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GameOn: p2p Gaming On Public Transport

Nairan Zhang‡∗, Youngki Lee†, Meera Radhakrishnan†, and Rajesh Krishna Balan†

‡Department of Electrical and Computer Engineering, University of Wisconsin-Madison,
†School of Information Systems, Singapore Management University

ABSTRACT
Mobile games, and especially multiplayer games are a very pop-
ular daily distraction for many users. We hypothesise that com-
muters travelling on public buses or trains would enjoy being able
to play multiplayer games with their fellow commuters to alleviate
the commute burden and boredom. We present quantitative data to
show that the typical one-way commute time is fairly long (at least
25 minutes on average) as well as survey results indicating that
commuters are willing to play multiplayer games with other ran-
dom commuters. In this paper, we present GameOn, a system that
allows commuters to participate in multiplayer games with each
other using p2p networking techniques that reduces the need to
use high latency and possibly expensive cellular data connections.
We show how GameOn uses a cloud-based matchmaking server to
eliminate the overheads of discovery as well as show why GameOn
uses Wi-Fi Direct over Bluetooth as the p2p networking medium.
We describe the various system components of GameOn and their
implementation. Finally, we present numerous results collected by
using GameOn, with three real games, on many different public
trains and buses with up to four human players in each game play.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communi-
cation; C.3 [Special-Purpose and Application-based Systems]:
Real-time and embedded systems; C.5.3 [Microcomputers]: Portable
devices

General Terms
Design, Experimentation, Performance, Measurement
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p2p Games; Mobile Gaming; Public Transportation
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1. INTRODUCTION
Games remain the most popular application category on both the

iOS and Android ecosystems [14] in terms of downloads, usage,
and revenue earned. In particular, multiplayer games are becoming
increasingly popular to both game players and developers. Players
find that the unpredictability that arises from playing against hu-
man opponents keeps them engaged for much longer periods while
game developers find that more engaged users generate a lot more
ads and in-game sales revenues than players who play for a few
minutes and then leave. Indeed some of the most lucrative and pop-
ular games on both the mobile [11] and console markets [37] tend
to be multiplayer-focused games such as Brave Frontier, Clash of
Clans, and Pirate Kings on mobile devices and FIFA 15, Destiny,
and Call of Duty: Advanced Warfare on consoles. In these games,
players usually play against random strangers either individually or
in groups where each group is made up of friends or even random
strangers.

Multiplayer games encourage players to spend tens of minutes
or longer for every game session (especially for games where the
other human players are also interacting in real time) unlike casual
single player games such as Candy Crush or Angry Birds that are
optimised for one to five minutes of short game sessions. As such,
these types of longer multiplayer games tend to be played during
lunch breaks or after work/school is over.

However, there is also another opportunity to play longer multi-
player games. In many dense crowded urban cities (which are com-
mon in Asia and Europe, and include some US cities like New York
City and San Francisco), the cost of driving tends to be quite high
in terms of traffic, time taken, aggravation, and parking availability,
etc. As such, a significant fraction of the population in these cities
take public transport for their daily commute. These commutes also
tend to be long – for example, as we show in Section 3, the aver-
age one-way commute time in Singapore is about 26 minutes with
larger times reported for other urban cities (e.g., 40 minutes for
New York City, 66 minutes for Tokyo, and 97 minutes for Beijing).

This commute period is a natural “down time” where the com-
muter can be engaged. Currently, many commuters spend the time
by sleeping, reading something, or using their phones to check
email, browse the web, chat with friends, watch videos, listen to
music, or play games. We also observed that an increasingly large
fraction has access to smartphones (87% smartphone penetration
in Singapore and Hong Kong and rapidly rising in other Asian
cities [28]) that have the performance and networking capabili-
ties required for mobile game playing. We thus hypothesise that
these commuters could benefit from playing spontaneous multi-
player games, to ease the commute boredom, if the functionality
was available.
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Thus, we present GameOn, a system for allowing public trans-
port commuters to engage in multiplayer games with fellow com-
muters travelling on the same bus or train. The key technical chal-
lenges we overcame were:

High 3G/LTE latencies. This causes serious lag and playability
issues in multiplayer games (especially in the near real-time games
like shooting or racing games). We overcame this by using p2p
networking solutions for the actual game plays.

Identifying the appropriate p2p networking mechanisms. As
we show in Section 4.4, Bluetooth [6] does not work well for this
use case. Instead, we used Wi-Fi Direct [39], a relatively new Wi-Fi
mode optimised for p2p communications, which is now a standard
feature on new smartphones, as our communication medium. We
showed performance characteristics of both Bluetooth and Wi-Fi
Direct in various p2p game scenarios.

Matching game players in an efficient way. A drawback of
pure p2p solutions is that neighbour discovery can take a long time.
We overcame this by using the insight that all the passengers still
have Internet connectivity via cellular connections — albeit with
high latency and low bandwidth. We leveraged this and used a
central server to perform the matchmaking of players. This also
allowed us to match players based on various pre-collected player
information such as skill levels, travel times, and other preferences.

