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The Patrol Scheduling Problem 

Hoong Chuin Lau • Aldy Gunawan 

 

Abstract This paper presents the problem of scheduling security teams to patrol a mass rapid 

transit rail network of a large urban city. The main objective of patrol scheduling is to deploy 

security teams to stations at varying time periods of the network subject to rostering as well as 

security-related constraints. We present a mathematical programming model for this problem. We 

then discuss the aspect of injecting randomness by varying the start times, the break times for each 

team as well as the number of visits required for each station according to their reported 

vulnerability. Finally, we present results for the case of Singapore mass rapid transit rail network 

and synthetic instances.  

Keywords: patrol scheduling problem, preferences, mass rapid transit rail network, 

mathematical programming. 

1 Introduction 

Personnel scheduling and rostering is concerned with the process of constructing optimized 

work timetables for staff in order to satisfy the demand for the organization. Ernst et al. (2004) 

provide a recent review of staff scheduling and rostering in specific applications areas. Some are 

concerned with rostering within a physical premise such as hospitals, and examples of such 

problems include nurse rostering (e.g. Petrovic and Berghe, 2008) and physician scheduling (e.g. 

Gunawan and Lau, 2010). A more challenging problem involves rostering of personnel that require 

them to move from one geographical location to another as they discharge their duties, such as 

airline crew scheduling (e.g. Maenhout and Vanhoucke, 2010) and train crew scheduling (e.g. Chu 

and Chan, 1998).  

In this paper, we are concerned with the planning problem of assigning security teams to 

patrol a public transportation network (such as subways) of a large urban city. This is termed the 

Patrol Scheduling Problem. This problem is motivated by increasing need for protecting major 

public facilities (such as urban transport systems) in response to global threats. In order to enforce 

security, security personnel or teams are deployed to patrol the stations throughout the day. Unlike 
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standard employee rostering which follows prescribed patterns, patrol activities should ideally 

exhibit randomness so as to hedge against adversarial observations. It goes without saying that in 

view of limited manpower resources, it is necessary to maximize the impact of patrolling duties 

through solving the problem optimally.  

The main objective of this paper is to develop an exact model to deploy security teams to 

stations in varying time periods of the network while ensuring rostering and other security-related 

constraints. We also consider aspects of randomness to hedge against adversarial observations. To 

our knowledge, this study is one of very few attempts to solve the patrol scheduling problem on a 

mass rapid transit rail network. 

The remaining part of the paper is organized as follows. We first provide a brief literature 

review. We then give a detailed description of our patrol scheduling problem in Section 3. We 

provide a deterministic mathematical programming model that solves the problem, followed by a 

randomized strategy which allows the planner to generate solutions based on randomized start 

times, break times for each team as well as the number of visits required for each station. The next 

section is dedicated to the computational analysis of the model on the Singapore MRT Rail 

System, as well as on randomly generated problem instances. Finally, we provide some concluding 

perspectives and directions for future research.  

2 Literature Review 

Crew rostering in public transport systems is an active area of research. An example of a rail 

transport scheduling problem is Chu and Chan (1998), who studied the problem of crew 

scheduling for the Hong Kong Light Rail Transit. The complex schedule construction is 

decomposed into separate solution stages by network and heuristic algorithms. They reported that 

the entire crew schedule can be constructed iteratively in less than an hour, which is better than the 

manual allocation. Although optimality cannot be claimed, the feasibility of the solution was 

ensured, which can still be further improved manually.  

A more recent work of Elizondo et al. (2010), which considers the problem of conductors 

duty generation in the Santiago Metro System. With regard to operational and labor conditions, the 

goal is to use the lowest possible number of conductors and minimize total idle time between trips. 

They solved the problem using a constructive hybrid approach which takes advantage of the 

benefits offered by evolutionary methods. Their hybrid method produced solutions with the 

minimum number of duties in six of the ten problems solved. 

