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Abstract—Cellular service subscribers are increasingly reliant 
on cellular data services for all kinds of mobile applications. 
Oftentimes, when subscribers experience frustratingly high 
network delays and timeouts, they like to know whether their 
experiences are shared by other users nearby. The question that is 
often asked is essentially this: “is it just me, or do others around me 
face the same problem?” 

In this paper, we describe how we use Tattle, a distributed real-
time participatory sensing and monitoring framework, to glean 
network performance information from users nearby. Tattle relies 
on recent advances in peer-to-peer device networking, such as Wi-
Fi Direct, Bluetooth Low Energy, and Apple’s iBeacon, to 
exchange key snippets of diagnostic information using very low-
power, very short-range local-area wireless interfaces, between 
participating devices. We propose and develop a robust statistical 
algorithm, based on quantile regression, which identifies key 
points in time where a device experiences high delays and outages 
that are not observed by its neighbors, and decides if the device is 
performing “normally”, or “abnormally”. This directly answers 
the “me, or others?” question. We demonstrate and validate the 
efficacy of our system through real-world measurements of 
network delay, consisting of over 7,300 time-series that comprises 
over 443,500 data samples, using commodity smart devices 
attached to two different providers’ networks. 

I. INTRODUCTION 
As traffic load increases, cellular networks naturally become 

increasingly congested, and subscribers tend to experience high 
network delays, slow speeds, and possibly service outages in 
cells and areas that are overloaded. This can be a common 
occurrence and a frustrating experience, especially during 
periods of congestion, such as rush hours and spectator events. 

Whenever a subscriber experiences periods of unsatisfactory 
network performance, the subscriber may often blame the 
cellular operator for providing inadequate coverage and 
capacity. On the other hand, the cellular operator may blame the 
user’s device or the software as the cause. It is often difficult to 
identify the root cause of network performance issues. 

We believe that one way to assist the diagnosis of the root 
cause from the subscriber’s perspective is to ask: “am I the only 
one suffering from this, or is this also experienced by others?” 
For ease of reference, we shall refer to this as the “me, or 
others?” (MOO) problem. The subscriber’s intention (often 
without consciously realizing) is to determine if the fault lies 
with his own device (possibly as a result of software/hardware 
issues), or with the network. If the subscriber is able to determine 
that the former is true, he can take some limited mitigation steps, 
such as rebooting his device, closing errant apps, etc. If the latter 
is true, then the subscriber gains closure in knowing that his 
device is likely to be working fine, and that other co-located 

subscribers in the same area are experiencing the same kinds of 
performance impairments. 
A. Paper contribution and overview 

The contributions of this paper are as follows: 
1. We describe how we use Tattle [1], a distributed real-
time participatory sensing and monitoring framework, to 
allow participating devices to glean networking performance 
information from each other in real-time, while preserving 
the context of co-location. 
2. On top of that, we propose a complete and flexible 
statistical framework, based on quantile regression and 
outlier classification, to analyze and systematically identify 
points in time where a device is not performing as well as its 
co-located neighbors, and decides if the device is performing 
“normally”, or “abnormally”. 
3. We report on the characteristics of the delay performance 
of co-located devices subscribed to two cellular network 
operators in Singapore, and describe the results of applying 
our proposed approach to answering the MOO question, on 
real-world measurements of over 7,300 time-series of 
network delay, consisting of over 443,500 data points. 
With these contributions, this paper provides a framework to 

comprehensively and systematically answer the key MOO 
question of whether poor network performances is an isolated 
problem, faced by one or a few devices in particular, or an 
endemic condition that affects most devices in a given area. 

This paper is organized as follows. In Section II, we describe 
the general problem and provide a brief introduction to existing 
work. In Section III, we describe the Tattle system, and how it 
allows smart devices to leverage on low-power, short-range 
peer-to-peer information exchange to glean performance 
measurements from other co-located participants. In Section IV, 
we introduce the proposed statistical framework that we will 
build on top of Tattle, in order to answer the MOO problem. In 
Section V, we describe our experimental methodology, and 
present some key features of the 7,300 real-world network delay 
time-series that was collected. We then apply our proposed 
algorithm on the data, and report on the results. Finally, we 
conclude and discuss future work in Section VI. 

II. PROBLEM DESCRIPTION AND BACKGROUND REVIEW 
When a subscriber suffers impairments to the underlying 

mobile data service, the experience can be exceedingly 
frustrating. One key question that should be asked is this: “is it 
just me, or does the problem lie with the network?” We 
introduced this earlier as the “me, or others?” (MOO) problem. 
In this paper, we formalize and propose a system based on low-
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power, short-range peer-to-peer exchange of network 
performance information to systematically answer the MOO 
question. A robust statistical framework is proposed to take into 
account a participant’s, as well as his co-located neighbors’ 
network performance information to determine whether a device 
is performing relatively “normally”, or “abnormally”. 
A. Background Review 

Fault management in wireless networks is a fairly-well 
studied topic, with strong existing contributions addressing the 
management of Wi-Fi network faults in particular. In [2], the 
authors propose the use of large arrays of commodity desktop 
computers, equipped with Wi-Fi cards or dongles, as enterprise 
network sensors and monitors. In another study [3], its authors 
suggest that Wi-Fi clients and access points can be instrumented 
to become diagnostic agents, which can be directed to switch to 
promiscuous mode to help detect and relay problems. 

