
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

4-2016

Not you too? Distilling local contexts of poor
cellular network performance through
participatory sensing
Huiguang LIANG

Ido NEVAT

Hyong S. KIM

Hwee-Pink TAN
Singapore Management University, hptan@smu.edu.sg

Wai-Leong YEOW

DOI: https://doi.org/10.1109/NOMS.2016.7502836

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIANG, Huiguang; NEVAT, Ido; KIM, Hyong S.; Hwee-Pink TAN; and YEOW, Wai-Leong. Not you too? Distilling local contexts of
poor cellular network performance through participatory sensing. (2016). Proceedings of the NOMS 2016: 2016 IEEE/IFIP Network
Operations and Management Symposium, April 25-29, 2016, Istanbul, Turkey. 392-400. Research Collection School Of Information
Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3328

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111755589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3328&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/NOMS.2016.7502836
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3328&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3328&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

978-1-5090-0223-8/16/$31.00 ©2016 IEEE

Not You Too? Distilling Local Contexts of Poor Cellular
Network Performance through Participatory Sensing

 Huiguang Liang, ⚭ Ido Nevat, Hyong S. Kim, ◊ Hwee-Pink Tan, ⌀ Wai-Leong Yeow
 Social & Cognitive Computing, Institute of High Performance Computing, Singapore

⚭ Sense & Sense-abilities Programme, Institute for Infocomm Research, Singapore

 Dept. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
◊ SMU-iCity Lab, Singapore Management University, Singapore, ⌀ Solace Systems, Inc., Singapore

Corresponding Author: hliang@ihpc.a-star.edu.sg

Abstract—Cellular service subscribers are increasingly reliant
on cellular data services for all kinds of mobile applications.
Oftentimes, when subscribers experience frustratingly high
network delays and timeouts, they like to know whether their
experiences are shared by other users nearby. The question that is
often asked is essentially this: “is it just me, or do others around me
face the same problem?”

In this paper, we describe how we use Tattle, a distributed real-
time participatory sensing and monitoring framework, to glean
network performance information from users nearby. Tattle relies
on recent advances in peer-to-peer device networking, such as Wi-
Fi Direct, Bluetooth Low Energy, and Apple’s iBeacon, to
exchange key snippets of diagnostic information using very low-
power, very short-range local-area wireless interfaces, between
participating devices. We propose and develop a robust statistical
algorithm, based on quantile regression, which identifies key
points in time where a device experiences high delays and outages
that are not observed by its neighbors, and decides if the device is
performing “normally”, or “abnormally”. This directly answers
the “me, or others?” question. We demonstrate and validate the
efficacy of our system through real-world measurements of
network delay, consisting of over 7,300 time-series that comprises
over 443,500 data samples, using commodity smart devices
attached to two different providers’ networks.

I. INTRODUCTION
As traffic load increases, cellular networks naturally become

increasingly congested, and subscribers tend to experience high
network delays, slow speeds, and possibly service outages in
cells and areas that are overloaded. This can be a common
occurrence and a frustrating experience, especially during
periods of congestion, such as rush hours and spectator events.

Whenever a subscriber experiences periods of unsatisfactory
network performance, the subscriber may often blame the
cellular operator for providing inadequate coverage and
capacity. On the other hand, the cellular operator may blame the
user’s device or the software as the cause. It is often difficult to
identify the root cause of network performance issues.

We believe that one way to assist the diagnosis of the root
cause from the subscriber’s perspective is to ask: “am I the only
one suffering from this, or is this also experienced by others?”
For ease of reference, we shall refer to this as the “me, or
others?” (MOO) problem. The subscriber’s intention (often
without consciously realizing) is to determine if the fault lies
with his own device (possibly as a result of software/hardware
issues), or with the network. If the subscriber is able to determine
that the former is true, he can take some limited mitigation steps,
such as rebooting his device, closing errant apps, etc. If the latter
is true, then the subscriber gains closure in knowing that his
device is likely to be working fine, and that other co-located

subscribers in the same area are experiencing the same kinds of
performance impairments.
A. Paper contribution and overview

The contributions of this paper are as follows:
1. We describe how we use Tattle [1], a distributed real-
time participatory sensing and monitoring framework, to
allow participating devices to glean networking performance
information from each other in real-time, while preserving
the context of co-location.
2. On top of that, we propose a complete and flexible
statistical framework, based on quantile regression and
outlier classification, to analyze and systematically identify
points in time where a device is not performing as well as its
co-located neighbors, and decides if the device is performing
“normally”, or “abnormally”.
3. We report on the characteristics of the delay performance
of co-located devices subscribed to two cellular network
operators in Singapore, and describe the results of applying
our proposed approach to answering the MOO question, on
real-world measurements of over 7,300 time-series of
network delay, consisting of over 443,500 data points.
With these contributions, this paper provides a framework to

comprehensively and systematically answer the key MOO
question of whether poor network performances is an isolated
problem, faced by one or a few devices in particular, or an
endemic condition that affects most devices in a given area.

This paper is organized as follows. In Section II, we describe
the general problem and provide a brief introduction to existing
work. In Section III, we describe the Tattle system, and how it
allows smart devices to leverage on low-power, short-range
peer-to-peer information exchange to glean performance
measurements from other co-located participants. In Section IV,
we introduce the proposed statistical framework that we will
build on top of Tattle, in order to answer the MOO problem. In
Section V, we describe our experimental methodology, and
present some key features of the 7,300 real-world network delay
time-series that was collected. We then apply our proposed
algorithm on the data, and report on the results. Finally, we
conclude and discuss future work in Section VI.

II. PROBLEM DESCRIPTION AND BACKGROUND REVIEW
When a subscriber suffers impairments to the underlying

mobile data service, the experience can be exceedingly
frustrating. One key question that should be asked is this: “is it
just me, or does the problem lie with the network?” We
introduced this earlier as the “me, or others?” (MOO) problem.
In this paper, we formalize and propose a system based on low-

Published in Proceedings of the NOMS 2016: 2016 IEEE/IFIP Network Operations and Management Symposium, April 25-29, 2016,
Istanbul, Turkey. Piscataway, NJ: IEEE. pp. 392-400.
http://doi.org/10.1109/NOMS.2016.7502836

power, short-range peer-to-peer exchange of network
performance information to systematically answer the MOO
question. A robust statistical framework is proposed to take into
account a participant’s, as well as his co-located neighbors’
network performance information to determine whether a device
is performing relatively “normally”, or “abnormally”.
A. Background Review

Fault management in wireless networks is a fairly-well
studied topic, with strong existing contributions addressing the
management of Wi-Fi network faults in particular. In [2], the
authors propose the use of large arrays of commodity desktop
computers, equipped with Wi-Fi cards or dongles, as enterprise
network sensors and monitors. In another study [3], its authors
suggest that Wi-Fi clients and access points can be instrumented
to become diagnostic agents, which can be directed to switch to
promiscuous mode to help detect and relay problems.