On patrol scheduling, the major purpose is to ensure the safety of the commuters and to 

discourage those who might commit crimes (Rosenshine, 1970). The patrol scheduling method 

developed there is based on the assumption of randomness. The arrival patterns of the security 

patrol to a particular station could not be predicted. On the other hand, the irregularity of patrol 

schedules would increase the awareness of the commuters that patrol is taking place. The arc flows 

were determined by solving a linear programming problem while the random arrival patterns on 

each arc were generated by choosing exponential inter-dispatch times along the generated routes. 
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Stern and Teomi (1986) studied and proposed two algorithms for scheduling security guards 

in a large organization in Israel. The problem was formulated as a multi-objective problem and 

solved by a simpler heuristic intuitive algorithm. Taylor and Huxley (1989) considered the 

problem of assigning police officer shifts so that under cover is minimized. The optimization-

based decision support system was developed and implemented in the Police Patrol Scheduling 

System at the San Francisco Police Department. Sharma and Ghosh (2007) proposed an optimal 

deployment of police patrol cars for the department of traffic police on the metropolitan city, Delhi 

(Central). A goal programming model was designed to determine the number of patrol cars to have 

on duty per shift and road segment. 

The application of game theory to patrol scheduling took center stage in recent research. Tsai 

et al. (2009) for example modeled the strategic security allocation problem as a Strackelberg game 

and developed the Intelligent Randomization In Scheduling (IRIS) system – a tool for strategic 

security allocation in transportation networks. The algorithmic advances in multi-agent systems 

research are being used to solve the class of massive security games with complex constraints, the 

Federal Air Marshals (FAMs) that provide law enforcement aboard U.S. commercial flights.  

Ordóñez et al. (2012) described the recent development of game-theoretic models to assist 

security forces in randomizing their patrols and their deployment by assuming intelligent adversary 

responses to security measures. They proposed fast algorithms for solving large instances of 

Bayesian Stackelberg games to two real-world security applications: 1) the police at the Los 

Angeles International Airport and 2) the Federal Air Marshal Service. Stackelberg games are a 

bilevel model that account for the ability of an adversary to gather information about the defense 

strategy before planning an attack (Basar and Olsder, 1995). The generic mathematical formulation 

is described as the set covering model where the set of schedules of security forces are pre-

determined. 

Jiang et al. (2012) presented an approach to generate fare-inspection strategies in urban transit 

systems using a Stackelberg game. The problem is to deploy security personnel randomly to 

inspect passenger tickets. The real problem from the Los Angeles Metro Rail System was 

formulated and solved as an LP relaxation with a maximum-revenue patrol strategy.  The solutions 

obtained seem to effectively deter fare evasion and ensure high levels of revenue.    

3 Problem Definition  

This paper focuses on a patrol scheduling the mass rapid transit rail network. Figure 1 shows 

the subway systems of London, Beijing, Paris and Singapore respectively. A common feature of 

these networks is that each network consists of many stations linked by hub (interchange) stations. 

We define the Patrol Scheduling Problem as follows. We are given a number of security teams 

responsible for the patrolling task. We assume the time horizon to be a single work day divided 

into time periods. A shift is defined as a consecutive set of time periods, and in this paper, we 

assume each period to be  one hour, and there are two 8-hourly shifts (7am – 3pm and 3pm – 11pm 

respectively). Each team is rostered to a single shift duty during which it is responsible for 
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patrolling/visiting a subset of stations in the network. We assume each station patrol/visit takes one 

period and each shift is made up of exactly six visits plus two breaks.  

 

   

   

Figure 1. Examples of the mass rapid transit rail network in some cities 

 

 

 

 

 

 

Figure 2. Example of the mass rapid transit rail network  

 

Time 

Period 
1 2 3 4 5 6 7 8 

Team1 S1 S3 Break S5 S6 Break S7 S13 

Team2 S10 S12 Break S14 S16 Break S4 S2 

Figure 3. Example of Patrol Scheduling Problem  

 

As shown in Figure 2 as illustration, the mass rapid transit rail network consists of two 

different lines. There are 16 stations in total where Station 4 (S4) and Station 7 (S7) are 

interchange stations. Assuming there are two teams in the first shift, Figure 3 represents one 

possible patrol scheduling for both teams. Team1 has to visit S1, S3, S5, S6, S7 and S13 

consecutively while Team2 has to visit S10, S12, S14, S16, S4 and S2 consecutively. 

S1 S2 S3 S4 S5 

S9

  

S10

0 

S11 

S6 S7 S8 

S12 

S16 S15 S14 S13 
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Our goal is to minimize the total distance travelled. We use this objective in order to generate 

solutions that minimizes unnecessary movements (where teams move in a certain path, rather than 

haphazardly or in loops). The distance travelled between two stations is computed as the smallest 

number of stations passed (since there may be more than one path from one station to another). For 

example, the distance between S1 and S4 is 3 stations. Furthermore, we also impose an additional 

penalty for distance between two stations using different lines. From S5 to S16, the distance 

travelled is 2 stations + ∆, where ∆ is the penalty value. In our study, we set ∆ to an arbitrarily 

number, e.g. 10. This can be set to any large number with the purpose to minimize unnecessary 

movements.  

