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Euclidean Co-Embedding of Ordinal Data for Multi-Type Visualization

Dung D. Le∗ Hady W. Lauw†

Abstract

Embedding deals with reducing the high-dimensional repre-

sentation of data into a low-dimensional representation. Pre-

vious work mostly focuses on preserving similarities among

objects. Here, not only do we explicitly recognize multi-

ple types of objects, but we also focus on the ordinal rela-

tionships across types. Collaborative Ordinal Embedding or

COE is based on generative modelling of ordinal triples. Ex-

periments show that COE outperforms the baselines on ob-

jective metrics, revealing its capacity for information preser-

vation for ordinal data.

1 Introduction

We are interested in embedding, a visualization that
maps a high-dimensional representation of data to a
lower-dimensional one. The emphasis is on its ca-
pacity to preserve as much information as possible.
Each data point is represented by a coordinate in a
low-dimensional Euclidean space, and the relationship
among data points are visualizable through Euclidean
distances in that visualization space. Most of the previ-
ous works on embedding focus on metric embedding,
whose objective is to preserve the pairwise distances
among data points [19, 20, 18, 4]. This is applicable
when the main relationship among objects is similarity,
e.g., images of handwritten digits or human faces [4].

Ordinal data refers to data where the ranking estab-
lished by numerical values are more significant than the
exact values. Such a representation is applicable to var-
ious domains, e.g., preferences [16], document retrieval
[8]. As a focusing point, and without loss of general-
ity, subsequently, we primarily use the example of the
domain of preferences, where users express how much
they like various items. For instance, after purchasing
a product on Amazon, a user may leave an explicit rat-
ing. While listening to music at Spotify, a user leaves
implicit traces of her liking for a track or an artist by
the frequencies at which she consumes them. In both
explicit and implicit cases, it is important to model the
relative sense of whether an item is preferred to another.
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Figure 1: Euclidean Embedding of Users & Items

Problem. Embedding for ordinal data seeks to
preserve the ordinal relationships among data points.
Our goal is ordinal co-embedding, where multiple object
types are involved (e.g., users and items), and cross-
type ordinal relationships are key (e.g., users express
preferences over items). We discuss the scenario of a
preference dataset. Suppose for each user, we are given
pairwise rankings over items. A triple 〈u, i, j〉 indicates
that a user u prefers an item i to a different item j. As
output, every user and every item would be respectively
assigned a latent coordinate (to be learned) in a D-
dimensional Euclidean space. We assume D = 2 or
3 for their appropriateness for visualization. User u’s
preference for item i to item j is visualizable through a
shorter distance between u and i than between u and j.

Figure 1 illustrates an example 2D embedding
for three users (blue triangles) and three items (pur-
ple crosses), specifying their respective coordinates.
Through our spatial perception of the relative distances,
we can immediately tell that the user u1 prefers item i1
the most (closest), followed by item i2, and item i3 the
least (furthest). Such information leaps out at us with-
out our having to consciously compute the distances.

In addition to visualization, embedding could also
enable other applications arising from its Euclidean
metric properties. One potential application is retrieval
for recommendation queries, such as which items are the
closest (most preferred) to a user. Euclidean geometry
fits the mould of spatial data management, allowing it



to benefit from such developments as spatial indexing
[3] and efficient nearest-neighbor query processing [17].
For another potential application, as embedding relies
on building a compact model for user preferences, it may
eventually enable an interactive interface for training
recommender systems. In text domain [12], we may seek
an embedding that preserves the relative importance of
words to a document (for summarization).

Approach. While there has been prior work on
ordinal embedding [11, 1, 21], our work is novel in a
couple of fundamental respects. First, the “classical”
ordinal embedding is formulated mainly for one object
type, e.g., cities [21], images [1]. It enforces that for
same-type quadruple of objects 〈i, j, k, l〉, if i is closer
to j in the original data than k is to l, the same ordinal
relationship should hold in the embedding space. This
presumes that the primary information is similarity
among objects. In contrast, our primary objective is
based on ranking. More specifically, the ranking of
objects of one type (e.g., items) by an object of a
different type (e.g., user). For instance, it is possible
for two users to be “similar”, say in terms of their
demographics or their habits of watching horror movies,
and yet to have different rankings over specific items.

Moreover, because classical ordinal embedding
deals with within-type ordinal relationships, it implic-
itly assumes that there is one underlying reality to ap-
proximate, e.g., distances of cities in the map [21]. How-
ever, for many ordinal datasets, there may not be a sin-
gular ground-truth reality. For preference data, each
user imposes his or her own ranking on the items, and
these rankings may be different and at times conflicting.
This fundamental difference motivates two distinguish-
ing aspects of our approach. Because a common em-
bedding space needs to accommodate the diverse prefer-
ences of users, we harness the collaborative effect among
users and among items. In order to capture the vari-
ance in the rankings induced by preferences of different
users or items in a principled way, we also formulate our
model in terms of probabilistic generative modelling.