Cellular networks have conventionally required more 
centralized approaches to fault management because of its large 
geographical spread, provisioned QoS, strict centrally-managed 
infrastructure, and until recently, ‘dumb’ clients, which cannot 
be easily instrumented to perform any complex tasks. Existing 
work focus on detecting network-side faults, down to at most a 
cell-wide level, by examining key performance indicators 
(KPIs). In [4][5], the authors provide a brief description of 
possible faults and symptoms in cellular networks, and propose 
a Bayesian inference model to compute the probability of a fault 
based on observed KPIs. In another recent study [6], its authors 
propose a two-stage detection-diagnosis model where each 
monitored KPI is compared against normal ‘profiles’, and 
deviations are matched to known root causes. 

Our work differs fundamentally from existing work in the 
following ways: 

1. The MOO problem is a different problem from 
conventional fault management. Here, we are only interested 
in the question of whether one participating device is getting 
at least as good network performance as compared to its co-
located neighbors. The motivation is to allow participants to 
either perform limited mitigation steps to alleviate 
impairments (due to device-related issues), or simply wait 
out periods of poor performance as others nearby are also 
suffering from the same impairments. 
2. Our approach requires no instrumentation on the part of 
participating devices, except to run a mobile app. No 
hardware modifications, nor any changes in device 
functionality, are required, unlike those commonly 
suggested in studies addressing Wi-Fi management. Also, 
modifications to the network infrastructure are not required. 
3. Our approach requires no a prior knowledge of the 
structure, symptoms and causes of faults. 
Another area related to our work is that of participatory 

sensing [7]. The proliferation of smart devices has been a key 
enabler for many interesting research projects in this area. 
Participatory sensing leverages on the potential collaborative 
and participative nature of co-located smart devices to achieve 
some greater goal. 

III. TATTLE – DISTILLING LOCAL CONTEXT OF 

PERFORMANCE  THROUGH COLLABORATION 
Tattle, as proposed in [1], is a distributed monitoring 

framework that is scalable, and monitors real-time network 

performance on large geographic areas with good measurement 
location fidelity, and requires minimal involvement of 
subscribers (other than to allow their devices to participate in 
monitoring by running a background app on their smart device). 

The framework primarily involves three generic 
components: 

1. Peer-to-peer front-end: Tattle advocates the use of peer-
to-peer wireless interfaces to allow participating devices to 
communicate diagnostic and monitoring information to 
other nearby participants. This component is critically useful 
for applications that require the context of co-location, i.e., 
discovering and communicating with other devices that are 
in close proximity. We are convinced that the barrier to 
adopting this approach is becoming much lower, with the 
advent of recent standards in peer-to-peer ad hoc wireless 
networking, such as Apple’s iBeacon [8], the increasingly-
pervasive Bluetooth Low Energy [9], as well as Wi-Fi Direct 
[10], all of which feature convenient, ultra-low-power short-
range communication capabilities that require minimal 
participant involvement (other than expressly permitting an 
app on their smart devices to make use of these interfaces). 
2. Transmission to back-end: For the purposes of aggregate 
sensing and monitoring, measurements have to be 
transmitted to the back-end. The frequency and fidelity of 
these transmissions are mostly dependent on the needs of the 
sensing and monitoring application. A common and well-
studied approach is to elect a representative, in a cluster of 
peer-to-peer devices, to upload the requisite information, 
such as an aggregated measurement (e.g. mean ambient 
temperature) to the back-end. 
3. Back-end pre-processing and post-processing: This 
component is an abstraction of all the necessary processing 
that is required by the application built on top of the Tattle 
framework. 
In the context of answering the MOO problem, we focus on 

the peer-to-peer front-end component to gather measurements 
from the co-located devices, transmit them to the back-end, and 
use our proposed analytics framework at the back-end to answer 
the MOO question, and feeding the result back to the user. 

A. The MOO app – Description and operation 
The MOO app, built using the Tattle framework, is a simple 

prototype to demonstrate the efficacy of our proposed approach 
in answering the MOO problem. It exploits Wi-Fi Direct as a 
local communication interface for devices to exchange delay 
measurements, though the app can be easily extended to use 
other aforementioned wireless interfaces. Wi-Fi Direct is an 
attractive choice because it can work in tandem with a user’s 
existing Wi-Fi association to any Wi-Fi Access Point. 

In our prototype, each participating device attempts to 
measure network delay by probing a standard set of servers. We 
will show in Section V that most of the delay variability 
observed is not dependent on the choice of server, so long as the 
servers are hosted in the same wide-area network (WAN) (and 
hence differences in propagation delay between the provider’s 
core network and the probed servers are negligible). Hence, in a 
production setting, each participant need only to probe one 
standard server. 

Each probe is a HTTP HEAD request for each server, such 
as google.com.sg, youtube.com, and our self-managed physical 
server, which we shall refer to as UNISENSE. Each probing 



attempt generates a very small amount of data transferred on the 
cellular uplink and downlink. For example, based on interface 
packet captures, we found that each fetch to google.com.sg 
involves only 484 bytes transferred on the uplink, and 1079 
bytes downloaded, fully inclusive of HTTP and TCP/IP 
overheads. We designed our prototype such that each device 
attempts to measure the network delay every five seconds. This 
interval is chosen so as to avoid excessive and unnecessary 
traffic, to conserve power, and more importantly, to avoid the 
cellular Buffer Bloat problem [11] which can cause an 
undesirable skew in measured delay. Probing each server in this 
manner generates just a little over 1 megabyte of data in total per 
hour. In a production setting, the probe interval can be ‘on-
demand’, or set to a much larger value so as not to congest the 
network further. 