The following summarizes the requirements/constraints treated in this paper: 

 The number of visits for each team should meet the requirement. 

 At most one team can visit a particular station at a particular time period. 

 Each station has a minimum and maximum number of visits per day. 

 Each team has its own start and finish times. In this paper, we treat the start and finish times 

as input (i.e. assume they have been determined by the planner).  

 Each team may only visit a particular station at most once during its duty. 

 Each team visits at most one station at a particular time period. 

 Consecutiveness constraints: describes whether a pair of stations can be visited consecutively 

(i.e. one after another).   

 Break constraints: each team is given two breaks, and breaks cannot occur consecutively.   

As discussed in the Introduction, the element of randomness is important to patrol scheduling 

to hedge against adversarial observations. To this end, game theory has been applied recently (see 

Literature Review above) which utilizes reports from Intelligence sources to compute mixed 

strategies. Since our focus in this paper is on the patrol scheduling problem defined above, we treat 

the computation of these mixed strategies as a pre-processing step, which is computed whenever a 

new roster needs to be generated (e.g. daily).  

It is conceivably that Intelligence sources will provide different data on the vulnerability of 

stations from time to time, which in our context can be translated to the input required by our 

problem (more precisely, the randomized frequency of visits of each station, as well as start times 

and break times of each patrol team). Our purpose in this paper is to demonstrate that by 

appropriately randomizing the frequency of visits, we can effectively deter crimes compared to 

fixed frequency.   

4 Mathematical Programming Model 

In this section, we first present a deterministic mathematical programming model to solve the 

patrol scheduling problem. We then consider a simple strategy for randomizing inputs for feeding 

into our model. 
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4.1 Deterministic Model 

The problem can be presented as a mathematical programming model, using the following 

sets, input parameters and decision variables: 

 

Parameters 

I  = Set of patrol teams,  Ii ,,2,1   

J  = Set of stations,  Jj ,,2,1   

K  = Set of time periods,  Kk ,,2,1   

iReq  = number of visit required for patrol team i per day  Ii   

jMax_Visit   = maximum number of visit required for station j per day  Jj   

jMin_Visit   = minimum number of visit required for station j per day  Jj  

iStart  = start time for team i  Ii   

iFinish  = finish time for team i  Ii  7i.e  ii StartFinish,  

1
iBreak  = team i‘s first break (i.e., the first break is at period  1

ii BreakStart   

2
iBreak  = team i‘s second break  112  ii BreakBreak

 

21 jjDist  = the distance between stations j1 and j2  Jj,j 21  

21 jjCons  = 1 if a patrol team can visit j2 consecutively (i.e. at the next time period) after 

visiting station j1, and 0 otherwise 

 

Decision variables 

ijkX  = 1 if patrol team i visits station j at time period k  KkJ,jI,i  , 0 otherwise 

   

The formulation for the Patrol Scheduling problem is then given by   

Minimize )1(

)( }11{

)}1({

)( 2

1

21

2
2211

121 

 







    kStartijX

Ii J,j
jj
Jj

Break,Break,Break,Breakk

StartFinish0,...,k

kStartijXjjDistZ
i

iiii

ii

i

 

)2(

)(
}11{

)( 2

1

21

2
21

121 
 


 

     kStartij
Ii J,j

jj
Jj Break,Breakk

kStartijjj i

ii

i
XXDist  

(1) 

subject to: 

 
 


Jj Kk

iijk ReqX  Ii   (2) 





Ii

ijkX 1  KkJ,j    (3) 

 
 


Ii Kk

jijk Min_VisitX  Jj   (4) 

 
 


Ii Kk

jijk Max_VisitX  Jj   (5) 
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Equation (1) shows that the objective function consists of two terms. The first term of the 

objective function refers to the distance travelled between two consecutive time periods. Due to 

the break constraints, we introduce the second term in the objective function. Suppose a team has 

the start time at Period 1 and the breaks at Periods 3 and 6. Then the first term calculates the 

distance travelled between Periods 1 and 2, Periods 4 and 5 and Periods 7 and 8, while the second 

term computes the distance travelled between one period before and after the break (i.e. Periods 2 

and 4 and Periods 5 and 7).  