Contributions and Organization. We provide
the formal problem statement in Section 2. In this pa-
per, we make the following contributions towards the
problem. First, in Section 3, we propose a new embed-
ding model, called Collaborative Ordinal Embedding or
COE. This model is notable in its generative modeling
of ordinal embedding allowing various types of triples,
as well as in its objective function with both a penalty
component for violated observations and a reward com-
ponent for preserved observations on a smooth continu-
ous spectrum modeled by probabilistic Sigmoid or Gom-
pertz distributions. Second, in Section 3.3, we describe
COE’s learning algorithm to derive the embedding co-

ordinates that maximize the posterior probability of the
generative model based on stochastic gradient ascent for
both Sigmoid and Gompertz. Third, in Section 5, com-
prehensive experiments on publicly available datasets
show that COE outperforms the baselines, both in pre-
serving the observed pairwise comparisons and in pre-
dicting unseen pairwise comparisons expressed as rela-
tive distances in the Euclidean space. We review the
related work in Section 4, and conclude in Section 6.

2 Problem Formulation

We formally define the problem addressed in this paper,
which is co-embedding of objects based on cross-type
ordinal relationships. Moreover, for ease of reference,
we adopt the language of preference dataset, and refer
to one of the types as “users”, and the other type as
“items”. Note that this is merely nomenclature, and
does not limit the object types in the ordinal data.

Input. The set of users is U , and u or v refers to a
user. The set of items is I, and i or j refers to an item.
The input is a multiset of triples T = TA∪TB , consisting
of “type-A” triples TA ⊂ U ×I×I and “type-B” triples
TB ⊂ U × U × I. A type-A triple tuij ∈ TA relates a
user u ∈ U and two different items i, j ∈ I, indicating
u’s preferring i to j. A type-B tuvi ∈ TB indicates a
user u has greater preference over i than user v does.

Such triples form a general representation of pref-
erences over one object type as expressed by the other
object type. There are examples abound in both explicit
and implicit feedback scenarios. Triples can be derived
from ratings, e.g., when u assigns a higher rating to i
than to j. Other than ratings, it could also model im-
plicit feedback [16]. For cable TV, u may watch the
channel i but not j, or spend a longer time watching i
than j [7]. For Web search, u may click on the result
i after skipping j [15]. Outside of preference domain,
in text, a word i may be more frequent than another
word j in document u. Alternatively, document u may
be more relevant to word i than document v does.

While we focus on cross-type triples, it is feasible to
accommodate triples involving three objects of the same
type, e.g., u is more “similar” to v than to v′. Here, we
will not concentrate on such similarity-based triples.

More generally, we can use triple form (o1
τ1 , o

2
τ2 , o

3
τ3),

where oiτi are objects of types τi, (i = 1, 2, 3) respec-
tively, to represent ordinal relations among multiple ob-
jects. The framework can be extended naturally by
adding latent variables for objects of each type. For
simplicity, we only present our model with two types.

Output. Given T , the goal is to assign a coordinate
xu ∈ RD to each user u ∈ U , as well as a coordinate
yi ∈ RD to each item i ∈ I, such that their distances
in RD preserve the relative ordering indicated by the
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Figure 2: Collaborative Ordinal Embedding (COE)

triples. We denote the collection of all user coordinates
as X and the collection of all item coordinates as Y .
The coordinates of users and items lie in the same D-
dimensional Euclidean space, where D is 2 or 3.

Problem 1. (Ordinal Co-Embedding) Given a set
of triples T , find the set of user coordinates X and item
coordinates Y , so as to meet the following respective
condition for as many triples in T as possible, i.e.,

tuij ∈ TA ⇒||xu − yi|| < ||xu − yj ||,
tuvi ∈ TB ⇒||xu − yi|| < ||xv − yi||

3 Methodology

We now describe our proposed model, called Collabora-
tive Ordinal Embedding or COE. The challenge is inte-
grating the diverse triples into the same low-dimensional
Euclidean space. The input triples T may also suffer
from sparsity, variance, and uncertainties, in the form
of incompleteness (not all possible triples are specified),
inconsistency (some triples are conflicting), and repeti-
tions (some triples may occur more than once). Yet the
final objective is a unified view for all items and users.

3.1 Generative Model To achieve this, we har-
ness the “collaborative” effect. Since item coordinates
are shared across users, users with similar coordinates
would have similar ordinal relationships with items.
To develop this probabilistically, we design a graphical
model, whose plate notation is illustrated in Figure 2.

We model each user coordinate and each item
coordinate as real-valued latent random variables xu
and yi respectively. For each triple 〈u, i, j〉 where i < j,
we associate it with a binary random variable cuij .
When cuij takes on the value of 1, it corresponds to
an instance of tuij ∈ T . When cuij = 0, it corresponds
to an instance of tuji ∈ T . In Figure 2, cuij is shaded
and lies within its own plate, i.e., it is observed and
there could be multiple instances. Correspondingly, for

each triple 〈u, v, i〉 where u < v, we associate it with
a variable cuvi. The state of cuij (or cuvi) and the
generation of tuij (or tuvi) are related to user and item
coordinates through the following generative process.