Cellular networks have conventionally required more
centralized approaches to fault management because of its large
geographical spread, provisioned QoS, strict centrally-managed
infrastructure, and until recently, ‘dumb’ clients, which cannot
be easily instrumented to perform any complex tasks. Existing
work focus on detecting network-side faults, down to at most a
cell-wide level, by examining key performance indicators
(KPIs). In [4][5], the authors provide a brief description of
possible faults and symptoms in cellular networks, and propose
a Bayesian inference model to compute the probability of a fault
based on observed KPIs. In another recent study [6], its authors
propose a two-stage detection-diagnosis model where each
monitored KPI is compared against normal ‘profiles’, and
deviations are matched to known root causes.

Our work differs fundamentally from existing work in the
following ways:

1. The MOO problem is a different problem from
conventional fault management. Here, we are only interested
in the question of whether one participating device is getting
at least as good network performance as compared to its co-
located neighbors. The motivation is to allow participants to
either perform limited mitigation steps to alleviate
impairments (due to device-related issues), or simply wait
out periods of poor performance as others nearby are also
suffering from the same impairments.
2. Our approach requires no instrumentation on the part of
participating devices, except to run a mobile app. No
hardware modifications, nor any changes in device
functionality, are required, unlike those commonly
suggested in studies addressing Wi-Fi management. Also,
modifications to the network infrastructure are not required.
3. Our approach requires no a prior knowledge of the
structure, symptoms and causes of faults.
Another area related to our work is that of participatory

sensing [7]. The proliferation of smart devices has been a key
enabler for many interesting research projects in this area.
Participatory sensing leverages on the potential collaborative
and participative nature of co-located smart devices to achieve
some greater goal.

III. TATTLE – DISTILLING LOCAL CONTEXT OF

PERFORMANCE THROUGH COLLABORATION
Tattle, as proposed in [1], is a distributed monitoring

framework that is scalable, and monitors real-time network

performance on large geographic areas with good measurement
location fidelity, and requires minimal involvement of
subscribers (other than to allow their devices to participate in
monitoring by running a background app on their smart device).

The framework primarily involves three generic
components:

1. Peer-to-peer front-end: Tattle advocates the use of peer-
to-peer wireless interfaces to allow participating devices to
communicate diagnostic and monitoring information to
other nearby participants. This component is critically useful
for applications that require the context of co-location, i.e.,
discovering and communicating with other devices that are
in close proximity. We are convinced that the barrier to
adopting this approach is becoming much lower, with the
advent of recent standards in peer-to-peer ad hoc wireless
networking, such as Apple’s iBeacon [8], the increasingly-
pervasive Bluetooth Low Energy [9], as well as Wi-Fi Direct
[10], all of which feature convenient, ultra-low-power short-
range communication capabilities that require minimal
participant involvement (other than expressly permitting an
app on their smart devices to make use of these interfaces).
2. Transmission to back-end: For the purposes of aggregate
sensing and monitoring, measurements have to be
transmitted to the back-end. The frequency and fidelity of
these transmissions are mostly dependent on the needs of the
sensing and monitoring application. A common and well-
studied approach is to elect a representative, in a cluster of
peer-to-peer devices, to upload the requisite information,
such as an aggregated measurement (e.g. mean ambient
temperature) to the back-end.
3. Back-end pre-processing and post-processing: This
component is an abstraction of all the necessary processing
that is required by the application built on top of the Tattle
framework.
In the context of answering the MOO problem, we focus on

the peer-to-peer front-end component to gather measurements
from the co-located devices, transmit them to the back-end, and
use our proposed analytics framework at the back-end to answer
the MOO question, and feeding the result back to the user.

A. The MOO app – Description and operation
The MOO app, built using the Tattle framework, is a simple

prototype to demonstrate the efficacy of our proposed approach
in answering the MOO problem. It exploits Wi-Fi Direct as a
local communication interface for devices to exchange delay
measurements, though the app can be easily extended to use
other aforementioned wireless interfaces. Wi-Fi Direct is an
attractive choice because it can work in tandem with a user’s
existing Wi-Fi association to any Wi-Fi Access Point.

In our prototype, each participating device attempts to
measure network delay by probing a standard set of servers. We
will show in Section V that most of the delay variability
observed is not dependent on the choice of server, so long as the
servers are hosted in the same wide-area network (WAN) (and
hence differences in propagation delay between the provider’s
core network and the probed servers are negligible). Hence, in a
production setting, each participant need only to probe one
standard server.

Each probe is a HTTP HEAD request for each server, such
as google.com.sg, youtube.com, and our self-managed physical
server, which we shall refer to as UNISENSE. Each probing

attempt generates a very small amount of data transferred on the
cellular uplink and downlink. For example, based on interface
packet captures, we found that each fetch to google.com.sg
involves only 484 bytes transferred on the uplink, and 1079
bytes downloaded, fully inclusive of HTTP and TCP/IP
overheads. We designed our prototype such that each device
attempts to measure the network delay every five seconds. This
interval is chosen so as to avoid excessive and unnecessary
traffic, to conserve power, and more importantly, to avoid the
cellular Buffer Bloat problem [11] which can cause an
undesirable skew in measured delay. Probing each server in this
manner generates just a little over 1 megabyte of data in total per
hour. In a production setting, the probe interval can be ‘on-
demand’, or set to a much larger value so as not to congest the
network further.

Simple PING probes are not used because many networks
and servers actively blocks ICMP traffic, and PING behaviors
do not fully reflect the overheads incurred at the transport and
application layer.

