applications and are correlated to some
other features. Consequently, CFS can effectively reduce the
dimensionality of feature vectors after removing these redun-
dant features.

While CFS filters out a majority of ICC-related features
belonging to Component, it keeps the features in this
category that are useful for distinguishing malwares from
benign apps. For example, CFS keeps an ICC-related feature
com.allen.txtxcb.Settings(activity), which is
extracted from an Activity named com.allen.txtxcb.S-
etting. This Activity can only be found in a malware family
called DroidKungFu, and is shared by the malwares in this
family. Another example is com.android.installer.
-full.AndroidInstaller2Activity(activity),
which is an ICC-related feature selected by CFS. This feature,
which is extracted from an Activity called com.android.-
installer.full.AndroidInstaller2Activity, is
shared by several Russian malwares. These malwares pretend
to be legitimate package installers provided by Android,
but are capable of manipulating SMS, taking pictures, and
directly installing arbitrary applications. This Activity has
a confusing name so as to fool end users and evade from
detections, which is normal in malwares but rare in benign
applications. It is thus helpful to keep these ICC-related
features for differentiating between malwares and benign
applications.
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We also analyze the selected ICC-related features belonging
to other categories. In general, a majority of the selected
features can be used to describe the communications among
components within or cross application boundaries. Due
to the differences between malicious ICC patterns and
benign ICC patterns, these selected features can be used
to distinguish benign apps and malwares. For example,
android.intent.action.PACKAGE_CHANGED(ext-
ernal_system_action) is a selected ICC-related fea-
tures extracted from an external Implicit Intents android.
intent.action.PACKAGE_CHANGED. This Implicit
Intent is widely used by malwares for monitoring system
events that are related to package and downloading additional
APK files during runtime; however, it is barely generated by
benign applications. In the Training phase, our model learns
from the training dataset that this selected feature usually
appears in malicious feature vectors but rarely appears in
benign feature vectors. In the Detection phase, all of the
selected ICC-related features are used to distinguish between
malicious and benign applications.

C. Experiment Result

We compare the detection performance of ICCDetector
with a benchmark, which is a highly cited Android malware
detection method proposed in recent years [9], using the
same dataset. The benchmark is a typical Android malware
detection method, which detects malwares based on their
required permissions and its accuracy is up to 88.2% using
the dataset mentioned in Section IV-A.

In the experiments, ICCDetector leverages on a widely
used two-class classification method, Support Vector
Machine (SVM) [13], to train a detection model. SVM is
suitable for processing multidimensional data like the feature
vectors and capable of producing a model efficiently. Given
the feature vectors of benign apps and malwares, SVM
discovers the hyperplane to separate them with the maximum
margin, where the margin is the sum of (i) the minimum
distance between the hyperplane and the boundary of benign
feature vectors, and (ii) the minimum distance between the
hyperplane and the boundary of malicious feature vectors.

We conduct a series of experiments using ten-fold cross
validation [20] to measure the performance of ICCDetector
and the benchmark. In particular, we randomly split the benign
dataset and the malicious dataset into ten subsets, respectively.
The detection model is trained and tested in ten rounds. In each
round, we mix one benign subset and one malicious subset as
the testing dataset (i.e., unknown dataset), and the remaining
subsets as the training dataset (i.e., known dataset). The
testing dataset is tested using the classifier trained on the
training dataset. In each round, there is no overlap between
the testing dataset and the training dataset. Each application
of the whole dataset is classified once so the accuracy of cross
validation is the percentage of the applications that are cor-
rectly classified. We evaluate the performance of ICCDetector
using three metrics, True Positive Rate (TPR), False Positive
Rate (FPR), and Accuracy, where TPR is the percentage of
malwares being detected correctly, FPR is the percentage of

TABLE IV

EXPERIMENT RESULT

benign apps being detected as malwares, and Accuracy is
the percentage of all apps being detected correctly in our
experiments.