The generative process of COE is as follows:

1. For each user u ∈ U :
Draw u’s coordinate: xu ∼ Normal(0, γ2I),

2. For each item i ∈ I:
Draw i’s coordinate: yi ∼ Normal(0, β2I),

3. For each triple 〈u, i, j〉 ∈ TA:

• Draw cuij ∼ Bernoulli(P(cuij = 1 | xu, yi, yj)),
• If cuij = 1, generate a triple instance tuij ,
• Else (cuij = 0), generate a triple instance tuji.

4. For each triple 〈u, v, i〉 ∈ TB :

• Draw cuvi ∼ Bernoulli(P(cuvi = 1 | xu, xv, yi)).
• If cuvi = 1, generate a triple instance tuvi,
• Else (cuvi = 0), generate a triple instance tvui.

In Step 1 and Step 2, we generate the users’
and items’ coordinates, placing zero-mean multi-variate
spherical Gaussian priors on these coordinates, with
γ2 and β2 controlling the respective variances of the
Normal distributions. I denotes the identity matrix.

In Step 3, we generate type-A triples involving
one user and two items, by drawing the outcome for
cuij from a Bernoulli process, where the parameter is
specified by the probability P(cuij = 1 | xu, yi, yj) of
generating a triple instance tuij . In Step 4, we generate
type-B triples involving two users and one item.

3.2 Triple Probability Function A crucial compo-
nent is how the latent coordinates of users and items
would generate the pairwise comparisons in T . This
bridge between the hidden variables and the observa-
tions is the triple probability function. To keep the dis-
cussion streamlined, in the following we discourse on
type-A triples of the form 〈u, i, j〉, but a similar princi-
ple applies in a symmetric manner to type-B triples.

The principle in relating latent coordinates to a
triple 〈u, i, j〉 is: if u prefers i to j, the distance from
xu to yi is shorter than that from xu to yj . The more
evidence there is that u prefers i to j, the closer xu
should be to yi than to yj . To realize this intuition, we
express the probability P(cuij = 1 | xu, yi, yj) in terms
of the Euclidean distances ||xu−yi|| and ||xu−yj ||. Let
∆uij be a quantity expressed in terms of these distances,
such that ∆uij is higher the more u prefers i to j. One
realization of ∆uij is Equation 3.1.

(3.1) ∆uij = ||xu − yj || − ||xu − yi||
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Figure 3: Triple Probability Function

Because tuij and tuji are opposites, we have
P(cuij = 1 | xu, yi, yj) = 1 − P(cuij = 0 | xu, yi, yj).
∆uij has a bearing on these probabilities. For ∆uij > 0,
the triple tuij is more likely. For ∆uij < 0, tuji is more
likely. For ∆uij = 0, the two triples are equally likely.

To model the probabilities of triples as a function
of ∆uij (or ∆uvi), we identify two possible functions.

Sigmoid Function. The first is Sigmoid in Equa-
tion 3.2, where λ is a scaling parameter. Figure 3(a)
shows that the probability that u prefers i to j tends
towards 1 as ∆uij →∞, and 0 as ∆uij → −∞.

(3.2) P(cuij = 1| xu, yi, yj) =
1

1 + e−λ·∆uij

This function allows us to model both a penalty
for violating observed triples (probability mass < 0.5),
and a reward for preserving observed triples (probability
mass > 0.5). This is different from classical ordinal
embedding. For instance, the state-of-the-art SOE
[21] (see Section 4) only has a penalty component,
but no reward. This holds two advantages for COE.
First, there is a smoother spectrum of penalty and
reward over a continuous function vs. the cliff effect
for SOE. Second, there is discrimination among triples
with more vs. less evidence earning different probability
masses. The scaling parameter λ controls the slope
of the function. The greater is λ, the steeper is the
penalty/reward. The λ setting may empirically tuned.

Gompertz Function. Sigmoid is symmetrical,
which implies that the penalty component is commen-
surate with the reward component. There may be in-
stances when we seek to model penalty and reward
asymmetrically. In particular, we may place greater im-
portance on penalty, i.e., steeper slope for negative ∆uij

and gentler slope for positive ∆uij . This can be modeled
by the Gompertz function, as shown in Equation 3.3.

(3.3) P(cuij = 1| xu, yi, yj) = a · e−b·e
−α·∆uij

To fit the triple probability function, we set a = 1 so
as to put the range of values between 0 and 1 (reflecting

probability). Moreover, since ∆uij = 0 correlates with
uncertainty of 0.5 probability, we set b = ln 2. In turn,
α is a scaling parameter to be tuned. Figure 3(b) shows
that the left side ∆uij < 0 has steeper drop, while the
right side has gentler gain. In turn the greater α is, the
steeper is the slope overall.