The devices’ times are synchronized to the order of
milliseconds using the Network Identity and Time Zone (NITZ)
protocol. Every time a network probe is complete, each device
will broadcast the result of that probe as a tuple of <Probe
Timestamp, Hashed Device ID, Measured Server ID, Measured
Delay>. For probes that experience time-outs (where the HTTP
connection did not receive a reply after more than 10 seconds),
a nominal value of 20 seconds is used. This broadcast is done on
the Wi-Fi Direct interface, and any device that overhears this
broadcast simply retains it in memory. This will form that
device’s ‘cluster’ of readings, consisting of its own as well as
those of others’ nearby.

In order to answer the MOO question, the goal is to collect
these measurements from other nearby devices, as well as a
participant’s own measurements, for a small window of time.
Subsequently, we apply a statistical algorithm that essentially
determines the following:

1. In the given window of time, at which periods were a
given device performing considerably worse than others?
2. Given those periods that a device was said to be
performing worse than others, is the device performing
“normally”, or “abnormally” on the whole?
If the device is deemed to be performing “normally”, then

the answer to the MOO question is clearly “others”. If the device
is determined to be performing “abnormally”, then the answer
to the same question is naturally “me”. This algorithm can then
be repeated as desired using a sliding window approach, or
simply at fixed intervals. For our prototype, computation for
each cluster of readings is performed at the back-end.
B. A note on power, incentives, security, privacy and trust

In this paper, we focus on the systems aspect of our proposed
approach to addressing the MOO question. However, we
recognize that power consumption, incentivization, security,
privacy and trust are key elements of any participatory sensing
framework. We note that there are ongoing research into the
aforementioned topics, and refer to recent work such as [1], [12],
[13], [14] and [15], which addresses these concerns.

IV. OPTIMAL CLASSIFICATION WITH ROBUST ESTIMATION
Our goal is to design a classifier, such that given a frame of

𝐿𝐿 observations of measured network delay at a selected device,
denoted by Y ∶= {𝑌𝑌𝑖𝑖}𝑖𝑖=1

𝐿𝐿 ∈ ℝ𝐿𝐿 , as well as those of its 𝐾𝐾

neighboring devices, denoted by X ∶= {X𝑖𝑖}𝑖𝑖=1
𝐿𝐿 ∈ ℝ𝐿𝐿×𝐾𝐾 , the

classifier will detect if the device under investigation performs
“normally”, or “abnormally”.

To do so, we perform the following steps:
1. Fit a regression model to explain the relationship
between the observations Y from the device under
investigation, and the explanatory variables X, which are the
realizations from the stochastic processes measured by the
neighboring devices.
2. Outlier detection via quantile regression residual
analysis, based on the regression coefficients.
3. Count the number of outliers 𝑛𝑛 in a given window. We
assume that 𝑛𝑛 is a realization of the random variable 𝑁𝑁 ∼
𝐹𝐹𝑚𝑚(𝑛𝑛; 𝜃𝜃𝑚𝑚) that is an outcome of one of two models, namely
“normal”, or “abnormal”, where 𝑚𝑚 is the model indicator.
4. Perform hypothesis testing to decide if the number of
outliers in a given window is consistent with a “normal”
behavior (the null hypothesis, ℋ0) or an “abnormal”
behavior (the alternative hypothesis, ℋ1).

A. Algorithm Description
We now detail each of the steps in our algorithm.

1) Fitting of a regression model
The most standard regression model structure is mean

regression, in which one would assume for instance a linear
relationship between the observed process and the 𝑝𝑝 explanatory
variables 𝒙𝒙𝑖𝑖 = �𝑥𝑥𝑖𝑖1, ⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖�, which include the measurements
of the other devices, given by,

 𝑌𝑌𝑖𝑖 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑖𝑖𝑗𝑗 + 𝜖𝜖𝑖𝑖
𝑖𝑖
𝑗𝑗=1 , (1)

where 𝜖𝜖𝑖𝑖 is a random variable representing the residual error,
which accounts for the fact that the regression model does not
capture all variation in the observed process. In the case that the
random variables 𝜖𝜖𝑖𝑖 were all i.i.d. with a symmetric zero mean
distribution, then this would be equivalent to modelling the
conditional mean of the process given a linear function:

 𝔼𝔼[𝑌𝑌𝑖𝑖|𝒙𝒙𝑖𝑖] = 𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑖𝑖𝑗𝑗
𝑖𝑖
𝑗𝑗=1 . (2)

 The estimation can then be solved via maximum likelihood
if the distribution of the errors is assumed, or via least squares.
The coefficients are given by:

Figure 1: A representative plot of HTTP fetch delay measurements

conducted by 8 co-located devices. Each device fetches a small HTML
resource from google.com.sg every 5 seconds and measures the delay taken
for the fetch to be completed.

0 10 20 30 40 50 60
0

1

2

3

4

5

Time Step

D
el

ay
 (s

)

HTTP Fetch Delay − google.com.sg

GT−P3100 #A
GT−P3100 #B
NEXUS−7 #A
NEXUS−7 #B
NEXUS−7 #C
SM−T325 #A
SM−T325 #B
SM−T325 #C

 �𝛼𝛼0̂, ⋯ , 𝛼𝛼�̂�𝑖� = arg min
𝛼𝛼

∑ �𝑦𝑦𝑖𝑖 − 𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗𝒙𝒙𝑖𝑖𝑗𝑗
𝑖𝑖
𝑗𝑗=1 �

2𝐿𝐿
𝑖𝑖=1 . (3)

The main limitation of linear regression relates to outliers
present in the observed data, which mean regression is highly
sensitive to (and hence, not robust). Figure 1 is a representative
plot of actual measured delays experienced by eight co-located
devices when attempting to fetch a common HTTP resource.
With data-sets such as these, mean regression will unbiasedly
adapt to the numerous, random ‘spikes’ in the delay by
minimizing the overall square error. This behavior is the reason
why mean regression is not robust to outliers.

In contrast to mean regression, quantile regression models
are capable of dealing with the presence of outliers in the data.
Our approach is hence based on Quantile Regression (QR),
which has the following properties:

1. QR is a robust framework that can identify outliers (i.e.,
spikes in network delay that are not observed by other
neighboring devices), and heavy tail realizations from the
process.

2. QR is flexible and allows us to introduce any relevant
covariates (independent regressor variables) to make
inference on the properties of the physical process.