Constraint (2) ensures that all teams have to visit a certain number of stations during their 

duty. Constraint (3) restricts that only one team can visit a particular station at a particular time 

period. Constraints (4) and (5) represent the number of visits allowed for each station per day. In 

our problem, the interchange stations are visited more often than those of non-interchange stations. 

Each team can only visit a particular station at most once per day and each team can only patrol at 

most one station at a particular time period. These requirements are represented by Constraints (6) 

and (7). 

Note that the start (and therefore finish) times of each team is an input to the model. 

Constraints (8) and (9) ensure that all teams can only perform their patrolling task during their 

shift. The break constraints are defined in (10) and (11). The consecutiveness constraint is 

represented by constraints (12) and (13). Constraint (12) defines the consecutiveness requirement 

between two consecutive periods of duty. Since the breaks occur at 

periods 1
ii BreakStart  and 2

ii BreakStart  , we introduce constraint (13) to ensure consecutiveness 

between the stations visited the one period before and after a particular break.  
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Notice that the objective function of the model is not linear and our experiment shows that 

the model given above cannot be solved within reasonable time. Furthermore, standard 

linearization technique (see Hammer and Rudeanu, 1968) also yields unsatisfactory performance.  

In the following, we propose a linearization of the problem by introducing an additional set of 

binary variables mijkijmkjij XXY
2121

 . The objective function (1) is replaced by the following 

equation: 

Minimize    
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To achieve this, the following constraints need to be added: 
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(20)
  

4.2 Randomized Strategy 

The above model will work well in commercial rosters where the emphasis is on regularity. 

In security patrol scheduling context however, the element of randomness is important. In this 

section, we consider the problem of randomizing the start times, the break times for each team as 

well as the number of visit required for each station.  

For start times and break times, we generate them randomly for each team based on a 

uniform distribution, which may be replaced with any other probability distributions. We would 

like to observe the impact of computational performance in solving the underlying deterministic 

mathematical model.  

The frequency of visits is not purely random, but is dependent on the level of threats 

(vulnerability) of each station. In this paper, we assume the existence of Intelligence sources that 

provide information about the likelihood that crimes are going to occur at each particular station, 

from which we can calculate the randomized frequency distribution of visits. 
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More precisely, suppose X is a discrete random variable that represents the adversary’s 

probability distribution of committing a crime, given as follows: 





















|Jp|JPr

pPr

pPr

X

|

2

1

)|Stationatoccurscrime(a

)2Stationatoccurscrime(a

)1Stationatoccurscrime(a

  (21)
 

where 111  |J|P...pp . Assume that there are |I| teams where each team has to visit Reqi 

stations, so the total number of visits per day is 
Ii

iReq . In this paper, we use the inverse transform 

method (Ross, 2009) to generate the randomized strategy (i.e. the distribution of the number of 

visits for all stations) as follows. We generate 
Ii

iReq random numbers drawn from the uniform 

distribution U(0,1), and for each number U, we increment the number of visits by one to Station j 

if  






j

i i
j

i i pUp
1

1

1
The result is a randomized vector which represents the frequency of visits 

for all stations.  

 To simulate the occurrence of crime, we apply the same method, namely, generate a random 

number U from the uniform distribution U(0,1); a crime occurs at Station j if 

 






j

i i
j

i i pUp
1

1

1
To test the effectiveness of our proposed randomized strategy, we perform a 

simulation of a  number of replications. For each replication, we simulate the occurrence of crime 

at a particular station as described above, and determine whether the roster generated from the 

randomized visit frequency is able to counteract/deter this crime. This is benchmarked against a 

fixed frequency of visits described above. In the following section, we report results on the 

effectiveness of our random strategy against the fixed strategy. 

5 Computational Results 

In this section, we present the computation results together with our evaluation based on of 

the proposed mathematical programming model. All experiments that we report on this section 

were run on a 3.07 GHz Intel (R) Xeon (R) CPU with 128GB of RAM under the Microsoft 

Windows XP Operating System. The mathematical programming model was solved by CPLEX 

10.0 solver engine. We first describe the experimental setup, followed by experimental results. 