Working with minimal modifications to existing systems. For
GameOn to be successful, it should be as backward compatible as
possible. As such, we designed it to run as a normal application
(root access is not needed) with minimal changes needed to existing
applications. For instance, we retained the existing client-server
models used by most existing games to minimise code changes.
Thus, one smartphone will have to serve as both the master server
as well as a client — we show that the energy overhead for the
server phone is still quite acceptable. We also intentionally kept
GameOn as simple as possible to make it easier to deploy, debug,
and explain to end users.

Overall, we make the following contributions:

• A detailed analysis of the public transport travel times in Sin-
gapore. In particular, we show how long passengers are co-
located on the same train or bus (which is the shared time
when they can play a game together). We also present sum-
mary results for 11 other cities.

• A detailed comparison of the efficacy of Bluetooth and Wi-Fi
Direct as a communication medium for playing multiplayer
games. We show results from both in-lab synthetic experi-
ments as well as real-world experiments conducted by play-
ing games on actual public trains at various times of the day.

• A detailed description of the design and implementation of
GameOn. This includes a discussion of how the GameOn
matchmaker can be extended to support many more metrics
(such as co-location times and connection stability) to enable
spontaneous p2p games, beyond ping times commonly used
by existing matchmakers.

• An in-depth evaluation of GameOn that comprises of both
micro benchmarks involving synthetic evaluations of vari-
ous system components as well as real-world tests involv-
ing actual game play, using three different popular games,
on a public train (at various times of the day). The games
chosen were OpenArena [34], Racer [27], and 2048 [30],
which represent the shooter, car racing, and casual game
genres, respectively. We have posted videos of GameOn be-
ing used with these games on commuter trains and buses at
http://tinyurl.com/gameon-videos.

2. MOTIVATING SCENARIOS
Jill is heading to school and her regular commute involves a 25

minute train ride. She boards the train and settles in for the some-
what long journey. She starts using her smartphone to do her reg-
ular routine — check emails, browse news articles, facebook posts,
and videos tagged by friends. However, she quickly finishes all of
these and realises that she is still 20 minutes away from her station
and she is getting bored.

Fortunately, she remembers about that new application, called
GameOn, that her friend asked her to install. She starts GameOn
and sees that 3 people around her are interested in playing Quake
III multiplayer (which is setup to require at least 4 people). She ex-
presses her interest in playing the game. Within seconds, GameOn
starts a server on one of the 4 phones, and automatically connects
all the 4 game players (using their anonymous in-game IDs) to the
server using Wi-Fi Direct and the game starts. 10 minutes later, the
game concludes as some of the participants get off the train. Jill
is happy with her performance and wonders who she was playing
with (that info is not revealed).

She realises that she still has ≈ 10 minutes left and she decides
to see if a quick round of 2048 (a puzzle game) is possible. She
re-starts GameOn and specifies that she is looking for one other
person to play 2048 with. Within seconds, she is connected with
another anonymous player (on the same train) and the game starts.
This continues until Jill reaches her train stop at which point she
ends the game, gets off, and goes to her classes happily.

The above scenario motivates the entire design of GameOn. In
Section 3, we first show that passengers spend sufficient shared
time on public buses and trains. We then present the design, imple-
mentation, and evaluation of GameOn in the remaining sections.

3. IS GAMEON EVEN PRACTICAL?
To support the above scenarios, we require a number of pre-

conditions to be true as follows:

1 First and most importantly, commuters must be on the same
train or bus long enough for a shared game session to be
feasible. Prior work [29] has published the minimum game
length at about 10 minutes. Accounting for the overheads
of settling onto the bus/train and allowing for time to fin-
ish reading emails, news sites, etc., we pessimistically need
commuters to be co-located with a large number of other
commuters on the same train or bus for at least 20 to 25 min-
utes for a GameOn-like system to be plausible.
We present rigorous analysis of Singapore’s transportation
system data (Section 3.1) along with summary data from
other countries (Section 3.2), and show that these shared com-
mute times are very achievable in practice.

2 Second, commuters need to have a smartphone that is capa-
ble of supporting a wide range of multiplayer games. Fortu-
nately, industry progress has solved this issues and modern
smartphones (any smartphone bought from 2013 onwards)
have the CPU, GPU, memory, and networking capabilities to
support many different types of multiplayer games. Indeed
the ability to play many types of games is a key selling point
for smartphones in some countries.
Note: It is possible for our solution to be adapted to work
on feature phones (using Bluetooth instead of Wi-Fi Direct
– albeit with worse performance in some cases). However,
we did not do that as a) the number of games available on
feature phones is limited and, b) the smartphone penetration
rate has been growing rapidly even in developing countries
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(such as Indonesia, Thailand, and India) due to decreasing
phone costs and increasing prosperity [12].

3 Third and finally, commuters must have the interest to play
games while on buses and trains with others, probably ran-
dom commuters. Fortunately, statistics [14] show that games
are the most popular applications downloaded from any app
store and this popularity increases as the population gets younger.
In addition, multiplayer games tend to be the most engag-
ing of all game types. Thus, we believe that the desire to
play multiplayer games is present in a large fraction of the
commuting population. We also present results from a self-
reported survey in Section 3.1, showing that a majority of
commuters are interested in playing mobile multiplayer games
even with random commuters.