3.3 Learning Algorithms Given T as input ob-
servations, our goal is to learn the latent coordi-
nates X and Y with the highest posterior probabil-
ity P(X,Y |T ). Through Bayes’ Theorem, we have
P(X,Y |T ) = P(T , X, Y )/P(T ). Since P(T ) does not
affect the model parameters, the goal is to maximize
the joint probability, as shown in Equation 3.4.

(3.4) arg max
X,Y

P(T , X, Y |γ, β)

The joint probability is decomposed into four terms
corresponding to the steps in the generative process.

P(T , X, Y |γ, β) = P(X|γ)× P(Y |β)× P(T |X,Y ),

P(X|γ) =
∏
u∈U

(2πγ2)−
D
2 e
− 1

2γ2 ||xu||
2

,

P(Y |β) =
∏
i∈I

(2πβ2)−
D
2 e
− 1

2β2 ||yi||
2

,

P(TA|X,Y ) =
∏

tuij∈TA

P(cuij = 1 | xu, yi, yj),

P(TB |X,Y ) =
∏

tuvi∈TB

P(cuvi = 1 | xu, xv, yi).

Maximizing the joint probability is equivalent to
maximizing its logarithm, shown below. To simplify
the parameters, we set γ = β, and equate both 1

γ2 and
1
β2 to a common regularization parameter η.

L = lnP(X|γ) + lnP(Y |β) + lnP(T |X,Y )

= lnP(T |X,Y )− η
∑
u∈U
||xu||2 − η

∑
i∈I
||yi||2

To find the coordinates that maximize the joint
probability, we employ stochastic gradient ascent for
computationally efficiency, an important factor given
the potentially huge size of pairwise comparisons.

Sigmoid Function. For the Sigmoid function, the
gradient of L w.r.t. each user coordinate xu is:
∂L
∂xu

=
∑

{i,j: tuij∈TA}

λe−λ∆uij

1 + e−λ∆uij

(
xu − yj
||xu − yj ||

−
xu − yi
||xu − yi||

)

+
∑

{i,v: tuvi∈TB}

λe−λ∆uvi

1 + e−λ∆uvi

(
yi − xu
||yi − xu||

)

+
∑

{i,v: tvui∈TB}

λe−λ∆vui

1 + e−λ∆vui

(
−yi + xu

||yi − xu||

)
− η · xu



The gradient w.r.t. each item coordinate yi is:
∂L
∂yi

=
∑

{u,v: tuvi∈TB}

λe−λ∆uvi

1 + e−λ∆uvi

(
yi − xv
||yi − xv ||

−
yi − xu
||yi − xu||

)

+
∑

{u,j: tuij∈TA}

λe−λ∆uij

1 + e−λ∆uij

(
xu − yi
||xu − yi||

)

+
∑

{u,j: tuji∈TA}

λe−λ∆uji

1 + e−λ∆uji

(
−xu + yi

||xu − yi||

)
− η · yi

Algorithm 1 describes the stochastic gradient ascent
algorithm for the version COE-S with Sigmoid function.
It first initializes the coordinates of users and items. In
each iteration, a triple is randomly selected from T ,
and the model parameters are updated based on the
gradients above, with a decaying learning rate ε over
time. The complexity is O(|U|×|I|2+|U|2×|I|). In case
of having triples of multi-type ordinal relations among
multiple objects, the complexity is still a polynomial of
variables with highest degree is 3.

Gompertz Function. For the Gompertz function,
the gradient of L w.r.t. each user coordinate xu is:
∂L
∂xu

=
∑

{i,j: tuij∈TA}
α ln(2)e−α∆uij

(
xu − yj
||xu − yj ||

−
xu − yi
||xu − yi||

)

+
∑

{i,v: tuvi∈TB}
α ln(2)e−α∆uvi

(
yi − xu
||yi − xu||

)

+
∑

{i,v: tvui∈TB}
α ln(2)e−α∆vui

(
−yi + xu

||yi − xu||

)
− η · xu

The gradient w.r.t. each item coordinate yi is:
∂L
∂yi

=
∑

{u,v: tuvi∈TB}
α ln(2)e−α∆uvi

(
yi − xv
||yi − xv ||

−
yi − xu
||yi − xu||

)

+
∑

{u,j: tuij∈TA}
α ln(2)e−α∆uij

(
xu − yi
||xu − yi||

)

+
∑

{u,j: tuji∈TA}
α ln(2)e−α∆uji

(
−xu + yi

||xu − yi||

)
− η · yi

The algorithm and the complexity for the version
COE-G with Gompertz function are similar to those for
COE-S, but with the corresponding gradients above.