5.1 Experimental Setup 

In order to demonstrate the capabilities of our proposed model, the Singapore rail network 

was chosen as a case study (Figure 4). In addition, two different random instances (Figures 5 and 

6) were also generated with varying values of the following parameters – the number of teams, the 

number of stations, the number of interchange stations (Table 1). 
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Table 1. Characteristics of Problem Instances 

Problem Set 
Number of  

Teams 

Number of 

stations 

Number of 

interchange 

stations 

Number of 

time periods 

per day 

Number of 

stations visited 

per team 

Random1 4 20 1 16 6 

Random2 5 24 2 16 6 

Case Study 24 90 10 16 6 

 

 

 

Figure 4. Singapore MRT map (source: http://www.smrt.com.sg/trains/network_map.asp)  

 

 

  

 

 

 

 

 

 

 

 

Figure 5. Random1 station map 

 

 

 

 

S5 S4 S3 S2 S1 

S17 S19

  
S18

0 

S6 S7

8 

S8 

S16 

S13 
S14 

S15 

S9 S10 

S11 

S20 

S12 

 
Interchange Station 
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Figure 6. Random2 station map 

In order to ensure the feasibility of random instances, the number of teams is set as: 

                                          



























 



6/
Jj

jMin_VisitI  (22)  

For simplicity in our experiments, we assume that the break periods for all teams occur at 

periods 2iStart and 5iStart , meaning that the break periods are at the third and sixth periods 

of an eight-period shift. In the following, we report a suite of computational results and analysis 

obtained from our mathematical model described above. We also conduct some additional 

experiments by varying the values of some parameters that would be described in Section 5.3. 

5.2 Results of the Deterministic Model 

5.2.1 Results of Random1 and Random2 Instances 

Both Random1 and Random2 can be optimally solved by the CPLEX 10.0 solver engine. The 

following tables summarize the schedules of all teams. It is observed that all teams are not required 

to change to another line for both instances. This situation provides us the minimum total distance 

travelled for all teams. In Random1, three stations, S1, S5 and S10, are required to be visited twice 

a day. Here, we found that this requirement is satisfied. Similar observation can be obtained for 

Random 2 where S1, S3, S7 and S10 have to be visited twice as well. The total runtimes for both 

random instances are 111 and 155 seconds, respectively. 

Teams 
Time Periods 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 S1 S2 Break S3 S7 Break S8 S10         

2 S17 S18 Break S19 S20 Break S5 S16         

3         S5 S15 Break S14 S13 Break S12 S11 

4         S10 S9 Break S6 S4 Break S3 S1 

Figure 7. Result of Random1 instance  

 

 

S1 S2 S4 S5 

S22

  

S21

0 

S20 

S6 S8 

S18 

S13 S14 S15 

S17 

S9 S10 

S11 

S24 

S12 S16 

S23 S19  
Interchange Station 

S3 S7 
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Teams 
Time Periods 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 S6 S5 Break S4 S3 Break S2 S1         

2 S10 S8 Break S7 S17 Break S16 S15         

3         S14 S13 Break S12 S11 Break S3 S1 

4         S19 S20 Break S21 S22 Break S23 S24 

5         S10 S9 Break S8 S7 Break S18 S19 

Figure 8. Result of Random2 instance 

5.2.2 Results of Case Study 

This is a large-scale problem with 90 stations, which could not be solved in CPLEX after 24 

hours. We decompose the problem into four sub-problems where each sub-problem represents a 

single line. In our case study, there are four different lines, namely the East-West Line, North-

South Line, North-East Line and Circle Line (Table 2). The number of teams allocated to each line 

is defined by equation (22). The details of lines and station names can be found in 

http://www.smrt.com.sg. In this network, some stations are interchange stations (such as Jurong 

East, Dhoby Ghaut, Buona Vista stations and so on) which serve more than one lines. By solving 

each line separately, there is a possibility that these interchange stations could be visited by more 

than one teams at the same time. This situation is acceptable since an interchange station is 

generally a large station with multiple platforms. For instance, the Buona Vista station has two 

different platforms for trains serve East West and Circle Lines. On the other hand, we ensure that 

other stations (non-interchange stations) may only be visited by at most one team at a particular 

time period.    

Figure 9 summarizes the detailed route taken by each team for the entire network. In general, 

stations visited by each team are close to each other (in accordance with the minimum total 

distance objective we define for our model). We divide the number of teams for each line into two 

different groups, Groups I and II. The teams in Group I would start their duty at time period 1 

while others in Group II would be at time period 9 (represent two different shifts). The runtimes 

for each line are as follows: 780 seconds (East West Line), 200 seconds (North South Line), 33 

seconds (North East Line), and 8,322 seconds (Circle Line). Solving the mathematical model for 

the North East Line takes significantly less runtime than solving for the other lines since it has less 

number of teams and stations. 