Simple PING probes are not used because many networks 
and servers actively blocks ICMP traffic, and PING behaviors 
do not fully reflect the overheads incurred at the transport and 
application layer. 

The devices’ times are synchronized to the order of 
milliseconds using the Network Identity and Time Zone (NITZ) 
protocol. Every time a network probe is complete, each device 
will broadcast the result of that probe as a tuple of <Probe 
Timestamp, Hashed Device ID, Measured Server ID, Measured 
Delay>. For probes that experience time-outs (where the HTTP 
connection did not receive a reply after more than 10 seconds), 
a nominal value of 20 seconds is used. This broadcast is done on 
the Wi-Fi Direct interface, and any device that overhears this 
broadcast simply retains it in memory. This will form that 
device’s ‘cluster’ of readings, consisting of its own as well as 
those of others’ nearby. 

In order to answer the MOO question, the goal is to collect 
these measurements from other nearby devices, as well as a 
participant’s own measurements, for a small window of time. 
Subsequently, we apply a statistical algorithm that essentially 
determines the following: 

1. In the given window of time, at which periods were a 
given device performing considerably worse than others? 
2. Given those periods that a device was said to be 
performing worse than others, is the device performing 
“normally”, or “abnormally” on the whole? 
If the device is deemed to be performing “normally”, then 

the answer to the MOO question is clearly “others”. If the device 
is determined to be performing “abnormally”, then the answer 
to the same question is naturally “me”. This algorithm can then 
be repeated as desired using a sliding window approach, or 
simply at fixed intervals. For our prototype, computation for 
each cluster of readings is performed at the back-end. 
B. A note on power, incentives, security, privacy and trust 

In this paper, we focus on the systems aspect of our proposed 
approach to addressing the MOO question. However, we 
recognize that power consumption, incentivization, security, 
privacy and trust are key elements of any participatory sensing 
framework. We note that there are ongoing research into the 
aforementioned topics, and refer to recent work such as [1], [12], 
[13], [14] and [15], which addresses these concerns. 

IV. OPTIMAL CLASSIFICATION WITH ROBUST ESTIMATION 
Our goal is to design a classifier, such that given a frame of 

𝐿𝐿 observations of measured network delay at a selected device, 
denoted by Y ∶= {𝑌𝑌𝑖𝑖}𝑖𝑖=1

𝐿𝐿 ∈ ℝ𝐿𝐿 , as well as those of its 𝐾𝐾 

neighboring devices, denoted by X ∶= {X𝑖𝑖}𝑖𝑖=1
𝐿𝐿 ∈ ℝ𝐿𝐿×𝐾𝐾 , the 

classifier will detect if the device under investigation performs 
“normally”, or “abnormally”. 

To do so, we perform the following steps: 
1. Fit a regression model to explain the relationship 
between the observations Y  from the device under 
investigation, and the explanatory variables X, which are the 
realizations from the stochastic processes measured by the 
neighboring devices. 
2. Outlier detection via quantile regression residual 
analysis, based on the regression coefficients. 
3. Count the number of outliers 𝑛𝑛 in a given window. We 
assume that 𝑛𝑛 is a realization of the random variable 𝑁𝑁 ∼
𝐹𝐹𝑚𝑚(𝑛𝑛; 𝜃𝜃𝑚𝑚) that is an outcome of one of two models, namely 
“normal”, or “abnormal”, where 𝑚𝑚 is the model indicator. 
4. Perform hypothesis testing to decide if the number of 
outliers in a given window is consistent with a “normal” 
behavior (the null hypothesis, ℋ0 ) or an “abnormal” 
behavior (the alternative hypothesis, ℋ1). 

A. Algorithm Description 
We now detail each of the steps in our algorithm. 

1) Fitting of a regression model 
The most standard regression model structure is mean 

regression, in which one would assume for instance a linear 
relationship between the observed process and the 𝑝𝑝 explanatory 
variables 𝒙𝒙𝑖𝑖 = �𝑥𝑥𝑖𝑖1, ⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖�, which include the measurements 
of the other devices, given by, 

 𝑌𝑌𝑖𝑖 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑖𝑖𝑗𝑗 + 𝜖𝜖𝑖𝑖
𝑖𝑖
𝑗𝑗=1 , (1) 

where 𝜖𝜖𝑖𝑖  is a random variable representing the residual error, 
which accounts for the fact that the regression model does not 
capture all variation in the observed process. In the case that the 
random variables 𝜖𝜖𝑖𝑖 were all i.i.d. with a symmetric zero mean 
distribution, then this would be equivalent to modelling the 
conditional mean of the process given a linear function:  

 𝔼𝔼[𝑌𝑌𝑖𝑖|𝒙𝒙𝑖𝑖] = 𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑖𝑖𝑗𝑗
𝑖𝑖
𝑗𝑗=1 . (2) 

 The estimation can then be solved via maximum likelihood 
if the distribution of the errors is assumed, or via least squares. 
The coefficients are given by:  