4 Related Work

We now relate to several categories of previous work.
Ordinal Embedding. Given a set of data points,

ordinal embedding seeks to preserve the relative com-
parisons of pairwise distances among data points [11].
In Section 5, we compare to a representative: the state-
of-the-art SOE [21], which was shown to be more effi-
cient and accurate than GNMDS [1]. Our key differ-
ences from SOE include the explicit modeling of cross-
type ordinal relationships, and our probabilistic model-
ing that has both penalty and reward components. [22]
investigated embedding for similarity-based triplets.

Algorithm 1 Stochastic Gradient Ascent for COE-S
(with Sigmoid triple probability function)

1: Initialize xu for u ∈ U
2: Initialize yi for i ∈ I
3: while not converged do
4: Draw a triple at random from T .
5: if it is a type-A triple tuij ∈ TA then
6: xu ← xu + ε ·[

λe−λ∆uij

1+e−λ∆uij

(
xu−yj
||xu−yj || −

xu−yi
||xu−yi||

)
− η · xu

]
7: yi ← yi + ε ·

[
λe−λ∆uij

1+e−λ∆uij

(
xu−yi
||xu−yi||

)
− η · yi

]
8: yj ← yj + ε ·

[
λe−λ∆uij

1+e−λ∆uij

(
−xu+yj
||xu−yj ||

)
− η · yj

]
9: if it is a type-B triple tuvi ∈ TB then

10: xu ← xu+ ε ·
[
λe−λ∆uvi

1+e−λ∆uvi

(
yi−xu
||yi−xu||

)
− η · xu

]
11: xv ← xv + ε ·

[
λe−λ∆uvi

1+e−λ∆uvi

(
−yi+xv
||yi−xv||

)
− η · xv

]
12: yi ← yi + ε ·[

λe−λ∆uvi

1+e−λ∆uvi

(
yi−xv
||yi−xv|| −

yi−xu
||yi−xu||

)
− η · yi

]
13: Return {xu}u∈U and {yi}i∈I

Metric Embedding. Metric embedding seeks to
preserve similarity or distance values. In working with
preference data, our work is related to CFEE [10], which
fits rating values. CFEE expressed a rating r̂ui by
user u on item i in terms of the squared Euclidean
distance between xu and yi. Fitting ratings directly
may not necessarily preserve the pairwise comparisons,
as we will see in Section 5. In embedding two object
types, our work is related to embedding co-occurrences,
e.g., documents and words [6] or words and images
[24]. The idea is to express co-occurrence frequencies in
terms of Euclidean distances. In Section 5 we include a
comparison to CODE [6] to show fitting co-occurrences
may not preserve comparisons. [13] analyzes generalized
convex formulation for co-embedding.

Matrix Factorization. Embedding and matrix
factorization are recognized as different problems. The
latter’s objective is to find a latent vector U for each
user and V for each item, such that the inner prod-
uct UTV approximates ratings [14] or pairwise com-
parisons [16, 23]. A tenuous link between squared Eu-
clidean distance and inner product, i.e., ||U − V ||2 =
||U ||2 + ||V ||2−2UTV , does not imply monotonicity be-
cause of the vector magnitudes. [2] proposed post facto
transformation, by extending output latent vectors by
one dimension and using that extra dimension to equal-
ize the magnitude of item vectors. This could only pre-
serve either of user-centric or item-centric triples, but
not both. In Section 5, we compare to the composite of
BPR [16], followed by [2]’s transformation.



Table 1: Datasets
users/ items/ ratings/ type-A type-B

docs words observ- 〈u, i, j〉 〈u, v, i〉
ations triples triples

MovieLens 943 1,413 99,543 7.80× 106 8.22× 106

Netflix 429,102 17,769 99,841,834 2.68× 109 2.51× 1011

Last.fm 1,772 3,521 72,955 1.50× 106 3.87× 106

20News 15,744 14,414 1,076,900 5.61× 107 2.19× 108

5 Experiments

Our objective is to investigate the effectiveness of COE,
for visualization in low-dimensional Euclidean space.

Datasets. While COE assumes ordinal triples as
inputs, we experiment with publicly available datasets
with numerical values and derive the triples accordingly.
This allows us to compare to baselines that work directly
with the numerical values. We work with four datasets
of two categories, and their sizes are listed in Table 1.

The first category includes rating-based preference
datasets: MovieLens1 and Netflix 2. The object types
are users and movies (items). The raw observations
are ratings. As in [5], we apply Z-score normalization,
which compensates for different rating means and rating
spreads to make ratings more comparable across users.
We then generate a type-A triple tuij for each instance
where a user u has higher normalized rating on an item i
than on item j, and a type-B triple tuvi for each instance
where a user u has higher normalized rating on i than v
does. We do not generate any triple involving non-rated
items. For MovieLens, Netflix, each user has been pre-
conditioned by the original dataset to have at least 20
ratings. We further ensure that each item has at least
4 ratings. We find similar practice in other works [16].