3.1 Public Commute Times in Singapore
In this section, we present a detailed analysis of the commute

times observed in Singapore.

3.1.1 Singapore’s Public Transportation Network
Singapore is a small country of about 715 square kilometres

(≈60% the size of New York City) with about 5.3 million inhabi-
tants. It has a modern integrated public transportation network of
trains, buses, and taxis (not considered for this analysis). The bus
network uses about about 360 bus routes to serve over 4,800 bus
stops while the train network comprises of over 120 stations across
5 main lines. In total, the buses and trains handle over 6 million
trips per day [18].

Singapore uses a NFC-based store value card system to pay for
bus and train rides that requires every commuter to tap their NFC
cards at both entry and exit before the actual fare is computed based
on the distance travelled. This is different from fixed rate systems
used elsewhere, such as the New York City and Paris subways,
which only require a tap on entry. This requirement to tap in and
out makes it possible for data analysts to know exactly when a par-
ticular NFC card has entered or exited a bus or train station (even
though the owner of the card is unknown).

3.1.2 Singapore Transportation Data Set
We used three months of bus and train entry and exit data (from

November 2011 to January 2012) obtained from the Land Transport
Authority of Singapore [16]. For every public bus, we had the time
and location (bus stop number) where every passenger boarded and
alighted. For trains, we have, for every train station, the exact time
when a commuter entered and left that train station. With these
two sets of data along with the publicly available train/bus timings
and route maps, we can quantitatively determine the average com-
mute time needed to reach any destination in Singapore. Table 1
summarises the data used for this analysis.

For the purpose of this analysis, we used our university campus
as the final destination and calculate the commute time statistics
needed to reach our campus from any location in Singapore. Note
1: because our university campus is located down town, it is very
well connected and served by 3 different train stations and 43 dif-
ferent bus routes across 7 different bus stops. Note 2: when per-
forming our analysis, we only considered the most direct routes to
our campus that did not require switching between trains to buses
and vice versa.

3.1.3 Quantitative Analysis Results
Table 2 shows the results of our data-driven analysis for both

trains and buses across all 5 weekdays for both peak hours (7.30
a.m. - 9.30 a.m.) and off-peak hours (9.31 a.m. - 5.59 p.m.). Note

Bus Data
Nov. 2011 Dec. 2011 Jan. 2012

Total # of Records 100,521,633 100,732,193 105,449,970
Unique Bus Routes 353 353 353
Unique Bus Stops 4873 4873 4873

Unique Commuters 3,910,636 4,364,309 4,202,792

Train Data
Nov. 2011 Dec. 2011 Jan. 2012

Total # of Records 62,272,880 63,655,069 63,092,608
Unique Train Stations 127 127 127
Unique Commuters 4,210,625 4,051,357 4,384,240

Table 1: Summary of Public Transportation Data

Commute Time (mins)
Bus Train

Peak Off-Peak Peak Off-Peak

Mon 17.4 (9.2) 18.5 (10.6) 24.1 (11.1) 23.3 (13.4)
Tue 16.5 (11.8) 17.1 (9.8) 27.5 (12.9) 21.1 (13.7)
Wed 17.0 (10.4) 17.9 (10.1) 25.6 (11.2) 20.5 (13.3)
Thu 16.9 (11.0) 17.1 (10.3) 27.9 (12.9) 20.9 (13.6)
Fri 17.1 (10.7) 17.4 (10.2) 25.6 (11.2) 21.1 (13.6)
All 16.9 (10.8) 17.6 (10.2) 26.5 (12.1) 21.4 (13.5)

Numbers in parenthesis are the standard deviations

Table 2: Average Commute Times for Buses and Trains

that we only consider the morning peak period as the evening peak
period will not have too many people coming to campus.

The data shows that the average time spent on a bus is about 17
minutes with a fairly high standard deviation (numbers in paren-
thesis). For trains, the average time is about 26 minutes with a rea-
sonably large standard deviation as well. This matches well with
reported data [18] that states that trains are the preferred option
for longer routes. However, even though these numbers look low,
many commuters experience higher commute times as they need to
take more indirect routes that involve multiple trains/buses for their
commute. We show this through a survey in the following section
where the majority of respondents reported high commute times
with more than one transfer.

3.1.4 Qualitative Survey Results
In addition to the data driven analysis presented above, which

is completely game agnostic, we also surveyed a large number of
undergraduates along with a few working professionals to obtained
their self-reported commute times and willingness to play multi-
player games while commuting.

We send out an online survey (with 20 questions) to various
school mailing lists, and 118 participants voluntarily responded to
the survey. To avoid biasing the answers, we did not provide any
details about GameOn in the survey, and participants had no idea
what the purpose of the survey was (except that it was a public
transportation survey). All user-centric experiments reported in this
paper were conducted after obtaining an appropriate IRB approval.
We did not provide any form of compensation for doing the survey.