 
Figure 1: A representative plot of HTTP fetch delay measurements 

conducted by 8 co-located devices. Each device fetches a small HTML 
resource from google.com.sg every 5 seconds and measures the delay taken 
for the fetch to be completed. 
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 �𝛼𝛼0̂, ⋯ , 𝛼𝛼�̂�𝑖� = arg min
𝛼𝛼

∑ �𝑦𝑦𝑖𝑖 − 𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑖𝑖𝑗𝑗
𝑖𝑖
𝑗𝑗=1 �

2𝐿𝐿
𝑖𝑖=1 . (3) 

The main limitation of linear regression relates to outliers 
present in the observed data, which mean regression is highly 
sensitive to (and hence, not robust). Figure 1 is a representative 
plot of actual measured delays experienced by eight co-located 
devices when attempting to fetch a common HTTP resource. 
With data-sets such as these, mean regression will unbiasedly 
adapt to the numerous, random ‘spikes’ in the delay by 
minimizing the overall square error. This behavior is the reason 
why mean regression is not robust to outliers.  

In contrast to mean regression, quantile regression models 
are capable of dealing with the presence of outliers in the data. 
Our approach is hence based on Quantile Regression (QR), 
which has the following properties:  

1. QR is a robust framework that can identify outliers (i.e., 
spikes in network delay that are not observed by other 
neighboring devices), and heavy tail realizations from the 
process. 

2. QR is flexible and allows us to introduce any relevant 
covariates (independent regressor variables) to make 
inference on the properties of the physical process. 

3. QR reconstructs the level sets for the physical process in 
a consistent and model-based approach, which does not rely 
upon simplifying assumptions on the distribution of the 
underlying process properties. 

a) Quantile Regression – A brief primer 
Under a parametric approach, we assume that 𝑌𝑌𝑖𝑖

∗ ∼
𝐹𝐹(𝑦𝑦∗|𝜽𝜽) , where 𝐹𝐹(𝑦𝑦∗|𝜽𝜽)  is the conditional cumulative 
distribution function and 𝜽𝜽 ∈ 𝚯𝚯 is a vector of model parameters, 
all unknown coefficient parameters, and distributional 
parameters. The quantile function for the conditional 
distribution of 𝑌𝑌𝑖𝑖

∗ given 𝒙𝒙𝑖𝑖 at a quantile level 𝑢𝑢 ∈ (0,1) is:  

 𝑄𝑄𝑌𝑌 ∗(𝑢𝑢|𝒙𝒙𝑖𝑖) ≡ inf{𝑦𝑦∗ ∶ 𝐹𝐹(𝑦𝑦∗|𝜽𝜽) ≥ 𝑢𝑢} = arg min
𝜽𝜽∈𝚯𝚯

𝔼𝔼�𝜌𝜌𝑢𝑢(𝜖𝜖𝑖𝑖)�, (4) 

where the loss function in the expectation is given by:  

 𝜌𝜌𝑢𝑢(𝜖𝜖) = 𝑦𝑦(𝑢𝑢 − ∏[𝑦𝑦 > 0]). (5) 

 Under this formulation, the conditional quantile function in 
(4) is given by,  

 𝑄𝑄𝑌𝑌 ∗(𝑢𝑢|𝒙𝒙𝑖𝑖) =  𝜇𝜇𝑖𝑖 + 𝑄𝑄𝜖𝜖(𝑢𝑢)𝜎𝜎𝑖𝑖, (6) 

where 𝑄𝑄𝜖𝜖(𝑢𝑢) = 𝐹𝐹𝑧𝑧∗
−1(𝑢𝑢)  is the inverse cumulative distribution 

function for the standardized variable 𝑍𝑍𝑖𝑖
∗ = 𝑌𝑌𝑖𝑖

∗−𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

, and:  

 location: 𝜇𝜇𝑖𝑖 =  𝛼𝛼0 + ∑ 𝛼𝛼𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘
𝑚𝑚
𝑘𝑘=1 , 

 scale: 𝜎𝜎𝑖𝑖
2 = 𝑒𝑒�𝛽𝛽0+∑ 𝛽𝛽𝑘𝑘𝑠𝑠𝑖𝑖𝑘𝑘

𝑣𝑣
𝑘𝑘=1 �. (7) 

This optimization problem can be solved efficiently using 
the approach given in [16]. 

2) Calculating residuals and classifying outliers 
To decide if the 𝑖𝑖 th sample in 𝑌𝑌𝑖𝑖  is an outlier/inlier, we 

perform a residual-based outlier detection, as detailed in [17]. 
To achieve that, we calculate the residual for the 𝑖𝑖th sample as:  

 𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑄𝑄(0.50|𝒙𝒙𝑖𝑖), (8) 

where 𝑄𝑄(0.50|𝒙𝒙𝑖𝑖)  is the 50th conditional quantile for the 𝑖𝑖 th 
observation. This corresponds to a median regression instead of 
a mean regression. We perform the following hypothesis test: 

ℋinlier : 𝑟𝑟𝑖𝑖 < 𝑘𝑘𝑟𝑟�̂�𝜎 (Inlier) 

ℋoutlier : 𝑟𝑟𝑖𝑖 ≥ 𝑘𝑘𝑟𝑟�̂�𝜎 (Outlier) 

where 𝑘𝑘𝑟𝑟 is a resistant parameter that controls the cut-off rate, 
and �̂�𝜎 is the corrected median of the absolute residuals:  

 �̂�𝜎 = median�|𝑟𝑟𝑖𝑖|
𝛽𝛽0̂

, 𝑖𝑖 = 1,⋯ , 𝐿𝐿�, (9) 

where 𝛽𝛽0̂ ≔ Φ−1(𝑝𝑝)  is the inverse cumulative distribution 
function (CDF) of Gaussian density with the 𝑝𝑝th quantile. Note 
that the formulation of Equation (8) distinguishes between 
positive residuals (where the actual delay is higher than the 
regressed quantile) and negative residuals. The latter case, where 
actual delay 𝑦𝑦𝑖𝑖  is lower (better) than the regressed quantile 
𝑄𝑄(0.50|𝒙𝒙𝑖𝑖) , is actually desirable, and hence will always be 
considered an inlier. 