The second category are based on cooccurrences:
Last.fm3 and 20News4. Last.fm contains users’ listening
frequencies to music artists (items). As in above, we
retain users with at least 20 items, and items with at
least 4 users. To show applicability beyond preferences,
we include the text-based 20News, which has documents
(“users”) and words (“items”). We downloaded the
dataset with stop words removed and the remaining
words stemmed. Following the standard practice by the
baseline [6], we filter out extremely infrequent words
(less than 5 documents), and extremely frequent words
(top 100 most frequent). For both datasets, the raw
observation is the term frequency of a word (or an item)
in a document (or a user). To normalize the effect of

1http://grouplens.org/datasets/movielens/
2http://www.cs.uic.edu/~liub/Netflix-KDD-Cup-2007.

html
3http://files.grouplens.org/datasets/hetrec2011/

hetrec2011-lastfm-2k.zip
4http://web.ist.utl.pt/acardoso/datasets/

document length, we divide each word’s frequency by
the document length, and generate triples from these
normalized term frequencies.

Because of the different natures of the two cate-
gories of datasets, which involve some different compar-
ative baselines, in the following we organize the experi-
ments into two sections, one for each dataset category.

5.1 Rating-based Datasets Because the main pur-
pose is visualization, all comparisons are based on em-
bedding in two-dimensional space. We experiment with
two versions of our model. The first uses the Sigmoid
function, referred to as COE-S. The second uses the
Gompertz function, referred to as COE-G.

The first baseline is a representative of the tradi-
tional ordinal embedding SOE [21]. We use the au-
thors’ implementation5. The second baseline is the em-
bedding designed to fit the numerical rating values, i.e.,
CFEE [10]. As its authors have not made their imple-
mentation available, we implement it in Java. The third
baseline is matrix factorization based on pairwise com-
parisons BPR [16] with one dimension, followed by [2]’s
Euclidean transformation into two dimensions, denoted
as BPR+. For BPR, we use the Java implementation in
LibRec6. The justifications for the baselines were dis-
cussed in Section 4. We tune the respective parameters
for the best performance on each dataset.

Metrics. We apply several metrics that allow an
evaluation of the various methods in terms of informa-
tion preservation in two-dimensional Euclidean space.

As is common for dimensionality reduction [9], the
primary aim is how well the reduced dimensionality pre-
serves the observed data. The first and main metric is
preservation accuracy, the extent to which the infor-
mation within the observed triples is preserved by the
coordinates. For a user u, let T uobserved denote the triples
involving u. For u, the preservation accuracy is defined
as the fraction of her triples for which the coordinates
reflect the preference direction in the triples. Overall,
the preservation accuracy is the average of users’ preser-
vation accuracies, as shown in Equation 5.5. By doing
so, it is not biased towards few users with many ratings
at the expense of many users with few ratings.

(5.5)
1

|U|
∑
u∈U

|{tuij ∈ T uobserved : ||xu − yi|| < ||xu − yj ||}|
|T uobserved|

As mentioned in Section 2, we do not presume that
the input set of triples are complete. It is therefore
interesting to study how well the learnt coordinates

5http://rpackages.ianhowson.com/cran/loe/man/SOE.html
6http://www.librec.net/

http://grouplens.org/datasets/movielens/
http://www.cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html
http://www.cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html
http://files.grouplens.org/datasets/hetrec2011/hetrec2011-lastfm-2k.zip
http://files.grouplens.org/datasets/hetrec2011/hetrec2011-lastfm-2k.zip
http://web.ist.utl.pt/acardoso/datasets/
http://rpackages.ianhowson.com/cran/loe/man/SOE.html
http://www.librec.net/


Table 2: Rating-based Dataset (MovieLens - 100K Sample): COE vs. Ordinal Embedding
Preservation Accuracy Prediction Accuracy 1-NN Avg Rating 5-NN Avg Rating

Type-A Type-B H-Mean Type-A Type-B H-Mean Users Items H-Mean Users Items H-Mean
COE-S 70.1% 57.3% 63.0% 62.7% 57.4% 59.9% 4.38 3.66 3.99 4.24 3.48 3.82
COE-G 70.0% 57.5% 63.2% 62.8% 57.9% 60.2% 4.41 3.67 4.01 4.24 3.48 3.82
SOE 69.4% 55.9% 61.9% 62.5% 56.0% 59.1% 4.29 3.44 3.82 4.22 3.38 3.75

could generalize to unseen triples. We introduce a
secondary metric, prediction accuracy, the extent to
which the coordinates can infer the preference directions
of hidden triples Thidden. For an embedding solution as
a whole, the prediction accuracy is derived from user-
level accuracies, as shown in Equation 5.6.

(5.6)
1

|U|
∑
u∈U

|{tuij ∈ T uhidden : ||xu − yi|| < ||xu − yj ||}|
|T uhidden|

The above definitions are for type-A triples. A
corresponding version is defined for type-B triples. We
will present the results both types separately, as well as
together by taking their harmonic mean (H-Mean).