Table IV shows the evaluation results of ICCDetector
and the benchmark. The accuracy of the benchmark is up
to 88.2%, while ICCDetector achieves an accuracy of 97.4%,
roughly 10% higher than the benchmark, with a lower false
positive rate of 0.67%, which is only a half of the benchmark.
Through manually analyzing detected false positives, we dis-
cover that only seven benign applications are falsely identified
as malware. The true positive rate of ICCDetector is also
considerably better than the benchmark, roughly 30% higher
than the benchmark. More importantly, ICCDetector discov-
ers 1,708 more “advanced malwares” than the benchmark
(i.e., these malwares can only be detected by ICCDetector),
while it misses 220 “obvious malwares” which can be easily
detected by the benchmark.

D. True Positive Analysis

Looking into the 1,708 “advanced malwares” which are
correctly detected by ICCDetector but not by the bench-
mark, we discover that the differences between their permis-
sion usage patterns and those of benign apps are not very
significant. Table V shows the percentage of benign apps and
malwares which require some sensitive permissions. Since the
permission patterns are similar, it is difficult for the benchmark
to distinguish between benign apps and malwares.

In comparison, the ICC patterns can be used to distinguish
benign apps and malwares in such case. In general, benign
apps mainly use ICC for internal communications, in a sense
that Intents and Intent Filters are mainly used to link the
components within the same apps. However, malwares tend to
interact with external components and monitor Android system
via the ICC mechanism. For example, benign apps barely
register any Intent Filters for package-related information,
while the malwares usually register several such Intent Filters
in order to properly download APK files at runtime.

One example of the “advanced malwares” is com.safe-
sys.viruskiller, which pretends to be antivirus app
in markets. Without requiring any sensitive permissions,
com.safesys.viruskiller downloads APK files by
generating external Implicit Intents and monitoring the system
events related to package, such as android.intent.
action.PACKAGE_ADDED and android.intent.
action.PACKAGE_CHANGED. Another example is
com.accutracking, which is a malware intercepting
private information and accessing personal files. One
characteristic of com.accutracking is its rich variants.
Although its variants are given different package names,
they share the same ICC-related features and same
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TABLE V

PERCENTAGE OF BENIGN APPS AND MALICIOUS APPS REQUIRING SENSITIVE PERMISSIONS

ICC patterns, which can be easily detected by ICCDetector.
These “advanced malwares” are still available in alternative
markets, such as kekaku [21], coolAPK [22], appchina [23],
and amazon [24].

E. False Negative Analysis

ICCDetector misses 364 malwares, while 220 of them can
be easily detected by the benchmark. After manually checking
how these malwares use ICC and permissions, we discover
that these malwares barely use ICC. Instead of stealthily
conducting malicious actions, these malwares attack in a
straightforward way by simply requiring a bunch of sensitive
permissions, and sometimes even permissions not for use
by third-party apps. For example, with only four non-zero
ICC-related features, a malware requires three permissions
android.permission.READ_LOGS, android.per-
mission.INSTALL_PACKAGES, and android.permi-
ssion.MODIFY_PHONE_STATE, which should not be used
by third-party apps. Since benign apps merely require such
system-level permissions, the benchmark can easily detect
such malwares based on their required permissions.

It is obvious that ICCDetector and the benchmark are
complementary. A hybrid approach combining ICCDetector
and the benchmark would produce better results.

F. False Positive Analysis

In the experiment, ICCDetector labels 81 benign applica-
tions as malicious (i.e., false positives). After manually ana-
lyzing these false positives, we discover that 31 of them were
mislabeled by VirusTotal before. Besides them, 43 of other
false positives are manually identified as malicious because
they are capable of conducting malicious actions. In the end,
the false positives of ICCDetector boil down to seven benign
applications falsely classified as malware. We classify the false
positives into three categories as follows:

Mislabeled by VirusTotal: In order to construct benign
dataset, we excluded potential malwares by sending each app
in the original dataset to VirusTotal, and labeled an app as
benign if and only if no antivirus scanner raises any alarm for
the app. However, the detection result of VirusTotal should be
updated and corrected over time. After resending the 81 false
positives to VirusTotal, we discover that 31 applications, which
had been labeled as benign when constructing benign dataset
in August 2014, received alarms from at least one antivirus
scanners in May 2015. For these 31 applications, the detection
results of ICCDetector and those of the updated version of
VirusTotal are consistent.