3) Counting the number of outliers in a given frame 
We define the following random variable 𝑁𝑁  to represent the 

number of outliers identified in a given window, where,  

 𝑁𝑁 = ∑ 𝟏𝟏(𝑟𝑟𝑖𝑖 declared as ℋoutlier)
𝐿𝐿
𝑖𝑖=1 , (10) 

and where 𝟏𝟏(.)  is the indicator function, and 𝐿𝐿  is the frame 
length. We used extensive analysis of real data from both 
“normal” and “abnormal” representations to model 𝑁𝑁  as a 
realization from a Geometric distribution with different success 
probabilities 𝑝𝑝, as follows: 

ℋ0 ∶ 𝑁𝑁 ∼ Geo(𝑝𝑝normal) 

ℋ1 ∶ 𝑁𝑁 ∼ Geo(𝑝𝑝abnormal) 

where Geo(𝑝𝑝) is the Geometric distribution defined as P(𝑁𝑁 =
𝑛𝑛; 𝑝𝑝) = (1 − 𝑝𝑝)𝑛𝑛𝑝𝑝 . To find the values 𝑝𝑝normal  and 𝑝𝑝abnormal , we 
used 384 time-series as a training data set, based on which we 
performed a Maximum Likelihood estimation (MLE), as 
presented next. The likelihood function is given by: 

 P(𝑁𝑁1 = 𝑛𝑛1,⋯ , 𝑁𝑁𝐿𝐿 = 𝑛𝑛𝐿𝐿) = ∏ (1 − 𝑝𝑝)𝑛𝑛𝑙𝑙𝑝𝑝𝐿𝐿
𝑙𝑙=1 . (11) 

By taking the derivative of the logarithmic transform, setting it 
to zero and solving, we obtain the MLE estimate as follows:  

 𝑝𝑝̂ = 1
∑ 𝑁𝑁𝑙𝑙

𝐿𝐿
𝑙𝑙=1

𝐿𝐿 +1
, (12) 

where 𝐿𝐿 is the number of training examples for each model. 

4) Device Classification via Likelihood Ratio Test 
The final step of the algorithm involves a second hypothesis 

test to classify the behavior of the device under investigation. 
This step tests whether the number of outliers detected is best 
explained by a “normal” behavior (the null hypothesis, denoted 
by ℋ0) or an “abnormal” behavior (the alternative hypothesis, 
denoted by ℋ1). To achieve this, we derive the Likelihood Ratio 
Test (LRT), given by:  

 Λ(𝑌𝑌1:𝐿𝐿) ≔ P�𝑁𝑁 = 𝑛𝑛�ℋ0�
P�𝑁𝑁 = 𝑛𝑛�ℋ1�

ℋ0

≷
ℋ1

𝛾𝛾, (13) 

where the threshold 𝛾𝛾 can be set to assure a fixed system false-
alarm rate under the Neyman-Pearson approach, or can be 
chosen to minimize the overall probability of error under the 



Bayesian approach [18]. Since the marginal distribution under 
both hypotheses follows a geometric distribution with different 
probabilities 𝑝𝑝, the test statistic is given by: 

 Λ(𝑌𝑌1:𝐿𝐿) = �1−𝑝𝑝normal�
𝑛𝑛𝑝𝑝normal

�1−𝑝𝑝abnormal�𝑛𝑛𝑝𝑝abnormal
. (14) 

 It is important to note that there is no objective way to choose 
“optimal” values of 𝑘𝑘𝑟𝑟 and 𝛾𝛾, as it reflects a trade-off between 
detection rate and false-alarm rate. The values of both 
parameters should be chosen by the policy makers to reflect the 
Quality-of-Service (QoS) that is acceptable in a particular 
network, and may change as a function of time and location. In 
our experiments, we chose the values 𝑘𝑘𝑟𝑟 = 5, 𝛾𝛾 = 1  as these 
provided good detection performance with low false alarm rate. 
B. Answering the MOO question 

Once hypothesis testing is complete, we can then answer the 
“me, or others?” question for each investigated device, given its 
observed network delay, together with those of its co-located 
neighbors’. If the null hypothesis ℋ0 is accepted, the device is 
classified as experiencing “normal” network delays as compared 
to its neighbors, and hence the answer to the MOO question is 
“others”. If the alternative hypothesis ℋ1 is accepted, then there 
is evidence to suggest that the device is experiencing 
“abnormal” network delays that are not observed by others, and 
hence the answer to the MOO question is “me”. 