Table 2. Characteristics of lines in Case Study 

Lines 
Number of  

teams 

Number of 

stations 

Number of 

interchange 
stations 

Number of time 

periods per day 

Number of 

stations visited 
per team 

East West Line 7 31 7 16 6 

North South Line 6 25 7 16 6 
North East Line 4 16 6 16 6 

Circle Line 7 30 7 16 6 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

East West Line 

1 Paya Lebar Kallang Break Lavender Bugis Break City Hall Raffles Place         

2 Changi Airport Expo Break Tanah Merah Simei Break Tampines Pasir Ris         

3 Tanah Merah Bedok Break Kembangan Eunos Break Paya Lebar Aljuneid         

4 Chinese Garden Jurong East Break Clementi Dover Break Buona Vista Commonwealth         

5         Jurong East Chinese Garden Break Lakeside Boon Lay Break Pioneer Joo Kon 

6         Redhill Tiong Bahru Break Outram Park Tanjong Pagar Break Raffles Place City Hall 

7         Buona Vista Commonwealth Break Queenstown Redill Break Tiong Bahru Outram Park 

North South Line 

1 Marina Bay Raffles Place Break City Hall Dhoby Ghaut Break Somerset  Orchard         

2 Kranji Yew Tee Break Choa Chu Kang Bukit Gombak Break Bukit Batok Jurong East         

3 Bishan Ang Mo Kio Break Yio Chu Kang Khatib Break Yishun Sembawang         

4         Newton Novena Break Toa Payoh Braddell Break Bishan Ang Mo Kio 

5         Admiralty Woodlands Break Marsiling Choa Chu Kang Break Bukit Batok Jurong East 

6         Orchard Somerset Break Dhoby Ghaut City Hall Break Raffles Place Marina Bay 

North East Line 

1 Harbour Front Outram Park Break Chinatown Clarke Quay Break Dhoby Ghout Little India         

2 Potong Pasir Woodleigh Break Serangoon Buangkok Break Sengkang Punggol         

3         Serangoon Kovan Break Hougang Buangkok Break Sengkang Punggol 

4         Boon Keng Farrer Park Break Dhoby Ghaut Clarke Quay Break Outram Park Harbour Front 

Circle Line 

1 Holland Village Buona Vista Break One North Kent Ridge Break Labrador Park Harbour Front         

2 Harbour Front Telok Blangah Break Labrador Park Pasir Panjang Break Haw Par Villa Buona Vista         

3 Dhoby Ghaut Bras Basah Break Esplanade Promenade Break Bay Front Marina Bay         

4 Bishan Lorong Chuan Break Serangoon Bartley Break Tai Seng Paya Lebar         

5         Farrer Road Botanic Garden Break Caldecott Marymount  Break Bishan Serangoon 

6         Dhoby Ghaut Bras Basah Break Esplanade  Promenade Break Bay Front Marina Bay 

7         Nicoll Highway Stadium Break Mountbatten Dakota Break Paya Lebar Mac Pherson 

Figure 9. Result of Case Study
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5.3 Results of the Randomized Strategy 

First, we generate different instances by randomizing the start and break times (Table 3). 

Note that the number of teams allocated has to be adjusted according to equation (22) in order to 

ensure feasibility. Scenario1 is the base problem that has been solved and shown in Figure 9. 

Scenario 2 is generated by varying the start time for each team. The same start time for all teams is 

set for Scenario 3. Finally, we increase the number of visits for some stations in Scenario 4. It 

turns out that the number of teams has to be increased by one team. We present and discuss the 

results of the East West line of the Singapore network. 

Table 3. Randomized start and finish times 

East West 

Line 

Number of 

teams 

Start and  finish times for each team (team no [start – 

finish]) 

Scenario 1 7 1[1-8]*, 2[1-8], 3[1-8], 4[1-8], 5[9-16], 6[9-16], 7[9-16] 

Scenario 2 7 1[1-8], 2[1-8], 3[3-10], 4[3-10], 5[7-14], 6[9-16], 7[9-16] 

Scenario 3 7 1[1-8], 2[1-8], 3[1-8], 4[1-8], 5[1-8], 6[1-8], 7[1-8] 

Scenario 4 8 
1[1-8], 2[1-8], 3[3-10], 4[4-11], 5[5-12], 6[6-13], 7[8-15], 

8[9-16] 
*1[1-8]: Team 1 would start at time period 1 and finish at time period 8 

 

As mentioned earlier, Scenario 1 with only two values of start time periods: time periods 1 

and 9, could be solved within 780 seconds. When the start time for each team is randomly set to 

several time periods (Scenario 2), it turns out that the problem could be solved faster (within 629 

seconds). On the other hand, if all teams have to patrol at the same time (Scenario 3), the runtime 

significantly increases to 6,400 seconds.  When we increase the number of visits for some stations 

and change the start time for each team randomly (Scenario 4), the runtime is up to 17,078 

seconds. Increasing the number of visits seems to make the problem harder. Similar observations 

can be obtained for other lines. 