Out of 118 participants, 85 (72%) were males and 33 (28%)
were females, across various age groups: 18-20 - 15 (13%), 21-
25 - 69 (58%), 26-30 - 20 (17%), 31+ - 4 (4%). 91 (77%) were
students with 24 (20%) working professionals and 3 (3%) others.
69 (58%) participants used an Android smartphone, 41 (35%) an
iPhone, with just 8 (7%) others. The full set of survey responses
can be obtained at http://tinyurl.com/gameon-responses with the
raw data at http://tinyurl.com/gameon-responses-raw.

107

http://tinyurl.com/gameon-responses
http://tinyurl.com/gameon-responses-raw


City Average One-Way Commute Time (minutes)

London 39.5 [36]
New York 40.0 [1]
Montreal 38.0 [25]
Toronto 39.5 [25]
Tokyo 66.0 [4]
Seoul 53.0 [33]

Hong Kong 46.0 [8]
Taipei 37.5 [26]
Beijing 97.0 [7]
Delhi 42.3 [38]

Mumbai 47.3 [38]

Table 3: Average Commute Times for Other Cities

The key survey results were the following: 90% (106 partici-
pants) used public transport daily with 67 (57%) taking buses and
86 (73%) taking trains (note: some participants take both trains
and buses). The average one-way commute time for the partic-
ipants (time spent only on buses/trains/cars going from home to
work/school excluding any walking time) was “Less than 10 min-
utes” - 4 (3%), “10-20 minutes” - 17 (14%), “20-30 minutes” - 27
(23%), “30-40 minutes” - 27 (23%), “40-50 minutes” - 15 (13%),
“50-60 minutes” - 13 (11%), “Other” - 15 (13%). In particular,
83% of the participants had commute times > 20 minutes. In ad-
dition, 61% of the participants took more than one bus/train during
commuting.

In addition, 90 participants (76%) stated that they played mo-
bile games on their phones with 67 (57%) saying that they played
mobile games while commuting. The most popular type of game
played were Casual games (56 responses (47%)), with Puzzle Games
(37 (31%)), and Strategy Games (30 (25%)) close behind.

Finally, 64 participants (54%) answered yes to the question “Are
you interested in playing multiplayer games with other commuters
travelling in the same bus/train/car?”. When asked why they wanted
to play these games, the answers provided were “Ease the boredom
during the commute” - 44 (37%), “Potential to meet more peo-
ple who share similar interests” - 34 (28%), “Thrill of competitive
challenge inherent in multiplayer gaming” - 33 (28%), “Other” - 2
(2%).

For the 54 participants (46%) who were against the idea, the most
common reason offered (via a free form text box) was the unwill-
ingness to pay for 3G/LTE bandwidth just to play a game on the
train – “Dataplan consumption and slow / connectivity issue when
in train”. They also felt that the 3G/LTE speeds were not good
enough for gaming – “You need a solid connection when playing
such games during commuting. Singapore’s telco isn’t able to pro-
vide that solid connection underground”. Another strong opinion
raised was the fear that playing with nearby strangers would impact
their real world comfort levels – “Do you really think we are that
open to play with strangers standing right next to us? Its okay when
we do it over the internet because we don’t know who that is”. Fi-
nally, some participants feared that the game experience would be
bad due to poor player quality or players leaving abruptly.

Overall, the survey results indicate that there is potential for
GameOn to be successful. However, to become even more ac-
cepted, GameOn must reduce the use of 3G/LTE bandwidth that
a) may have high usage charges in some countries, and b) might
have connectivity issues in certain parts of the transport network.
GameOn overcomes this by using completely local bandwidth pro-
vided by Wi-Fi Direct to support the various games. Thus, it does
not incur any charges and is much less likely to have connectivity
issues. In addition, the survey shows that the matchmaking com-
ponent also needs to take into account the physical proximity of
people when making a match – we might want to avoid matching
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Figure 1: Latency & Power Consumption Comparison
people who are physically too close to each other and also take
into account the expected trip length for each person to avoid game
interruptions caused by people leaving.

3.2 Commute Times in Other Major Cities
We additionally describe analysis of the commute times observed

in other urban cities (from prior work and online sources). Ta-
ble 3 shows our findings. What we observe is that commute times
in other cities tends to be higher (some quite significantly!) than
those in Singapore (which were computed using raw data). Hence,
GameOn might also prove to be useful in other cities.

4. DESIGN GOALS & ASSUMPTIONS
In this section, we present the design goals for GameOn along

with our assumptions.

4.1 Design Goals
The main design goals for GameOn were:
• Provide a smooth gameplay experience: This is the most

important design goal and it permeates all the other goals
below. In a nutshell, GameOn should add as little overhead
as possible to both game players and game developers.