3. QR reconstructs the level sets for the physical process in
a consistent and model-based approach, which does not rely
upon simplifying assumptions on the distribution of the
underlying process properties.

a) Quantile Regression – A brief primer
Under a parametric approach, we assume that 𝑌𝑌𝑖𝑖

∗ ∼
𝐹𝐹(𝑦𝑦∗|𝜽𝜽) , where 𝐹𝐹(𝑦𝑦∗|𝜽𝜽) is the conditional cumulative
distribution function and 𝜽𝜽 ∈ 𝚯𝚯 is a vector of model parameters,
all unknown coefficient parameters, and distributional
parameters. The quantile function for the conditional
distribution of 𝑌𝑌𝑖𝑖

∗ given 𝒙𝒙𝑖𝑖 at a quantile level 𝑢𝑢 ∈ (0,1) is:

 𝑄𝑄𝑌𝑌 ∗(𝑢𝑢|𝒙𝒙𝑖𝑖) ≡ inf{𝑦𝑦∗ ∶ 𝐹𝐹(𝑦𝑦∗|𝜽𝜽) ≥ 𝑢𝑢} = arg min
𝜽𝜽∈𝚯𝚯

𝔼𝔼�𝜌𝜌𝑢𝑢(𝜖𝜖𝑖𝑖)�, (4)

where the loss function in the expectation is given by:

 𝜌𝜌𝑢𝑢(𝜖𝜖) = 𝑦𝑦(𝑢𝑢 − ∏[𝑦𝑦 > 0]). (5)

 Under this formulation, the conditional quantile function in
(4) is given by,

 𝑄𝑄𝑌𝑌 ∗(𝑢𝑢|𝒙𝒙𝑖𝑖) = 𝜇𝜇𝑖𝑖 + 𝑄𝑄𝜖𝜖(𝑢𝑢)𝜎𝜎𝑖𝑖, (6)

where 𝑄𝑄𝜖𝜖(𝑢𝑢) = 𝐹𝐹𝑧𝑧∗
−1(𝑢𝑢) is the inverse cumulative distribution

function for the standardized variable 𝑍𝑍𝑖𝑖
∗ = 𝑌𝑌𝑖𝑖

∗−𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

, and:

 location: 𝜇𝜇𝑖𝑖 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘
𝑚𝑚
𝑘𝑘=1 ,

 scale: 𝜎𝜎𝑖𝑖
2 = 𝑒𝑒�𝛽𝛽0+∑ 𝛽𝛽𝑘𝑘𝑠𝑠𝑖𝑖𝑘𝑘

𝑣𝑣
𝑘𝑘=1 �. (7)

This optimization problem can be solved efficiently using
the approach given in [16].

2) Calculating residuals and classifying outliers
To decide if the 𝑖𝑖 th sample in 𝑌𝑌𝑖𝑖 is an outlier/inlier, we

perform a residual-based outlier detection, as detailed in [17].
To achieve that, we calculate the residual for the 𝑖𝑖th sample as:

 𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑄𝑄(0.50|𝒙𝒙𝑖𝑖), (8)

where 𝑄𝑄(0.50|𝒙𝒙𝑖𝑖) is the 50th conditional quantile for the 𝑖𝑖 th
observation. This corresponds to a median regression instead of
a mean regression. We perform the following hypothesis test:

ℋinlier : 𝑟𝑟𝑖𝑖 < 𝑘𝑘𝑟𝑟�̂�𝜎 (Inlier)

ℋoutlier : 𝑟𝑟𝑖𝑖 ≥ 𝑘𝑘𝑟𝑟�̂�𝜎 (Outlier)

where 𝑘𝑘𝑟𝑟 is a resistant parameter that controls the cut-off rate,
and �̂�𝜎 is the corrected median of the absolute residuals:

 �̂�𝜎 = median�|𝑟𝑟𝑖𝑖|
𝛽𝛽0̂

, 𝑖𝑖 = 1,⋯ , 𝐿𝐿�, (9)

where 𝛽𝛽0̂ ≔ Φ−1(𝑝𝑝) is the inverse cumulative distribution
function (CDF) of Gaussian density with the 𝑝𝑝th quantile. Note
that the formulation of Equation (8) distinguishes between
positive residuals (where the actual delay is higher than the
regressed quantile) and negative residuals. The latter case, where
actual delay 𝑦𝑦𝑖𝑖 is lower (better) than the regressed quantile
𝑄𝑄(0.50|𝒙𝒙𝑖𝑖) , is actually desirable, and hence will always be
considered an inlier.

3) Counting the number of outliers in a given frame
We define the following random variable 𝑁𝑁 to represent the

number of outliers identified in a given window, where,

 𝑁𝑁 = ∑ 𝟏𝟏(𝑟𝑟𝑖𝑖 declared as ℋoutlier)
𝐿𝐿
𝑖𝑖=1 , (10)

and where 𝟏𝟏(.) is the indicator function, and 𝐿𝐿 is the frame
length. We used extensive analysis of real data from both
“normal” and “abnormal” representations to model 𝑁𝑁 as a
realization from a Geometric distribution with different success
probabilities 𝑝𝑝, as follows:

ℋ0 ∶ 𝑁𝑁 ∼ Geo(𝑝𝑝normal)

ℋ1 ∶ 𝑁𝑁 ∼ Geo(𝑝𝑝abnormal)

where Geo(𝑝𝑝) is the Geometric distribution defined as P(𝑁𝑁 =
𝑛𝑛; 𝑝𝑝) = (1 − 𝑝𝑝)𝑛𝑛𝑝𝑝 . To find the values 𝑝𝑝normal and 𝑝𝑝abnormal , we
used 384 time-series as a training data set, based on which we
performed a Maximum Likelihood estimation (MLE), as
presented next. The likelihood function is given by:

 P(𝑁𝑁1 = 𝑛𝑛1,⋯ , 𝑁𝑁𝐿𝐿 = 𝑛𝑛𝐿𝐿) = ∏ (1 − 𝑝𝑝)𝑛𝑛𝑙𝑙𝑝𝑝𝐿𝐿
𝑙𝑙=1 . (11)

By taking the derivative of the logarithmic transform, setting it
to zero and solving, we obtain the MLE estimate as follows:

 𝑝𝑝̂ = 1
∑ 𝑁𝑁𝑙𝑙

𝐿𝐿
𝑙𝑙=1

𝐿𝐿 +1
, (12)

where 𝐿𝐿 is the number of training examples for each model.