Since VirusTotal has not released any technical details
related to its updating process, it remains unknown that
how these 31 malwares bypassed the scanning of VirusTotal
in August 2014. Fortunately, these malwares can be easily
detected by ICCDetector according to their ICC patterns. For
example, com.tobyyaa.superbattery is an application
which includes several malicious components, such as
com.millenialmedia.-,com.admob.-,com.flur-
ry.- and com.appbrain.-. This application is capable
of manipulating SMS, and making phone calls by generating
suspicious Intents such as android.intent.action.-
DIAL, and android.intent.action.CALL, and certain
Intent Filters such as android.intent.action.NEW_O-
UTGOING_CALL, and android.provider.Telephon-
y.SMS_RECEIVED. These suspicious ICC patterns can be
captured by ICCDetector in malware detection.

New Identified Malwares: Not only can ICCDetector prod-
uct consistent results with the updated version of Virus-
Total, but also can identify new malwares. After manually
analyzing the 81 false positives, 43 of them are identified
as malicious, which have not been identified by VirusTotal
before. Most of these newly identified malwares are capable
of leaking private information, manipulating SMS, connecting
to remote servers, and monitoring system state. For example,
com.tunewiki.lyricplayer.android.quicklau-
nch is a newly identified malware discovered in GooglePlay
which is designed to make phone calls, monitor and leak phone
states and system settings. To achieve its goal, this application
generates an Intent android.intent.action.DIAL to
make phone call, and registers several Intent Filters to monitor
any phone state and setting changes.

During the manual analysis, we discover that these
newly identified malwares not only manipulate the ICC
mechanism, but also abuse sensitive permissions. For
instance, com.thukhakyaw.calllocator is a newly
identified malware which may make phone calls, send
out SMS, and modify system states. In particular, this
malware requires several permissions which are not
allowed to use by any third-party applications, such as
android.permission.MODIFY_PHONE_STATE and
android.permission.UPDATE_DEVICE_STATS. This
discovery further demonstrates the accuracy of
ICCDetector.

Benign Applications: Among the 81 false positives,
seven benign applications are falsely identified as malware.
After manually analyzing these benign applications, we
discover that they barely use any ICC mechanism, therefore it
is difficult for ICCDetector to correctly identify them.
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G. Classifications

The classifications of malwares in different malware
families facilitate better understanding and analyzing of
malwares [2], [17]. On the other hand, some of the existing
classifications have the following limitations:

• Some malware families are named by different mobile
security software vendors and researchers. The naming
scheme is confusing and inconsistent. For example,
BaseBridge is also named as AdSMS, and LeNa is a
variant of DroidKungFu [25].

• Some malwares belonging to different families have
similar malicious behaviors. For example, the malwares
in Lovetrap and NickyBot are similar in terms of sending
premium SMSes and starting malicious services right
after Android system boot-up.

• Some malware families contain too few samples.
For example, FakeInstaller contains about 1,000 mali-
cious samples, while GGTracker, DroidCoupon and
GamblerSMS only have one malicious sample. More
importantly, the majority of existing malware families
(i.e., more than 200 malware families) contain less than
thirty samples per family.

Motivated to overcome such limitations, we propose five
new malware categories based on ICC patterns and classify
detected malwares into corresponding categories. In order
to conduct certain malicious operations, malwares need to
use the ICC mechanism accordingly. Therefore, these newly
defined malware categories are closely related to malware
behaviors.

Server Connector: Malwares in this category mainly
conduct malicious actions by connecting to command and
control servers, dynamically downloading and installing
APK files, and executing remote commands. These malwares
usually register several Broadcast Receivers and Services
to receive c2dm (Cloud to Device Messaging [26]) related
Intents and to execute received commands. Especially,
in order to effectively download and install APK files
from the remote servers, these malwares leverage Intent
Filters to monitor events related to package, such as
android.intent.action.PACKAGE_CHANGED, an-
droid.intent.action.PACKAGE_ADDED, and andr-
oid.intent.action.PACKAGE_REMOVED. Several
wellknown malware families, including DroidKungFu,
DroidRooter, RootSmart and ExploitLinuxLot
-or, belong to this category.