• Low latency networking with sufficient bandwidth: A key
cause of discontent in multiplayer games is lag caused by
network issues. Thus, GameOn should not introduce any
user noticeable lag or bandwidth artefacts when games are
being played. We compared the client to server latencies
and energy consumption of LTE, Bluetooth, and Wi-Fi Di-
rect (results shown in Figure 1) and found Wi-Fi Direct to
have the lowest latencies and the lowest energy consump-
tion. GameOn thus uses Wi-Fi Direct for the actual game
plays while using the cellular Internet connectivity only for
the matchmaking process (a low bandwidth latency tolerant
task that requires history tracking)

• Easy and effective matchmaking: Commuters should be
able to easily express their game interests and also easily find
games that they can join. The matchmaker should also ensure
that the players in the game do not leave abruptly and that
any skill, demographics, or other factors are also factored in,
where necessary, when performing the matchmaking. For
example, even though GameOn enables playing multiplayer
games with fellow passengers in close proximity, some play-
ers may not want to be matched with players located next
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to them on the bus/train as they may not want their physical
identities to be easily discovered. To support this, we use
a centralised matchmaking service, that can track historical
performance etc., located in the cloud.

• Use simple user-space mechanisms: For GameOn to be
easily deployable, it has to be a user space component (i.e.,
no rooting of the phone is required) and it should be as simple
as possible (making it easier to explain to end users and more
robust overall). In addition, we retain the existing client-
server models used by almost all multiplayer games. How-
ever, this requires us to dynamically host the server on one
of the smartphones of the commuters playing that game. The
game and player statistics are then uploaded to the match-
making service after the game ends.

• Low energy usage: GameOn should not add any significant
energy cost beyond the cost of playing the game itself. In
particular, the smartphone that has to host the game should
not see a large increase in energy usage.

4.2 Assumptions
The assumptions we made when devising a solution that ad-

dressed our design goals were the following: 1) We assume that
every commuter had access to a smartphone with cellular Internet
connectivity. The smartphone was necessary for gameplay while
the connectivity was necessary to use a central matchmaker. 2)
Some changes to the game interfaces may be needed for GameOn
to be fully operational. In particular, the game will a) have to report
game statistics (in game scores etc.) to GameOn so that it can be
used during matchmaking and b) have to use the GameOn APIs to
send data to/from other p2p clients. Indeed, to demonstrate how
easy our APIs are to use, for our evaluation, we converted, with
minimal effort, an open source single player version of a popular
game, 2048, to work as a multiplayer game using GameOn. Fi-
nally, 3) we assume that the multiplayer games will only be played
by a small number of players – 2 to 6 players at most. This system
is not designed by larger games that involve 10s or 100s simulta-
neous players. However, there can be multiple games being played
simultaneously in the same area.

4.3 Overall Architecture
To satisfy the design requirements stated in Section 4, GameOn

was designed to use a hybrid p2p architecture composed of GameOn
clients interacting with each other using local networking capabili-
ties coupled with a matchmaking service located in the cloud. Fig-
ure 2 shows the architecture overview of GameOn. We focus our
discussion on only a few core modules (the shaded blocks in Fig-
ure 2). Overall, GameOn comprises of two components:

1. GameOn clients: A GameOn client supports various multi-
player games that can be played by peers co-located on a train or
bus. It has a UI component that allows players to login, spec-
ify grouping preferences, and discover co-located peers. When a
user starts GameOn, peer discovery is started and any discovered
peers (along with their performance metrics) is passed to the match-
maker. Upon request, the matchmaker provides the GameOn client
with the list of playable games and corresponding game hosts. When
a peer is already hosting a user’s desirable game, the GameOn
client makes a new game client connection to the peer. Otherwise,
it serves as a game host for the user’s specified game and waits for
other players to join.

The game play is automatically initiated when the required num-
ber of players join. During game play, GameOn clients form a star
topology by default, and all the game packets are relayed through
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Figure 2: The GameOn Architecture

the host device; GameOn also supports a multi-hop topology when
a host cannot be connected to a client directly due to distance (lo-
cated on the other side of the train for example). The Gameplay
Manager component configures the p2p connection manager com-
ponent by specifying the role of the player in a group and the topol-
ogy of collocated peers. Note: We do not require any changes to the
existing game logic to support this type of p2p game play. GameOn
wraps around the original networking APIs (Section 4.5) used by
the multiplayer games and automatically re-routes packets to p2p
hosts using either Wi-Fi Direct or Bluetooth. When the game ends,
the game results and performance data are reported to the match-
making server to update its records.

2. The GameOn matchmaking server: This server allows GameOn
clients to find a set of players that are co-located and who will
stay on the same bus/train long enough for a satisfying game ses-
sion. It collects various information required for p2p matchmaking
from GameOn clients such as the observed signal strength and ping
times between peers, as well as the mobility patterns (how long they
spend on a specific train etc.) and skill levels (how well they did
in previous sessions of a game etc.) of each user (as represented
by their mobile phones). We show how the matchmaker can use
all available data (mobility history, user preferences, game-specific
skill levels, and performance measures) to match the best set of
people together for any game request.

4.4 Which p2p Protocol is Best on Trains?
The success of GameOn depends on having reliable p2p net-

working connectivity between peers on a bus or train. However,
these are particularly challenging environments due to their move-
ment, layouts, and frequent passenger movements. In this subsec-
tion, we present detailed performance results to understand the per-
formance of wireless protocols in these environments.