We split the ratings randomly into 80% Robserved
and 20% Rhidden, in a stratified manner to maintain the
same ratio for every user. The observed set of triples
Tobserved are formed within Robserved. The hidden
set of triples Thidden include triples formed within
Rhidden, as well as triples involving one rating each from
Robserved and Rhidden. Ordinal-based methods learn
from Tobserved, while the rest learn from with Robserved.
Both preservation and prediction accuracies range from
0% (worst) to 100% (best). For statistical significance,
we average the results across 10 random (80:20) splits.

These metrics are general for ordinal triples. Since
the ordinal triples are derived from ratings, we include
a rating-based third measure: average rating among k-
nearest neighbors (k-NN). Intuitively, a good embedding
with high preservation should place higher-rated items
closer to the user. Given a user, we identify the k-
nearest rated items based on their Euclidean distances
in the embedding space, and average the user’s ratings
on those items. Symmetrically, this can be measured
from each item’s point of view. We average this across
users and items respectively for k = 1 and k = 5.

Versus Ordinal Embedding. Existing ordinal
embedding packages do not scale to large datasets.
The author implementation of SOE limits the number
of input size to 100K. We sample 100K triples from
Tobserved, and use them to compare SOE and COE. Yet,
this is only applicable to MovieLens, as SOE cannot
cope with the number of users and items in Netflix.

Table 2 shows the performance of the methods on
the 100K sample of MovieLens for both type-A and

type-B triples. Focusing on the overall figures (har-
monic mean in bold), we see that the preservation accu-
racies of COE-S and COE-G are similar at 63.0% and
63.2%. Both are higher than SOE’s 61.9%, whose lower
performance is statistically significant. For prediction
accuracies, the figures are slightly lower overall, but the
relative trend is the same. For visualization based on
dimensionality reduction, preservation is the greater ob-
jective, as the intent is to represent the observed data.

Table 2 also shows the comparison of the average
rating among 1-nearest neighbors (1-NN), as well as
5-NN. Again, we take the harmonic mean (H-Mean)
between users’ and items’ rating averages. Evidently,
the nearest neighbors around every user or item tend to
have high ratings (in the scale of 1 to 5). COE-G and
COE-S are similar, while SOE is significantly lower.

Versus Other Baselines. In Table 3, we employ
the full data to compare to the other baselines. COE-S
and COE-G have significantly higher results in Table 3,
because they run with the full set of observed triples.

CFEE, which fits rating values directly, generally
achieves lower accuracies. Since rating and visualization
spaces are distinct, forcing their unification may not ob-
tain the best embedding to preserve the triples. BPR+,
which learns matrix factorization by pairwise rank-
ing, followed by Euclidean transformation, also achieves
lower results. As mentioned in Section 4, the Euclidean
transformation applied to BPR’s output could only pre-
serve the pairwise comparisons of either type-A triples
or type-B triples (not both at once). However, we
present the best results for both transformations, which
evidently are still lower than COE’s. This signifies that
for visualization, directly modelling Euclidean distance,
such as in COE, leads to better visualization.

Table 4 shows the results for the much-larger Netflix
dataset, which also support the major observations
made above. The differences between COE’s variants
and the baselines are statistically significant.

Visualization. Figure 4 shows an example of
three users U887 (blue), U222 (red), U903 (green) in
MovieLens, and the 17 items (crosses) that all three
have rated. For instance, U222 and U903 are closer to
Fargo (which they rated 5) than U887 is (who rated it
2). Interestingly, U222 is closer to U903 than U222 is
to U887, supported by the Pearson correlation of their



Table 3: Rating-based Dataset (MovieLens): COE vs. Other Baselines
Preservation Accuracy Prediction Accuracy 1-NN Avg Rating 5-NN Avg Rating

Type-A Type-B H-Mean Type-A Type-B H-Mean Users Items H-Mean Users Items H-Mean
COE-S 75.0% 65.0% 69.6% 64.0% 59.0% 61.4% 4.48 3.93 4.19 4.33 3.58 3.92
COE-G 75.0% 65.0% 69.6% 64.0% 59.0% 61.4% 4.48 3.87 4.15 4.33 3.55 3.90
CFEE 67.2% 62.4% 64.7% 59.7% 60.3% 60.0% 4.07 3.63 3.84 4.03 3.50 3.75
BPR+ 68.4% 60.9% 64.5% 62.1% 59.1% 60.5% 4.14 3.63 3.87 4.13 3.40 3.73

Table 4: Rating-based Dataset (Netflix): COE vs. Other Baselines
Preservation Accuracy Prediction Accuracy 1-NN Avg Rating 5-NN Avg Rating