Telephony Abuser: This category includes malwares which
conduct attacks targeting at telephonic functionalities, such
as making phone calls, blocking incoming phone calls
and SMSes, and sending SMSes to premium numbers.
To effectively manipulate telephonic functionalities,
malwares need to generate corresponding Intents, such as
android.intent.action.DIAL, and register certain
Intent Filters to intercept SMS-related information and new
outgoing calls, such as android.provider.tele-
phony.SMS_RECEIVED and android.intent.act-
ion.NEW_OUTGOING_CALL. M-alware families in this
category include Opfake, Dialer, MobileSpy,
and etc.

System Monitor: Malwares in this category especially care
about system-wide broadcast information that is relevant to
phone states and settings, such as battery state, power state,
and connectivity setting. From phone states and settings,
these malwares can infer whether a phone is in use or not,
and pick the appropriate time to perform malicious actions
without user’s awareness. To achieve their malicious
objectives, these malwares tend to register several Intent
Filters to capture broadcasts with special actions, such as
android.settings.SIG_STR, android.net.con-
n.CONNECTIVITY_CHANGE, android.intent.act-
ion.POWER_CONNECTED and android.intent.
action.PHONE_STATE. Moreover, some malwares in this
category generate external Intents so as to change phone
states and settings.

Effective Launcher: This category contains malwares
which leverage a special system-wide Intent with
action android.intent.action.BOOT_COMPLETED
to effectively launch their malicious Activities and Services
when the Android system completes its booting process.
Moreover, some malwares in this category can immediately
bootstrap their Services before starting the host app’s
primary Activity by intercepting an Intent with action
android.intent.action.MAIN.

Advertiser: Instead of including dangerous and sensitive
Intent Filters or Intents, malwares in this category usually
include more than one advertisement libraries, which are
mainly used by malwares. Such libraries include Airpush,
LeadBolt, Appenda and SendDroid.

Table VI summarizes the categories we defined according
to ICC characteristics, which demonstrates similar malicious
behaviors within each category.

We also looked into the 1,708 “advanced malwares” which
can be detected by ICCDetector but not the benchmark,
and the 43 newly identified malwares detected from false
positives. We discovered that most of them belong to Server
Connector, Telephony Abuser and System Monitor, which are
more dangerous than the other two categories.

H. Runtime Measurement
We ran our experiments on a machine with 4 × 3.20GHz

Intel-Core and 12 GB of RAM, and measured the runtime
of ICCDetector. In each of ten rounds in our experiments,
ICCDetector is trained with 15,561 applications (i.e., 90% of
datasets), and tested with a mix of 1,203 benign apps and
526 malwares. In the training phase, an ICC analysis tool,
EPICC, is used to analyze the APK file of each app, which
outputs all ICC sources and sinks. Our Parser is then used
to extract all ICC-related features, including their names and
values. After processing all the apps in training dataset, and
storing all ICC-related features in the Attribute Database,
ICCDetector generates a feature vector for each processed
app. ICCDetector outputs a SVM detection model given all
feature vectors in the training phase. In the detection phase,
each app is processed using APK analysis, feature generation,
and vector generation as in the training phase. In addition, the
detection model labels an app being detected as “benign” or
“malicious” based on its feature vector.
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TABLE VI

MALWARE CATEGORIES BASED ON ICC PATTERNS

TABLE VII

TIME FOR PROCESSING AN APP

Table VII shows the average time for processing each app
in our experiments. The performance bottleneck is at the
APK analysis. In the future, the performance of ICCDetector
would be improved with the development of more efficient
ICC analysis tools.

V. DISCUSSIONS

Besides the benchmark, ICCDetector is also compared
with some recent malware detection methods, including
Drebin [17], and DroidMiner [2]. Since the source codes and
datasets of Drebin and DroidMiner are not open to the public,
we provide our comparison qualitatively.