The next set of experiments is related to randomizing the break times. Initially, we assume 

that the break periods for all teams occur at periods 2iStart and 5iStart , where the values of 

1
iBreak and 2

iBreak are 2 and 5, respectively. Table 4 summarizes different values of the break 

times. In Scenario 5, each team might have different values of 1
iBreak and 2

iBreak with a constant 

gap between both values ( 2
iBreak - 1

iBreak = 3), while in Scenario 6, the gap is not constant.  

Table 4. Randomized 1
iBreak and 2

iBreak  

East West 

Line 

Number 

of teams 

1
iBreak and 2

iBreak for each team (team no [ 1
iBreak  – 

2
iBreak ]) 

Scenario 5 7 1[2&5]*, 2[2&5], 3[3&6], 4[3&6], 5[2&5], 6[2&5], 7[3&6] 

Scenario 6 7 1[1&3], 2[2&5], 3[3&5], 4[2&5], 5[1&4], 6[2&5], 7[3&6] 
*1[2&5]: Team 1 would have two breaks at (Start1+2) and (Start1+5) 
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The runtime for both scenarios, Scenario 5 and Scenario 6, are 33,240 and 28,017 seconds 

respectively. It seems that both scenarios are more difficult to solve compared with the previous 

scenarios in Table 3. When the break times for each team are randomly set to different values 

(Scenario 6), the runtime is less than that of Scenario 5. 

Finally, we report results on randomizing the visit frequencies. As described in Section 4.2, 

assuming that the probability distribution of a crime is known, our goal is to simulate a number of 

realizations of crime occurrences based on this distribution, and evaluate the effectiveness of our 

solutions in crime deterrence against those generated by a fixed visit frequency.  For this purpose, 

we choose the North East Line (with a total of 16 stations). The probability distribution P(crime 

occurs at Station) is presented in Table 5 column 3. We generate 100 realizations, and for each 

realization, the randomized vector for the minimum number of visits required for each station  

(Min_Visit) is as shown in Table 5.  

Table 5. Simulating crime and visits at different stations 

Station Station Name 
Pr(crime occurs at 

Station) 

Min_Visit 

(1) 

Min_Visit 
(2) 

… 
Min_Visit 

(100) 

1 Harbour Front 0.08 2 3 … 0 

2 Outram Park 0.07 1 2 … 0 

3 China Town 0.02 1 1 … 1 

4 Clarke Quay 0.09 1 1 … 3 

5 Dhoby Ghaut 0.13 3 2 … 3 

6 Little India 0.06 1 1 … 1 

7 Farrer Park 0.06 1 1 … 1 

8 Boon Keng 0.04 1 1 … 0 

9 Potong Pasir 0.04 1 1 … 2 

10 Woodleigh 0.07 2 1 … 4 

11 Serangoon 0.10 1 4 … 1 

12 Kovan 0.08 4 1 … 3 

13 Hougang 0.04 0 1 … 2 

14 Buangkok 0.04 1 1 … 1 

15 Sengkang 0.06 1 1 … 2 

16 Punggol 0.04 3 2 … 0 

 Total 1 24 24 … 24 

  

For each realization, we randomly generate the station where the crime occurs (according to 

the probability distribution).  The randomized strategy is said to effectively deter the crime 

occurring that station if the Min_Visit value for that station exceeds that of the fixed strategy, and 

vice versa; otherwise, we have a tie. For convenience, we set the Min_Visit vector for the fixed 

strategy to be the Min_Visit vector of the first realization (i.e. Table 5 column 4). The entire 

simulation results are summarized in Table 6. In this table, we set the value of 1 for a particular 

replicate if the randomized model is more effective; otherwise 0. If a tie exists, we use the word 

“tie”.  