4) Device Classification via Likelihood Ratio Test
The final step of the algorithm involves a second hypothesis

test to classify the behavior of the device under investigation.
This step tests whether the number of outliers detected is best
explained by a “normal” behavior (the null hypothesis, denoted
by ℋ0) or an “abnormal” behavior (the alternative hypothesis,
denoted by ℋ1). To achieve this, we derive the Likelihood Ratio
Test (LRT), given by:

 Λ(𝑌𝑌1:𝐿𝐿) ≔ P�𝑁𝑁 = 𝑛𝑛�ℋ0�
P�𝑁𝑁 = 𝑛𝑛�ℋ1�

ℋ0

≷
ℋ1

𝛾𝛾, (13)

where the threshold 𝛾𝛾 can be set to assure a fixed system false-
alarm rate under the Neyman-Pearson approach, or can be
chosen to minimize the overall probability of error under the

Bayesian approach [18]. Since the marginal distribution under
both hypotheses follows a geometric distribution with different
probabilities 𝑝𝑝, the test statistic is given by:

 Λ(𝑌𝑌1:𝐿𝐿) = �1−𝑝𝑝normal�
𝑛𝑛𝑝𝑝normal

�1−𝑝𝑝abnormal�𝑛𝑛𝑝𝑝abnormal
. (14)

 It is important to note that there is no objective way to choose
“optimal” values of 𝑘𝑘𝑟𝑟 and 𝛾𝛾, as it reflects a trade-off between
detection rate and false-alarm rate. The values of both
parameters should be chosen by the policy makers to reflect the
Quality-of-Service (QoS) that is acceptable in a particular
network, and may change as a function of time and location. In
our experiments, we chose the values 𝑘𝑘𝑟𝑟 = 5, 𝛾𝛾 = 1 as these
provided good detection performance with low false alarm rate.
B. Answering the MOO question

Once hypothesis testing is complete, we can then answer the
“me, or others?” question for each investigated device, given its
observed network delay, together with those of its co-located
neighbors’. If the null hypothesis ℋ0 is accepted, the device is
classified as experiencing “normal” network delays as compared
to its neighbors, and hence the answer to the MOO question is
“others”. If the alternative hypothesis ℋ1 is accepted, then there
is evidence to suggest that the device is experiencing
“abnormal” network delays that are not observed by others, and
hence the answer to the MOO question is “me”.

We also note that our approach will inherently adapt to
situations where most devices experience very high network
delay. In such cases, the threshold expressed in Equation (9) will
be elevated accordingly, such that only extreme deviations will
be labeled as outliers. In this case, the algorithm will consider
devices that jointly experience very high network delays as
performing “normally”.

V. EXPERIMENTAL SETUP AND RESULTS
In our experimental setup, we used the following devices

listed in Table 1.

Manufacturer Model No. of Units Cell Provider
Samsung GT-P3100 02 #1
Asus Nexus 7 3G 03 #1
Samsung SM-T325 03 #1
Samsung SM-T325 03 #2

Table 1: The devices that were used in our experiments. For units of the
same make and model, we updated all devices to their latest official
firmwares, with no other after-market apps installed, except for Tattle.

For each of these devices, we collected HTTP HEAD delay
measurements every 5 seconds for google.com.sg, and
UNISENSE, for a window of 5 minutes, at each of the 24
positions, located on a busy outdoor train station platform, as
illustrated in Figure 2.

Each set of collection lasts for two hours, and is repeated
twice a day, over a stretch of 7 consecutive days, resulting in
over 7,300 time-series of five minutes each, comprising in total
443,500 delay measurements.

This train platform was chosen for its persistent
crowdedness, which is typical of the type of congested urban
areas that are pervasive in Singapore. Our proposed approach is
inherently applicable in such scenarios, where there are large
crowds, and unreliable cellular network connectivity.

A. Temporal correlation of data
In regression analysis of time-series data, one of the core

assumptions is that the observations come from an i.i.d. process.
In order to validate this assumption, we examine the temporal
autocorrelation of each time-series collected by devices on
Provider #1’s network. Figure 3 illustrates the distribution of the
autocorrelations computed for 2,680 time-series (collected for
google.com.sg), over a range of lags, where the interval between
each timestep is five seconds. The key result here is that even at
a lag of one timestep, close to 80% of the time-series
demonstrated very little autocorrelation (coefficient ≤ 0.25).

To further validate the assumption, we next apply the
parameterized Ljung-Box Q-Test to the data, which tests each
time-series under the strict null hypothesis that the
autocorrelations under the first 𝑥𝑥 lags are jointly zero. The
results are given in Table 2. The ratio of non-rejection indicates
the percentage of those 2,680 time-series tested that does not
reject the null hypothesis at a significance level 𝛼𝛼 of 0.05. Even
at a lag of 𝑥𝑥 = 1 , there is no evidence to reject the null
hypothesis, more than 78% of the time.

Null hypothesis, 𝓗𝓗null Ratio of non-rejection
𝜌𝜌1 = 0 78.02%
𝜌𝜌1 = 𝜌𝜌2 = 0 71.79%
𝜌𝜌1 = 𝜌𝜌2 = 𝜌𝜌3 = 0 72.05%
𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌4 = 0 73.02%
𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌5 = 0 74.78%
𝜌𝜌1 = 𝜌𝜌2 = ⋯ = 𝜌𝜌6 = 0 75.90%

Table 2: The Ljung-Box Q-Test for temporal autocorrelation. The null
hypothesis ℋnull is constructed such that the autocorrelation coefficients
𝜌𝜌1, 𝜌𝜌2,⋯ , 𝜌𝜌𝑥𝑥 considering the first 𝑥𝑥 lags are jointly zero (that is, completely
uncorrelated).