The first key question we addressed was the choice of network
protocol. The two main options were Bluetooth and Wi-Fi Direct.
Eventually, we chose Wi-Fi Direct as its overall performance, be-
yond just the better latencies and power consumption (Figure 1),
was better as explained below.
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We found that discovery times > 10 seconds, corresponding
to a peer distance of about 46 meters (2 carriages away) was a
good indicator of a peer that could not be reliably connected
to. We then shortened the inter-device distance by a meter at
a time (roughly) and were able to reliably connect two devices
at a 38 to 43 meter range. We found that even very far devices
(70 meters away) could be eventually discovered (taking 108
seconds). We omit these long tail numbers from the plot.

Figure 3: Discovery Time vs. Distance (Wi-Fi Direct)

4.4.1 Experiment Setup
To understand how the protocols behave in realistic environments,

we conducted experiments using Galaxy S3 and S5 smartphones
on a train during three time periods – when the train was extremely
full (6 p.m.), normal load (8 p.m.), and empty (midnight). We used
the Galaxy S3 (running Android 4.3) as the stationary peer and
moved the S5 (running Android 4.4.2) to different adjacent train
carriages (up to 3 carriages away) and measured (on the S3), us-
ing both Bluetooth and Wi-Fi Direct, the RSSI signal strengths
of the S5 and the ping times to the S5. Each train consisted of
3 carriages [17]. Each carriage was filled with numerous metallic
objects (seats, hand rails, guard rails etc.) and was 23 meters in
length, 3.2 meters in width, and 2.1 meters in height with a very
small (negligible) inter-carriage gap. We repeated each experiment
multiple times over different days. We do not report any results for
buses as the public buses are shorter in length (each bus is about
12 meters long [32]) than a train carriage. Thus, the train is a more
demanding environment.

4.4.2 Peer Discovery, Connectivity & Density
The first step in connecting phones together in a p2p fashion is

to discover them. In our preliminary measurements, we also dis-
covered that just because a device can be discovered does not mean
that a successful connection can be made to it. A typical Wi-Fi Di-
rect connection starts with scanning, then group owner negotiation,
then provisioning, and finally DHCP. When peers are side-by-side,
these steps can be done quickly without packet loss. However, as
peers are further away and/or in “noisy” environments, these steps
can become harder to complete.

To include the effect of people density in this experiment, we
performed it during normal hours (when the train was normally
crowded). With this level of crowd, we can assume that the density
of people increases linearly as we move further away from the dis-
covery node. To perform this experiment, we used one device as the
stationary node and moved another device further and further away
(in increments of half a train carriage every time). Both devices
then tried to discover the other device. In addition to discovering
the device, we also tried to connect to the device after it was dis-
covered. We found that even though both devices could eventually
discover each other (taking about 10 seconds) even at a two train
carriage distance (about 46 meters), they were unable to actually

connect to each other. However, at shorter distances, the two de-
vices could discover and connect to each other. Our experiment
results are shown in Figure 3.

The GameOn matchmaker has to make decisions about peering
without being able to actually check the connectivity between those
hosts – at best it knows something about inter-peer ping times. As
such, a naive host assignment might pair hosts together who can
discover each other but cannot actually connect (because one of
the steps involved (probably DHCP) fails). What we discovered,
for Wi-Fi Direct, was that the discovery time turned out to be a
good predictor of connectivity. In particular, as shown in Figure 3,
peers that could be discovered within 10 seconds (i.e., before the
discovery time shoots up) can be successfully connected to.

However, even a 10 second discovery time can be too long as
every scan is costly in terms of battery usage. Thus we reduced the
scan time to 5 seconds to strike a balance between power consump-
tion and finding enough nearby connectable peers. Each peer per-
forms a scan every time it requests a peer match list from the match-
maker. This allows the matchmaker to gradually build a client map
for a bus / train without needing aggressive client scanning.

The discussion above is solely for Wi-Fi Direct. We also re-
peated this discovery and connectivity tests for Bluetooth and achieved
very disappointing results. We found that Bluetooth was unreliable
beyond 20 to 25 meters. We show the difference between Bluetooth
and Wi-Fi Direct in terms of RSSI and ping times in Figure 4.

4.4.3 Effect of Density on Network Latency
We now investigate the effect of people density on wireless per-

formance – in particular the latency of the connection. This is
important as games require low latency network connections. To
do this, we picked three different times of the day (corresponding
to light, normal, and heavy train/bus use) and four different inter-
client distances. We measured the inter-client ping times and also
measured the RSSI values. Note: the ping times changed when we
repeated this experiment across different days. In the rest of this
section, we present the ping times for the worst day.

Figure 4 shows how the signal strength and ping times changed
as the distance to the peer phone varied. We observe that in all
cases, Wi-Fi Direct performs better than Bluetooth. In particular,
the second row of results shows the RSSI observed when the sta-
tionary phone connects to the moving peer using various protocols.
The actual RSSI values are not important (as they fluctuate due to
noise etc.). What matters is the pattern and trends.