We observe that our randomized strategy can perform better than the fixed strategy which is 

based on the fixed strategy. Of the 100 replicates, the randomized strategy provides 53% 

successful deterrence versus 25% for the fixed strategy. Both are tied at 22% of the runs. 
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Table 6. Simulation results for North East Line 

Run 
Crime at 

station 

Min_Visit 

Result Run 
Crime at 

station 

Min_Visit 

Result Randomized 

Strategy 

Fixed 

Strategy 

Randomized 

Strategy 

Fixed 

Strategy 

1 5 3 3 tie 51 5 5 3 1 

2 11 4 1 1 52 15 2 1 1 
3 12 5 4 1 53 4 1 1 tie 

4 5 5 3 1 54 11 3 1 1 

5 11 3 1 1 55 1 2 2 tie 
6 15 1 1 tie 56 5 3 3 tie 

7 1 3 2 1 57 15 0 1 0 

8 10 3 2 1 58 10 2 2 tie 
9 15 3 1 1 59 4 3 1 1 

10 9 0 1 0 60 6 1 1 tie 

11 5 3 3 tie 61 4 3 1 1 
12 4 3 1 1 62 3 1 1 tie 

13 4 3 1 1 63 12 4 4 tie 

14 1 1 2 0 64 5 6 3 1 
15 4 4 1 1 65 15 0 1 0 

16 1 3 2 1 66 15 4 1 1 

17 13 1 0 1 67 15 1 1 tie 
18 5 5 3 1 68 5 2 3 0 

19 13 0 0 tie 69 11 2 1 1 

20 11 5 1 1 70 14 1 1 tie 
21 5 8 3 1 71 13 1 0 1 

22 16 1 3 0 72 1 3 2 1 
23 5 4 3 1 73 14 2 1 1 

24 16 4 3 1 74 2 3 1 1 

25 2 0 1 0 75 15 4 1 1 
26 5 4 3 1 76 9 3 1 1 

27 10 2 2 tie 77 12 3 4 0 

28 7 3 1 1 78 12 3 4 0 
29 5 1 3 0 79 14 4 1 1 

30 12 1 4 0 80 14 2 1 1 

31 12 1 4 0 81 10 3 2 1 
32 4 4 1 1 82 5 2 3 0 

33 10 1 2 0 83 12 3 4 0 

34 11 3 1 1 84 7 1 1 tie 
35 5 2 3 0 85 4 0 1 0 

36 12 0 4 0 86 12 4 4 tie 

37 5 5 3 1 87 14 1 1 tie 
38 13 2 0 1 88 15 1 1 tie 

39 11 4 1 1 89 5 2 3 0 

40 2 1 1 tie 90 12 0 4 0 
41 1 2 2 tie 91 4 3 1 1 

42 13 1 0 1 92 5 4 3 1 

43 5 5 3 1 93 4 2 1 1 
44 16 2 3 0 94 4 4 1 1 

45 12 2 4 0 95 5 6 3 1 

46 7 1 1 tie 96 11 3 1 1 
47 10 1 2 0 97 5 4 3 1 

48 4 3 1 1 98 1 3 2 1 

49 5 5 3 1 99 11 0 1 0 
50 11 0 1 0 100 14 1 1 tie 

 6 Conclusion 

In this paper, we presented initial results from a research on generating patrol scheduling in 

mass rapid transit systems. We proposed a mathematical programming model to formulate the 

problem. Security is a major importance issue in the patrol scheduling problem. Deterministic 

schedules are undesirable due to predictable vulnerabilities. Strategic randomization is one aspect 

that has to be considered in this problem. In this paper, we proposed a simple randomized strategy 

by randomizing the start (and therefore finish times), break times for each team and the frequency 

of visits for each station. We reported the efficiency and effectiveness of our proposed approach 
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under different circumstances. We believe that our model does not require major customizations 

for use in other mass rapid transit systems with similar constraints and requirements. 

There are many possible extensions to our work. For the purpose of reducing the computing 

time needed to solve the proposed model, we can consider approaches, such as strengthening its 

LP relaxation by adding valid inequalities or reducing the number of variables by using pricing 

procedures. The random start time for each team can also be obtained by sampling from marginal 

probability of a certain distribution (Rosenshine, 1970). This paper merely considers a simple 

randomization strategy for the operator, but do not take the strategic behaviour of adversaries into 

account. Extending our proposed model to cover adversarial aspects is a very interesting area. One 

approach is to consider Stackelberg game models which have been applied in a variety of security 

domains (Ordóñez et al., 2012, Tsai et al., 2009).   
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