Type-A Type-B H-Mean Type-A Type-B H-Mean Users Items H-Mean Users Items H-Mean
COE-S 75.2% 66.3% 70.4% 63.3% 61.2% 62.2% 4.63 4.06 4.32 4.51 3.74 4.09
COE-G 74.9% 65.5% 69.9% 63.1% 60.7% 61.9% 4.66 4.05 4.34 4.52 3.72 4.08
CFEE 66.0% 62.4% 64.2% 58.9% 61.4% 60.2% 4.15 3.93 4.04 4.10 3.74 3.91
BPR+ 68.2% 60.2% 64.0% 60.3% 58.8% 59.6% 4.07 3.16 3.56 4.00 3.15 3.52

Figure 4: Example Visualization of Users (triangles)
and Items (crosses) in MovieLens

ratings on items: 0.31 between (U222, U903), and -0.21
between (U222, U887). The layout of movies are also
intuitive. Horror films Scream and Island of Dr. Moreau
are on the top left. Science fictions Star Wars, Return
of the Jedi, and Back to the Future are at the centre.
Darker dramas Fargo, Apocalypse Now are on the top
right. Comedies such as Kingpin and Beavis and Butt-
head are on the far right. Family-oriented Searching for
Bobby Fischer and Lost World are towards the bottom.

Efficiency is not our major focus here. The learning
algorithms can be run offline. On MovieLens and
LastFM, COE takes approximately a minute on a PC
with Intel Core i5 3.2GHz CPU and 12GB RAM. For
20News, the running time of COE is around 15 minutes.
Our efficiency is comparable to other models running
on pairwise comparisons, e.g., BPR, and is much faster
than ordinal embedding, i.e., SOE.

5.2 Cooccurrence-based Datasets We now dis-
cuss the comparisons for the other two datasets based on
cooccurrences: Last.fm and 20News. Here, we focus on
the comparison to CODE [6], which fits co-occurrence
frequencies. We use the implementation7 by its author.

For the metrics, we again rely on preservation
and prediction accuracies. In addition, we adapt the
“average rating” concept to the cooccurrence scenario.
Since the raw observation is normalized term frequency,
we evaluate the average term frequencies among the k-
nearest neighbors of a document or a word respectively.
The higher it is, the more successful is the embedding
in placing the closest words to a document (vice versa).

Table 5 for Last.fm and Table 6 for 20News
show that both COE versions have significantly higher
preservation and prediction accuracies than the baseline
CODE. This experiment showcases that the informa-
tion within ordinal triples is not easily approximated by
fitting probabilities of co-occurrences (which is seman-
tically closer to similarity/distance-based embedding).
This is also evident from the comparison of average
normalized term frequencies among the k-NN. The val-
ues seem deceptively low, these frequencies are actually
high, considering that each document consists of many
words. For instance, in Table 6, COE achieves 0.050
for k = 1, which implies that the nearest word to a
document is expected to cover 5% of the document.

We have also compared to ordinal embedding SOE,
and COE is also better than SOE on these datasets.

6 Conclusion

We address the problem of ordinal co-embedding based
on cross-type ordinal relationships, whereby every user
and every item is respectively associated with a la-

7http://ai.stanford.edu/~gal/

http://ai.stanford.edu/~gal/


Table 5: Cooccurrence-based Dataset (Last.fm): COE vs. Cooccurrence Embedding
Preservation Accuracy Prediction Accuracy 1-NN Avg Frequency 5-NN Avg Frequency

Type-A Type-B H-Mean Type-A Type-B H-Mean Users Items H-Mean Users Items H-Mean
COE-S 64.5% 85.6% 73.5% 51.7% 63.2% 56.9% 0.048 0.047 0.047 0.041 0.032 0.036
COE-G 64.0% 85.7% 73.3% 51.4% 63.1% 56.6% 0.048 0.047 0.047 0.040 0.032 0.036
CODE 53.3% 52.8% 53.1% 49.8% 54.7% 52.2% 0.032 0.031 0.032 0.032 0.032 0.032

Table 6: Cooccurrence-based Dataset (20News): COE vs. Cooccurrence Embedding
Preservation Accuracy Prediction Accuracy 1-NN Avg Frequency 5-NN Avg Frequency

Type-A Type-B H-Mean Type-A Type-B H-Mean Docs Words H-Mean Docs Words H-Mean
COE-S 78.9% 90.3% 84.3% 51.0% 69.2% 58.7% 0.050 0.049 0.050 0.039 0.029 0.037
COE-G 77.0% 88.0% 82.1% 50.8% 68.7% 58.4% 0.049 0.047 0.048 0.038 0.028 0.036
CODE 59.7% 56.2% 57.9% 48.7% 52.8% 50.7% 0.035 0.022 0.027 0.033 0.020 0.025

tent coordinate in a low-dimensional Euclidean space.
The objective is to place a user closer to a more pre-
ferred item. This accommodates datasets including
ratings and co-occurrences. Experiments on public
datasets show that Collaborative Ordinal Embedding or
COE outperforms comparable baselines in information
preservation in the low-dimensional visualization space.
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