B. Choice of probed servers
In order to demonstrate that the observed variability in delay

is mostly due to the performance of the cellular access portion
of the network, and not influenced by the choice of probed
servers, we provide the cumulative distribution functions of the
HTTP HEAD fetch delay for both google.com.sg and
UNISENSE in Figure 4. Clearly, the overall trends in
performance are almost identical. This is also patently observed
on Provider #2’s network. Hence, without loss of generality, we
focus on the delays measured for google.com.sg henceforth.
C. Performance differences between cellular providers

It can be seen in Figure 4 that the difference between the
delay performances of Provider #1’s and Provider #2’s network
is drastic, regardless of the choice of probed servers. The median

Figure 2: The train station platform, as well as the individual spots

where data collection was performed, are illustrated in this figure.

fetch delay for both google.com.sg and UNISENSE on Provider
#2’s network takes almost 300% longer than that of Provider
#1’s. Figure 5 shows an example of this difference in the
temporal domain. Delays on Provider #1’s network were
subjected to much less variability compared to Provider #2’s
network, and this is true in most of the time-series that we
collected.
D. Performance differences between device models

Figure 4 also reveals some interesting relationships between
the delays observed and the make and model of the device
performing the measurement. The Samsung GT-P3100,
introduced in 2012, performs very stably, with around 90% of
its measurements coming in below 500 ms for both servers
probed. In contrast, Samsung’s latest flagship tablet, the SM-
T325, performs poorly, with 90% of their measurements coming
in between 1500 to 2000 ms, on the same network. This
however, does not invalidate our approach of taking all co-
located participants’ measurements into consideration,
regardless of make and model, to determine if a device is doing
worse than its neighbors. This exactly is in line with the basic
intention of asking the MOO question. However, if there are
other co-located devices in the same area with the same make
and model, further extensions can be easily made to consider
only same device types, though that is beyond the scope of this
paper.
E. “Normal” vs. “Abnormal” performance

There are numerous periods in the course of our experiments
where sudden, persistent spikes in delay are observed by many
devices. These will result in windows that could stretch over
several minutes where many devices observe very high delays,
or complete outage of data service. This is illustrated in Figure
6, where within a window stretching over more than one minute,
devices experience abrupt spikes in their fetch delays, which
affected at least 6 out of the 8 devices tested. For applications
that are somewhat tolerant of delay, such as web-surfing, this
may not appear to be wholly debilitating. However, this could
have frustrating consequences for users that are streaming
videos from youtube.com, or are having live conversations on
Skype. Nevertheless, in situations such as these, many co-
located devices indeed suffer together (although to varying
degrees), and hence each participant’s device that are faced with
such delays can be said to be performing “normally”.

 There are also significant stretches during our experiments
where one or two of our devices experience severe outages that
are not observed by other devices. Figure 7 illustrates this
phenomenon exactly. In this scenario, the device GT-P3100 #A

experiences a sudden stretch of high delays and timeouts that
lasted more than 3 minutes. Besides NEXUS-7 #A, which also
saw some spikes and a short outage of less than 30 seconds, the
rest of the devices experienced delays that were fairly normal.
In fact, the worst-ever time-series that we observed in a 60
sample window (lasting 5 minutes) had 58 fetch attempts which
experienced time-outs, while its 7 other neighbors saw 0, 0, 2, 2,
0, 3 and 0 time-outs respectively. In these types of scenarios,
answering the MOO question is obviously useful. When the
device is deemed to be performing “abnormally”, the participant
can proceed to perform limited diagnostic checks, and possibly
reboot his device to try and mitigate the outage.

In the real world, there could be many reasons why such
outages happen. For example, the device could be physically
damaged, or experiencing a rare and very unfortunate prolonged
period of deep fading. Other reasons may include bugs in the
firmware that manifest themselves after prolonged use (e.g.
software aging), having errant malware that are hogging system
resources, or simply having left a Virtual Private Network
(VPN) connection switched on in the background. Identifying
the root cause of such outages is beyond the scope of this paper.
F. Outlier detection performance

In the second step of our statistical framework introduced in
Section IV, we take a given delay time-series measured by a
device, as well as those of the device’s co-located neighbors’,
and identify points in time where the device is doing
considerably worse than its neighbors, using QR. We term those

Figure 3: The distribution of autocorrelation

coefficients for 2,680 time-series of network delay.
Each time-step is 5 seconds in length.

Figure 4: (a, left) A comprehensive characterization of the HTTP fetch delays for google.com.sg,
experienced by each device in our entire data-set of over 220,000 data points. Provider #2’s network
performs considerably and observably worse than Provider #1’s network in largely every experiment. (b,
right) The same plot is given, but these devices instead perform HTTP fetches on our self-managed
UNISENSE server, located in Singapore.

Figure 5: An illustration of two sets of representative time-series,

representing the HTTP fetch delay for google.com.sg. The devices were co-
located at the same place, and are the exact same make and model, but 3
were connected to Provider #1’s network, while the others were connected
to Provider #2’s network. The interval between each time step is 5 seconds.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Autocorrelation Coefficient

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

Measure of Temporal Correlation for HTTP Fetch Delays

Lag: 1 Timestep
Lag: 2 Timesteps
Lag: 3 Timesteps
Lag: 4 Timesteps
Lag: 5 Timesteps
Lag: 6 Timesteps

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

HTTP Fetch Delay (ms)

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

Cumulative Probability of HTTP Fetch Delay − google.com.sg

GT−P3100 #A
GT−P3100 #B
NEXUS−7 #A
NEXUS−7 #B
NEXUS−7 #C
SM−T325 #A
SM−T325 #B
SM−T325 #C
SM−T325 #D − Prov. #2
SM−T325 #E − Prov. #2
SM−T325 #F − Prov. #2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

HTTP Fetch Delay (ms)

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

Cumulative Probability of HTTP Fetch Delay − UNISENSE Server

GT−P3100 #A
GT−P3100 #B
NEXUS−7 #A
NEXUS−7 #B
NEXUS−7 #C
SM−T325 #A
SM−T325 #B
SM−T325 #C
SM−T325 #D − Prov. #2
SM−T325 #E − Prov. #2
SM−T325 #F − Prov. #2

Time Step

3

4

5
Provider #1: HTTP Fetch Delay − google.com.sg

0 10 20 30 40 50 60
0

1

2D
el

ay
 (s

)

0 10 20 30 40 50 60
0

1

2

3

4

5

D
el

ay
 (s

)

Provider #2: HTTP Fetch Delay − google.com.sg

SM−T325 #A
SM−T325 #B
SM−T325 #C

SM−T325 #D
SM−T325 #E
SM−T325 #F

points as outliers. The result of this approach can be seen in
Figure 8. Here, to illustrate clearly how effective our approach
is in terms of correctly identifying outliers, we took a time-series
of delay measurements collected on Provider #2’s network, and
used four other time-series collected on Provider #1’s network
as those of its neighbors, and performed the regression analysis
and outlier detection. The outliers that were detected by the
algorithm are clearly marked out in Figure 8.