We also note that our approach will inherently adapt to 
situations where most devices experience very high network 
delay. In such cases, the threshold expressed in Equation (9) will 
be elevated accordingly, such that only extreme deviations will 
be labeled as outliers. In this case, the algorithm will consider 
devices that jointly experience very high network delays as 
performing “normally”. 

V. EXPERIMENTAL SETUP AND RESULTS 
In our experimental setup, we used the following devices 

listed in Table 1. 

Manufacturer Model No. of Units Cell Provider 
Samsung GT-P3100 02 #1 
Asus Nexus 7 3G 03 #1 
Samsung SM-T325 03 #1 
Samsung SM-T325 03 #2 

Table 1: The devices that were used in our experiments. For units of the 
same make and model, we updated all devices to their latest official 
firmwares, with no other after-market apps installed, except for Tattle.  

For each of these devices, we collected HTTP HEAD delay 
measurements every 5 seconds for google.com.sg, and 
UNISENSE, for a window of 5 minutes, at each of the 24 
positions, located on a busy outdoor train station platform, as 
illustrated in Figure 2. 

Each set of collection lasts for two hours, and is repeated 
twice a day, over a stretch of 7 consecutive days, resulting in 
over 7,300 time-series of five minutes each, comprising in total 
443,500 delay measurements. 

This train platform was chosen for its persistent 
crowdedness, which is typical of the type of congested urban 
areas that are pervasive in Singapore. Our proposed approach is 
inherently applicable in such scenarios, where there are large 
crowds, and unreliable cellular network connectivity. 

A. Temporal correlation of data 
In regression analysis of time-series data, one of the core 

assumptions is that the observations come from an i.i.d. process. 
In order to validate this assumption, we examine the temporal 
autocorrelation of each time-series collected by devices on 
Provider #1’s network. Figure 3 illustrates the distribution of the 
autocorrelations computed for 2,680 time-series (collected for 
google.com.sg), over a range of lags, where the interval between 
each timestep is five seconds. The key result here is that even at 
a lag of one timestep, close to 80% of the time-series 
demonstrated very little autocorrelation (coefficient ≤ 0.25). 

To further validate the assumption, we next apply the 
parameterized Ljung-Box Q-Test to the data, which tests each 
time-series under the strict null hypothesis that the 
autocorrelations under the first 𝑥𝑥  lags are jointly zero. The 
results are given in Table 2. The ratio of non-rejection indicates 
the percentage of those 2,680 time-series tested that does not 
reject the null hypothesis at a significance level 𝛼𝛼 of 0.05. Even 
at a lag of 𝑥𝑥 = 1 , there is no evidence to reject the null 
hypothesis, more than 78% of the time. 

Null hypothesis, 𝓗𝓗null  Ratio of non-rejection 
𝜌𝜌1 = 0 78.02% 
𝜌𝜌1 = 𝜌𝜌2 = 0 71.79% 
𝜌𝜌1 = 𝜌𝜌2 = 𝜌𝜌3 = 0 72.05% 
𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌4 = 0 73.02% 
𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌5 = 0 74.78% 
𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌6 = 0 75.90% 

Table 2: The Ljung-Box Q-Test for temporal autocorrelation. The null 
hypothesis ℋnull  is constructed such that the autocorrelation coefficients 
𝜌𝜌1, 𝜌𝜌2,⋯ , 𝜌𝜌𝑥𝑥 considering the first 𝑥𝑥 lags are jointly zero (that is, completely 
uncorrelated). 

B. Choice of probed servers 
In order to demonstrate that the observed variability in delay 

is mostly due to the performance of the cellular access portion 
of the network, and not influenced by the choice of probed 
servers, we provide the cumulative distribution functions of the 
HTTP HEAD fetch delay for both google.com.sg and 
UNISENSE in Figure 4. Clearly, the overall trends in 
performance are almost identical. This is also patently observed 
on Provider #2’s network. Hence, without loss of generality, we 
focus on the delays measured for google.com.sg henceforth. 
C. Performance differences between cellular providers 

It can be seen in Figure 4 that the difference between the 
delay performances of Provider #1’s and Provider #2’s network 
is drastic, regardless of the choice of probed servers. The median 

 
Figure 2: The train station platform, as well as the individual spots 

where data collection was performed, are illustrated in this figure. 



fetch delay for both google.com.sg and UNISENSE on Provider 
#2’s network takes almost 300% longer than that of Provider 
#1’s. Figure 5 shows an example of this difference in the 
temporal domain. Delays on Provider #1’s network were 
subjected to much less variability compared to Provider #2’s 
network, and this is true in most of the time-series that we 
collected. 
D. Performance differences between device models 

Figure 4 also reveals some interesting relationships between 
the delays observed and the make and model of the device 
performing the measurement. The Samsung GT-P3100, 
introduced in 2012, performs very stably, with around 90% of 
its measurements coming in below 500 ms for both servers 
probed. In contrast, Samsung’s latest flagship tablet, the SM-
T325, performs poorly, with 90% of their measurements coming 
in between 1500 to 2000 ms, on the same network. This 
however, does not invalidate our approach of taking all co-
located participants’ measurements into consideration, 
regardless of make and model, to determine if a device is doing 
worse than its neighbors. This exactly is in line with the basic 
intention of asking the MOO question. However, if there are 
other co-located devices in the same area with the same make 
and model, further extensions can be easily made to consider 
only same device types, though that is beyond the scope of this 
paper. 
E.  “Normal” vs. “Abnormal” performance 

There are numerous periods in the course of our experiments 
where sudden, persistent spikes in delay are observed by many 
devices. These will result in windows that could stretch over 
several minutes where many devices observe very high delays, 
or complete outage of data service. This is illustrated in Figure 
6, where within a window stretching over more than one minute, 
devices experience abrupt spikes in their fetch delays, which 
affected at least 6 out of the 8 devices tested. For applications 
that are somewhat tolerant of delay, such as web-surfing, this 
may not appear to be wholly debilitating. However, this could 
have frustrating consequences for users that are streaming 
videos from youtube.com, or are having live conversations on 
Skype. Nevertheless, in situations such as these, many co-
located devices indeed suffer together (although to varying 
degrees), and hence each participant’s device that are faced with 
such delays can be said to be performing “normally”. 