For Wi-Fi Direct, we could connect using both the 5Ghz and
2.4Ghz spectrums with no clear winner in spectrum choice emerg-
ing. We found that, when the train was normally occupied, the
maximum distance that a peer could be connected to was 2 car-
riages away using Wi-Fi Direct. For Bluetooth, the range was just
1 carriage away. When the train was busy, the range of Wi-Fi Direct
decreased to just the same train carriage while Bluetooth could only
usefully connect to clients very close by (distances greater than 20
meters had very high ping times).

The last row shows the ping times achievable to the connected
peer using Wi-Fi Direct and Bluetooth. In all cases, the ping times
for Wi-Fi Direct are much lower than Bluetooth. In addition, Blue-
tooth stops working (the line for the ping graphs stops) at much
lower distances than Wi-Fi Direct. For example, on a normal oc-
cupancy train, Bluetooth stops receiving pings at about 20 meters
while Wi-Fi Direct continues until about 60 meters.

4.4.4 Connectivity Issues at Train Stations
Unfortunately, even with Wi-Fi Direct, we found that if peers

were 2 or more carriages apart, on entering a station, the process of
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The top row shows the state of the train (empty, normal, busy) at the time of the measurement, the middle row shows the
observed RSSI values of a peer device by a stationary phone (after connecting to that peer) when the peer device was placed
further and further away (by up to 3 train carriages). The bottom row shows the observed ping times on one device (to the
other) as the other device moved further away. Missing data in the figures indicates that the other phone was not connectable
to or pingable at that distance using that protocol. Each result was repeated multiple times over different days and the averages
are shown. We omit the error bars to improve readability as these results are presenting trends (actual values are not important).

Figure 4: Comparison of Observed RSSI & Ping Times at Different Times on a Public Train
Games Multiplayer

already?
Language Lines of

code added
OpenArena [34] Y C / C++ 8

Racer [27] N Java 86
2048 [30] N Java /

JavaScript
14

Table 4: Three Games Modified to Use GameOn
opening the doors to let passengers embark and disembark resulted
in high latency spikes. Figure 5 shows this where a peer (located
1 carriage away) experiences constant good ping times while an-
other peer (located 2 carriages away) experiences consistent latency
spikes which corresponded directly with the train entering a station,
stopping, opening its door, and then leaving (the high latency goes
away at this point). We have no current solution other than adding
a matchmaking heuristic to not match peers more than one carriage
away for games that cannot handle brief latency spikes.

4.5 Modifying Games to Work with GameOn
In this section, we describe how GameOn support can be added

to existing games by making two different modification; 1) support
local client-server multiplayer, and b) interface with GameOn’s
networking, matchmaking, and reporting APIs.

4.5.1 Games Used for Evaluation
The first requirement for any game to work with GameOn is for

the game to support client-server multiplayer. To make a game mul-
tiplayer compatible, it requires creating a server component for the
game along with changing the UI, where necessary, to display any
multiplayer-specific information. In this work, we decided to use
both existing multiplayer games as well as support single-player
games to understand the complexity inherent in making different
types of games work with GameOn.

The three games we used are described in Table 4. OpenArena
was the only game that already multiplayer-enabled with separate
client and server components. Even in this case, as shown in Fig-
ure 6, we need to modify the game to use a local server (that is
running on a peer phone and accessed via Wi-Fi Direct) instead of
a server sitting in the cloud that is accessed via a cellular link.

Unlike OpenArena, Racer and 2048 were single player games
that had no server component. For both games, we created a simple
server that basically stored and forwarded packets to other clients.
To help developers to extend existing singleplayer games to com-
municate with a game server, we provide two functions to share
game state: sendCommand(String jsonObjectInString) is used to
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During a 15-minute experiment, the train stopped at 6 sta-
tions (times at each station are circled). We conducted this
experiment during peak hours.

Figure 5: Latency Spikes at Stations

send client moves periodically, and updateSnapshot() is used to re-
ceive global game states from the game server.

In all cases, the amount of additional code we had to write was
minimal (86 lines for Racer and 14 for 2048). For both games,
we did not modify the UI component and just leveraged the exist-
ing game code that could already display the output of a secondary
player. Currently GameOn does not provide any UI modules as
these components are very game specific. Instead, GameOn fo-
cuses on the networking components and provides enough infras-
tructure (and APIs) to allow game developers to concentrate on the
UI and gameplay portions of the game and let GameOn handle all
the networking bits.

4.5.2 Using GameOn Libraries
Next, we had to modify all three games to use the GameOn APIs.

This required 1) using the GameOn matchmaking service, 2) using
the GameOn networking libraries, and 3) using the GameOn game
statistics reporting libraries.

The matchmaking service is initiated by the player (in our pro-
totype, the player presses a UI button). This is a single API call in
GameOn and it sends a request to the matchmaker, using JSON ob-
jects, along with the performance measurements from the current
client (neighbours discovered, ping times to neighbours etc.). The
matchmaker responds with a list of games and hosts. The devel-
oper can then use GameOn’s p2p APIs to initiate a game request
with discovered clients. Once the game starts, the state sharing
APIs described earlier are used to play the game. Finally, the de-
veloper has to use the GameOn reporting libraries to commit the
game results back to the matchmaker (for use in global statistics
and future matchmaking sessions). Note: games don’t communi-
cate with the matchmaker directly. That functionality is handled
transparently by GameOn .