The algorithm patently detected points in time where delay
spikes seen by the foreign device were not observed by its
neighbors. More importantly, during periods where spikes were
observed by its artificially-introduced neighbors, the algorithm
adapts, and correctly classifies those measurements as inliers.
This is evident in time-steps 22, 48, and 51.
G. Effectiveness of the overall algorithm

In the previous subsections, we illustrated results for selected
sets of time-series that highlight the effects discussed above.
Here, we setup the following experiment to test the effectiveness
of the algorithm as a whole, on how accurate it is in detecting
time-series that are known to be “abnormal”. In order to do this,
for each of the set of 8 time-series (belonging to 8 devices)
collected per position (over 24 positions), per experiment (over
2 experiments), per day (over 7 consecutive days) on Provider
#1’s network, we introduce a foreign time-series that were
collected at the same corresponding times by a device on
Provider #2’s network. This resulted in 336 sets of 9 time-series
(with 8 devices using Provider #1, and another SM-T325 using
Provider #2). Each of the 336 foreign time-series was manually
and individually inspected and labeled as “normal” or
“abnormal”. This is based on whether its median delay is closer
to those of the SM-T325s’ on Provider #1’s network (labeled as
“normal”), or those of SM-T325s’ on Provider #2’s network
(labeled as “abnormal”), with reference to Figure 4.

Using a window length of 60 samples (collected in 5
minutes), we apply our 4-step algorithm on each set of 9 time-

series, and vary the number of neighbors used in the regression
analysis to also examine the effects of increasing the number of
co-located participants on detection accuracy. The goal is then
to check if the algorithm labels the foreign time-series correctly,
or incorrectly (which we term as a mis-detection). Figure 9
shows the results of this experiment. Using our approach, the
median mis-detection rate is around 30% when only 2 neighbors
are considered in the regression analysis. As more neighbors are
introduced, the detection rate improves steadily. When 6
neighbors are used, the median mis-detection rate drops to only
around 10%.

We do not show the results of considering 1, 7 or 8 neighbors
because these combinations only result in 336 readings, which
are insufficient to obtain a smooth cumulative distribution.
However, moving up to 7 neighbors, our algorithm can already

Figure 6: An illustration of three sets of representative time-series,

representing the HTTP fetch delay for google.com.sg. The devices were co-
located at the same place, using the same provider, but are arranged according
to their makes and models. Periods of high delay can affect many devices in the
same area, as shown.

Figure 7: An illustration of three sets of representative time-series,
representing the HTTP fetch delay for google.com.sg. The devices were co-
located at the same place, using the same provider, but are arranged according
to their makes and models. Oftentimes, a device may experience severe outage
of network service, but most other devices are unaffected.

Figure 8: An illustration of two sets of time-series. Here, a time-series

of HTTP fetch delays for google.com.sg, belonging to a device connected to
Provider #2’s network, is mixed into that of the data set of time-series of fetch
delays for devices on Provider #1’s network. The goal of our algorithm is to
detect points in time where the foreign time-series is deemed to be behaving
“abnormally” from others. Those detected points are then marked out as
shown.

0 10 20 30 40 50 60
0

1

2

3

4

5

D
el

ay
 (s

)

HTTP Fetch Delay − google.com.sg

GT−P3100 #A
GT−P3100 #B

0 10 20 30 40 50 60
0

1

2

3

4

5

D
el

ay
 (s

)

NEXUS−7 #A
NEXUS−7 #B
NEXUS−7 #C

0 10 20 30 40 50 60
0

1

2

3

4

5

D
el

ay
 (s

)

Time Step

SM−T325 #A
SM−T325 #B
SM−T325 #C

“Normal” Delay:
Several Devices Affected

0 10 20 30 40 50 60
0

1

2

3

4

5

D
el

ay
 (s

)

HTTP Fetch Delay − google.com.sg

GT−P3100 #A
GT−P3100 #B

0 10 20 30 40 50 60
0

1

2

3

4

5

D
el

ay
 (s

)

NEXUS−7 #A
NEXUS−7 #B
NEXUS−7 #C

0 10 20 30 40 50 60
0

1

2

3

4

5

D
el

ay
 (s

)
Time Step

SM−T325 #A
SM−T325 #B
SM−T325 #C

“Abnormal” Delay: GT−P3100 #A

0 10 20 30 40 50 60
0

1

2

3

4

5
Provider #1: HTTP Fetch Delay − google.com.sg

D
el

ay
 (s

)

Neighbor 1
Neighbor 2
Neighbor 3
Neighbor 4

0 10 20 30 40 50 60
0

1

2

3

4

5

D
el

ay
 (s

)

Time Step

Provider #2: HTTP Fetch Delay − google.com.sg

Foreign Time−Series
Detected Outliers

reduce the median mis-detection rate to zero. With 8 neighbors,
we can in fact detect the foreign time-series with 100% accuracy,
in more than 80% of the time-series.
H. False negatives vs. false positive performance

False negative mis-detection happens when a participant
experiences very poor network delays compared to its
neighbors, but the algorithm returns a “normal” verdict. This can
be an exasperating experience because the user’s frustrations are
not validated. So, we argue that false positives (where the
network delay seen by the participant is actually comparable to
that of its neighbors’, but the algorithm returns an “abnormal”
verdict) are preferable in the context of the MOO question.
Figure 10 illustrates comprehensively the false negative rates
demonstrated by our algorithm, for the same set of experiments.
Having just 2 neighbors result in a median false negative rate of
over 53%. This improves steadily as more neighbors are added
into the regression analysis. With 6 neighbors, the median drops
to around 18%, or equivalently, an 82% median false positive
rate for all those instances which the algorithm mis-detected the
foreign time-series.

VI. CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we first describe the “me, or others?” (MOO)

question that should be asked by cellular service subscribers
when they experience periods of poor network performance. We
describe how we use Tattle, a comprehensive, large-scale
cellular network monitoring framework, to allow participating
devices to glean networking performance information from one
other in real-time, by leveraging on its capability to
opportunistically exchange network measurements to preserve
the context of co-location and conserve device power.