 There are also significant stretches during our experiments 
where one or two of our devices experience severe outages that 
are not observed by other devices. Figure 7 illustrates this 
phenomenon exactly. In this scenario, the device GT-P3100 #A 

experiences a sudden stretch of high delays and timeouts that 
lasted more than 3 minutes. Besides NEXUS-7 #A, which also 
saw some spikes and a short outage of less than 30 seconds, the 
rest of the devices experienced delays that were fairly normal. 
In fact, the worst-ever time-series that we observed in a 60 
sample window (lasting 5 minutes) had 58 fetch attempts which 
experienced time-outs, while its 7 other neighbors saw 0, 0, 2, 2, 
0, 3 and 0 time-outs respectively. In these types of scenarios, 
answering the MOO question is obviously useful. When the 
device is deemed to be performing “abnormally”, the participant 
can proceed to perform limited diagnostic checks, and possibly 
reboot his device to try and mitigate the outage. 

In the real world, there could be many reasons why such 
outages happen. For example, the device could be physically 
damaged, or experiencing a rare and very unfortunate prolonged 
period of deep fading. Other reasons may include bugs in the 
firmware that manifest themselves after prolonged use (e.g. 
software aging), having errant malware that are hogging system 
resources, or simply having left a Virtual Private Network 
(VPN) connection switched on in the background. Identifying 
the root cause of such outages is beyond the scope of this paper. 
F. Outlier detection performance 

In the second step of our statistical framework introduced in 
Section IV, we take a given delay time-series measured by a 
device, as well as those of the device’s co-located neighbors’, 
and identify points in time where the device is doing 
considerably worse than its neighbors, using QR. We term those 

   
Figure 3: The distribution of autocorrelation 

coefficients for 2,680 time-series of network delay. 
Each time-step is 5 seconds in length. 

Figure 4: (a, left) A comprehensive characterization of the HTTP fetch delays for google.com.sg, 
experienced by each device in our entire data-set of over 220,000 data points. Provider #2’s network 
performs considerably and observably worse than Provider #1’s network in largely every experiment. (b, 
right) The same plot is given, but these devices instead perform HTTP fetches on our self-managed 
UNISENSE server, located in Singapore. 

 
Figure 5: An illustration of two sets of representative time-series, 

representing the HTTP fetch delay for google.com.sg. The devices were co-
located at the same place, and are the exact same make and model, but 3 
were connected to Provider #1’s network, while the others were connected 
to Provider #2’s network. The interval between each time step is 5 seconds. 
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points as outliers. The result of this approach can be seen in 
Figure 8. Here, to illustrate clearly how effective our approach 
is in terms of correctly identifying outliers, we took a time-series 
of delay measurements collected on Provider #2’s network, and 
used four other time-series collected on Provider #1’s network 
as those of its neighbors, and performed the regression analysis 
and outlier detection. The outliers that were detected by the 
algorithm are clearly marked out in Figure 8. 

The algorithm patently detected points in time where delay 
spikes seen by the foreign device were not observed by its 
neighbors. More importantly, during periods where spikes were 
observed by its artificially-introduced neighbors, the algorithm 
adapts, and correctly classifies those measurements as inliers. 
This is evident in time-steps 22, 48, and 51. 
G. Effectiveness of the overall algorithm 

In the previous subsections, we illustrated results for selected 
sets of time-series that highlight the effects discussed above. 
Here, we setup the following experiment to test the effectiveness 
of the algorithm as a whole, on how accurate it is in detecting 
time-series that are known to be “abnormal”. In order to do this, 
for each of the set of 8 time-series (belonging to 8 devices) 
collected per position (over 24 positions), per experiment (over 
2 experiments), per day (over 7 consecutive days) on Provider 
#1’s network, we introduce a foreign time-series that were 
collected at the same corresponding times by a device on 
Provider #2’s network. This resulted in 336 sets of 9 time-series 
(with 8 devices using Provider #1, and another SM-T325 using 
Provider #2). Each of the 336 foreign time-series was manually 
and individually inspected and labeled as “normal” or 
“abnormal”. This is based on whether its median delay is closer 
to those of the SM-T325s’ on Provider #1’s network (labeled as 
“normal”), or those of SM-T325s’ on Provider #2’s network 
(labeled as “abnormal”), with reference to Figure 4. 