Drebin [17] is a lightweight malware detection method
directly working on smartphones. Due to the limited resources
of mobile devices, Drebin conducts a broad static analysis to
gather many detection features, including permissions, APIs,
network addresses, app component names, and Intent Filters
extracted from manifest files. In comparison, ICCDetector
extracts more ICC-related features, including the number of
Intents, the names and actions of each Intent, the potential
internal and external receivers of each Intent, and the Intent
Filters extracted from bytecode. Therefore, ICCDetector is
more accurate in capturing ICC-related features and patterns
in malware detection.

On the other hand, DroidMiner [2] detects malwares based
on not only the frequency and names of sensitive APIs,
but also the connections of multiple sensitive APIs. Unlike
ICCDetector, DroidMiner does not inspect any ICC-related
functions. Therefore, it is less effective to capture the com-
munications and interactions between components within or
cross application boundaries.

Limitations: Lacking dynamic inspection of malware behav-
iors, ICCDetector may be bypassed by malwares using Java
reflection and bytecode encryption [27]. This encourages
us to incorporate dynamic analysis in future versions of
ICCDetector. Another limitation of ICCDetector, which is
due to the use of classification methods, is its vulnerability
to mimicry and pollution attacks [28], where malwares may
include more benign features and poison the training dataset
to lower their suspicions.

VI. RELATED WORKS

Mobile Malware Detection: Static malware detection
methods analyze app codes and manifest files without running
the apps. For instance, Kirin [1] detects malwares based on the
permissions required by the Android apps which break certain
pre-defined security rules. Stowaway [29] detects overprivi-
leges in Android apps by mapping API calls to permissions.
Peng et al. [9] proposed a malware detection model based
on app categories and declared permissions. RiskRanker [30]
captures risky apps based on known malicious behaviors
and existing vulnerabilities in Android, and detects malwares
from risky apps based on manual efforts. DroidMiner [2]
and DroidAPIMiner [3] use sensitive API calls in detecting
malwares, while DroidMat [31] and Drebin [17] use not only
sensitive API calls but also other information extracted from
manifest files as detection features. These previous works
capture the communications between apps and Android system
based on the required resources of detected apps, while
ICCDetector captures not only the communications between
apps and system, but also the interactions among apps based
on ICC-related features.
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Another class of malware detection, including
TaintDroid [32], DroidScope [33], CrowDroid [34],
Paranoid Android [35], and DroidRanger [36], employs
dynamic analysis to detect malwares at runtime. These
dynamic approaches are complementary to the static analysis
based approaches, including ICCDetector.

ICC Analysis: Much work has been done on ICC analysis.
For example, ComDroid [8] investigates the attack surfaces
related to ICC. CHEX [37] focuses on detecting Com-
ponent Hijacking attacks by analyzing information flows.
AppSealer [38] generates vulnerability-related patches for
preventing Component Hijacking attacks. Epicc [12] is a
static analysis tool for identify ICC precisely and scalably.
Amandroid [11] conducts static analysis for security vetting
of Android apps based on inter-component control and data
flows. Pscout [39] produces a permission specification, which
is a set of mappings between API calls (including ICC APIs)
and permissions. These works focus on identifying ICC-related
attack surfaces for Android apps, while ICCDetector focuses
on detecting malwares based on ICC-related features. The
ICC analysis tools developed in these works can be applied
by ICCDetector in constructing its Parser.

VII. CONCLUSION

ICCDetector detects malwares based on ICC-related
features which capture the interaction between components
within or cross application boundaries. The performance of
ICCDetector is better than the benchmark in our experiments.
The malwares detected by ICCDetector are classified into five
new malware categories according to their ICC characteristics,
which clarifies the relationship between malware behaviors
and ICC patterns. Furthermore, after manually analyzing false
positives, we discover 43 new malwares from the benign
dataset. In the future, we plan to apply ICCDetector to
detect new malwares in various application markets. We also
plan to build a dataset which can be used to evaluate and
compare different malware detection methods on a common
platform.
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