We propose a robust statistical framework that builds on top
of Tattle, based on Quantile Regression which cumulates into a
4-step algorithm. It first derives a regression model based on a
device and its neighbors’ network delay measurements, then
identifies points in time where a device performs poorly
compared to its neighbors. Next, it counts 𝑛𝑛, the number of these
identified outliers in a small finite window, then performs
hypothesis testing by deciding on which one of two estimated
geometric distributions (from which “normal”, and “abnormal”,
numbers of outliers are drawn) that 𝑛𝑛 most likely belongs to.
Through this, we can directly answer the MOO question.

We validate our approach based on real-world measurements
of network delay, using several devices of assorted makes and
models, to collect over 7,300 time-series of measurements,
comprising over 443,500 samples. This includes measurements
on 2 different providers’ networks for comparison. We first
show that at a 5s sampling interval, close to 80% of all the time-
series demonstrated very little autocorrelation, so as to fulfill the
necessary prerequisite of i.i.d in order to apply regression.

We then illustrate examples where “normal” and “abnormal”
performances occur in real networks, and report that there occurs
instances where a device can experience complete outage, while
none of its neighbors are affected. We give quantitative results
on how well our algorithm can detect an “abnormal” time series,
with increasing effectiveness as the number of neighbors
increase.

We also characterize the false negative and false positive
tendencies of our algorithm, and validate that our algorithm
favors false positives, which is more desirable than false
negatives in the context of the MOO question.

Finally, as future work, we indeed to further expand our
algorithm to quantify effects of various parameters such as 𝑘𝑘𝑟𝑟
and 𝛾𝛾, as well as extend the framework to include other types of
network metrics, such as throughput, which are not as
straightforward to measure as network delay.

ACKNOWLEDGEMENTS
This work was supported in part by CMU-SYSU CIRC,

SYSU-CMU IJRI, as well as the Agency for Science,
Technology and Research (A*STAR) Singapore.

REFERENCES
[1] H. Liang, H. S. Kim, H.P. Tan, W.L. Yeow, “I’ve heard you have

problems: Cellular signal monitoring through UE participatory sensing”,
IEEE GLOBECOM ’14, 2014.

[2] P. Bahl, J. Padhye, L. Ravindranath, M. Singh, A. Wolman, B. Zill,
“DAIR: A Framework for Managing Enterprise Wireless Networks Using
Desktop Infrastructure”, ACM HotNets ’05, 2005.

[3] A. Adya, P. Bahl, R. Chandra, L. Qiu, “Architecture and Techniques for
Diagnosing Faults in IEEE 802.11 Infrastructure Networks”, ACM
MobiCom ’04, 2004.

[4] R. Barco, P. Lazaro, L. Diez, V. Willie, “Continuous versus Discrete
Model in Autodiagnosis Systems for Wireless Networks”, IEEE
Transactions on Mobile Computing, Vol. 7, No. 06, June 2008.

[5] R. Barco, V. Wille, L. Diez, M. Toril, “Learning of model parameters for
fault diagnosis in wireless networks”, Wireless Networks, Vol. 16, No. 1,
January 2010.

Figure 9: A complete characterization of the misdetection rates of a foreign

time-series of HTTP fetch delays, belonging to Provider #2’s network, when
mixed into the time-series of delays experienced by devices on Provider #1’s
network. As the number of neighbors considered by the algorithm increases,
the detection performance of our algorithm becomes better.

Figure 10: An illustration of the false negative rates of our algorithm. The
false positive rate can be inferred by flipping the line-series about the (0,0)-
(100,1) diagonal. Of all the times that a misdetection happens, having more
neighbors helps to suppress the false negative rate, in favor of the false positive.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Mis-detection Rate (%)

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

QR: Abnormal Performance Mis-detection Rate

2 Neighbors
3 Neighbors
4 Neighbors
5 Neighbors
6 Neighbors

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

False Negative (%)

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

QR: False Negative Detections

2 Neighbors
3 Neighbors
4 Neighbors
5 Neighbors
6 Neighbors

[6] P. Szilagyi, S. Novaczki, “An Automatic Detection and Diagnosis
Framework for Mobile Communication Systems”, IEEE Transactions on
Network and Service Management, Vol. 09, No. 02, June 2012.

[7] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, M.
B. Srivastava, “Participatory Sensing”, ACM WSW ’06, 2006.

[8] “iOS: Understanding iBeacon”, http://support.apple.com/kb/HT6048,
Apple Inc., 2014.

[9] “About Bluetooth® Low Energy Technology”,
http://www.bluetooth.com/Pages/low-energy-tech-info.aspx, Bluetooth
SIG, Inc., 2014

[10] “Wi-Fi Direct”, http://www.wi-fi.org/discover-wi-fi/wi-fi-direct, Wi-Fi
Alliance, 2014.

[11] H. Jiang, Z. Liu, Y. Wang, K. Lee, I. Rhee, “Understanding bufferbloat
in cellular networks”, ACM SIGCOMM CellNet ’12, 2012.

[12] T. Luo, H. P. Tan, “Profit-Maximizing Incentive for Participatory
Sensing”, IEEE INFOCOM ’14, 2014.

[13] S. Saroiu, A. Wolman, “I Am a Sensor, and I Approve This Message”,
ACM HotMobile ‘10, 2010.

[14] Trusted Platform Module Library Specification, Family "2.0", Level 00,
Revision 00.99, 2013, Trusted Computing Group, 2013.

[15] X. Wang, W. Cheng, P. Mohapatra, T. Abdelzaher, “ARTSense:
Anonymous Reputation and Trust in Participatory Sensing”, IEEE
INFOCOM ‘13, 2013.

[16] R. Koenker, K. Hallock, “Quantile Regression: An Introduction”, Journal
of Economic Perspectives, Vol. 15, No. 4, 2001.

[17] A. Nardi, M. Schemper, “New residuals for Cox regression and their
application to outlier screening”, Biometrics, Vol. 55, No. 2, Jun 1999.

[18] S. Kay, Fundamentals of Statistical Signal Processing, Volume II:
Detection Theory, Prentice Hall, 1998.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	4-2016

	Not you too? Distilling local contexts of poor cellular network performance through participatory sensing
	Huiguang LIANG
	Ido NEVAT
	Hyong S. KIM
	Hwee-Pink TAN
	Wai-Leong YEOW
	Citation

	Paper Title (use style: paper title)