Using a window length of 60 samples (collected in 5 
minutes), we apply our 4-step algorithm on each set of 9 time-

series, and vary the number of neighbors used in the regression 
analysis to also examine the effects of increasing the number of 
co-located participants on detection accuracy. The goal is then 
to check if the algorithm labels the foreign time-series correctly, 
or incorrectly (which we term as a mis-detection). Figure 9 
shows the results of this experiment. Using our approach, the 
median mis-detection rate is around 30% when only 2 neighbors 
are considered in the regression analysis. As more neighbors are 
introduced, the detection rate improves steadily. When 6 
neighbors are used, the median mis-detection rate drops to only 
around 10%. 

We do not show the results of considering 1, 7 or 8 neighbors 
because these combinations only result in 336 readings, which 
are insufficient to obtain a smooth cumulative distribution. 
However, moving up to 7 neighbors, our algorithm can already 

  
Figure 6: An illustration of three sets of representative time-series, 

representing the HTTP fetch delay for google.com.sg. The devices were co-
located at the same place, using the same provider, but are arranged according 
to their makes and models. Periods of high delay can affect many devices in the 
same area, as shown. 

Figure 7: An illustration of three sets of representative time-series, 
representing the HTTP fetch delay for google.com.sg. The devices were co-
located at the same place, using the same provider, but are arranged according 
to their makes and models. Oftentimes, a device may experience severe outage 
of network service, but most other devices are unaffected. 

 
Figure 8: An illustration of two sets of time-series. Here, a time-series 

of HTTP fetch delays for google.com.sg, belonging to a device connected to 
Provider #2’s network, is mixed into that of the data set of time-series of fetch 
delays for devices on Provider #1’s network. The goal of our algorithm is to 
detect points in time where the foreign time-series is deemed to be behaving 
“abnormally” from others. Those detected points are then marked out as 
shown. 
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reduce the median mis-detection rate to zero. With 8 neighbors, 
we can in fact detect the foreign time-series with 100% accuracy, 
in more than 80% of the time-series. 
H. False negatives vs. false positive performance 

False negative mis-detection happens when a participant 
experiences very poor network delays compared to its 
neighbors, but the algorithm returns a “normal” verdict. This can 
be an exasperating experience because the user’s frustrations are 
not validated. So, we argue that false positives (where the 
network delay seen by the participant is actually comparable to 
that of its neighbors’, but the algorithm returns an “abnormal” 
verdict) are preferable in the context of the MOO question. 
Figure 10 illustrates comprehensively the false negative rates 
demonstrated by our algorithm, for the same set of experiments. 
Having just 2 neighbors result in a median false negative rate of 
over 53%. This improves steadily as more neighbors are added 
into the regression analysis. With 6 neighbors, the median drops 
to around 18%, or equivalently, an 82% median false positive 
rate for all those instances which the algorithm mis-detected the 
foreign time-series. 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 
In this paper, we first describe the “me, or others?” (MOO) 

question that should be asked by cellular service subscribers 
when they experience periods of poor network performance. We 
describe how we use Tattle, a comprehensive, large-scale 
cellular network monitoring framework, to allow participating 
devices to glean networking performance information from one 
other in real-time, by leveraging on its capability to 
opportunistically exchange network measurements to preserve 
the context of co-location and conserve device power. 

We propose a robust statistical framework that builds on top 
of Tattle, based on Quantile Regression which cumulates into a 
4-step algorithm. It first derives a regression model based on a 
device and its neighbors’ network delay measurements, then 
identifies points in time where a device performs poorly 
compared to its neighbors. Next, it counts 𝑛𝑛, the number of these 
identified outliers in a small finite window, then performs 
hypothesis testing by deciding on which one of two estimated 
geometric distributions (from which “normal”, and “abnormal”, 
numbers of outliers are drawn) that 𝑛𝑛 most likely belongs to. 
Through this, we can directly answer the MOO question. 

We validate our approach based on real-world measurements 
of network delay, using several devices of assorted makes and 
models, to collect over 7,300 time-series of measurements, 
comprising over 443,500 samples. This includes measurements 
on 2 different providers’ networks for comparison. We first 
show that at a 5s sampling interval, close to 80% of all the time-
series demonstrated very little autocorrelation, so as to fulfill the 
necessary prerequisite of i.i.d in order to apply regression. 

We then illustrate examples where “normal” and “abnormal” 
performances occur in real networks, and report that there occurs 
instances where a device can experience complete outage, while 
none of its neighbors are affected. We give quantitative results 
on how well our algorithm can detect an “abnormal” time series, 
with increasing effectiveness as the number of neighbors 
increase. 

We also characterize the false negative and false positive 
tendencies of our algorithm, and validate that our algorithm 
favors false positives, which is more desirable than false 
negatives in the context of the MOO question. 

Finally, as future work, we indeed to further expand our 
algorithm to quantify effects of various parameters such as 𝑘𝑘𝑟𝑟 
and 𝛾𝛾, as well as extend the framework to include other types of 
network metrics, such as throughput, which are not as 
straightforward to measure as network delay. 
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Figure 9: A complete characterization of the misdetection rates of a foreign 

time-series of HTTP fetch delays, belonging to Provider #2’s network, when 
mixed into the time-series of delays experienced by devices on Provider #1’s 
network. As the number of neighbors considered by the algorithm increases, 
the detection performance of our algorithm becomes better. 

Figure 10: An illustration of the false negative rates of our algorithm. The 
false positive rate can be inferred by flipping the line-series about the (0,0)-
(100,1) diagonal. Of all the times that a misdetection happens, having more 
neighbors helps to suppress the false negative rate, in favor of the false positive. 
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