The GameOn networking libraries handle most networking re-
quests. Internally, the GameOn networking logic uses two layers: a
physical Wi-Fi Direct group, and a logical game group. In our cur-
rent implementation, the physical group is built using legacy An-
droid APIs (for backward compatibility), while the logical group is
built using TCP/UDP sockets. All status sharing information is ex-
changed via the TCP/UDP sockets. For simplicity reasons, when a
player initiates a new game, our current implementation makes him
or her the game server and owner of the logical group. All subse-
quent players are clients in the group. This logic can be changed,
if necessary, to share the server load among other all players.

Overall, all these changes were easy to implement. A single grad
student, with no game development experience, managed to modify
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Unlike traditional approaches, in GameOn, each peer can serve
as a client and also as a server. GameOn selects only one peer
to serve as the game server. Game traffic is exchanged with
peers using p2p connections (usually Wi-Fi Direct).

Figure 6: Traditional Approach (a) vs. GameOn Approach (b)

all three games in less than 2 days each. Most of the time was spent
understanding how each of the games maintained its game state (to
find the right places to insert the networking and statistics reporting
APIs). As shown in Table 4, the amount of code that needed to be
created was minimal. OpenArena, in particular, needed very little
code as it already had discrete client-server components.

The goal of the GameOn matchmaker is to find groups of com-
muters on the same bus / train who can play a game together. In
such dynamic environments, these formed groups should be cho-
sen so that they are stable – i.e., members don’t abruptly leave. For
example, a group is not considered to be stable if the elected game
host alights (thus ending the game) very soon after a game session
is started.

4.6 Data Used For Matchmaking
To make these matchmaking decisions, the matchmaker can use

data from three information sources as shown in Table 5.

4.6.1 Performance Data
The first is performance data such as RSSI values and ping times

of various nodes (as observed by other nodes). The GameOn client
periodically updates its discovery results to the matchmaker. With
this data, the matchmaker can create a logical map of where each
player is situated relative to other players. It can then use the heuris-
tics shown earlier (peers more than 1 carriage apart can experience
variable ping times etc.) to match clients together.

In addition to network measurements, we can also use histori-
cal predictions about how long a particular client will remain on
the train/bus as a key input. These values can be computed using
historical data (using techniques similar to Balan et. al [5]). We
show in Section 6.3.4 how using predicted trip times can improve
the matchmaking performance.
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Data Reason To Use It

Performance
Detection time Hint for a robust connection

RSSI Hint for a robust connection
Ping time Hint for distance and crowdedness

Pred. Trip time Games don’t end abruptly

Game-specific
Player Level Ensure a fair/engaging game

Player Credibility Ensure no cheating
Min. Player No. Ensure game is interesting

User-specified
Only with friends Guarantee game experience
Nobody close by Reduce real-world detection probability
Similar interests Find future friends

Table 5: Data that can be used by the Matchmaker

4.6.2 Game-Specific Data
The next category of matchmaking data is game specific data.

This is data that categorises players into different buckets – based
on their skill levels, probability of cheating, and other game-specific
data. In addition, games can specify minimum and maximum game
player numbers to ensure a high game experience. Grouping play-
ers according to the skill level is a well-known matchmaking met-
ric. There are a few algorithms that have been employed by com-
mercial video gaming platforms. For example, Xbox Live [23]
uses the TrueSkill ranking system [13] that computes the skills of
gamers. Unfortunately, our current prototype does not use any of
this data or these algorithms as we do not have the game-specific
player information to generate this data historical data. However,
adding this data into the matchmaking decision process, when the
information does become available, is fairly straightforward.

4.6.3 User-Specific Data
The last category of data that can help the matchmaker is user-

specific data. This is data that encapsulates a specific user’s pref-
erences and interests. For example, a player may not want to play
games with nearby people as they are afraid it might lead to a con-
frontation. On the other hand, another player might want to meet
nearby game players – but only if their interests match. Unfortu-
nately, similar to game-specific data, our current prototype does not
use this type of data as we have no historical or player records to
generate the data from. However, once the data is available, inte-
grating it into the matchmaker is easy.

4.7 Matchmaking Algorithm
In this work, we do not propose any new matchmaking algo-

rithms. Instead, we leverage existing techniques to build a reason-
able matchmaking solver. Our current prototype uses a weighted
sum of components to determine the final match score of each
player relative to every other player. The matchmaker then clus-
ters these matched scores together to group players together who
have similar scores. Currently, we use equally weighted normalised
forms of co-location time, detection time, and ping time as the data
sources for the match. In future work, we plan to investigate more
sophisticated algorithms (including dynamic matchers that change
their match goals (i.e., weights) based on the current situation) as
well as add more data sources to the matching process.

5. IMPLEMENTATION
The GameOn Android client was implemented using Android

14 APIs (Android 4.0) as a user space application. It implements
two background services that do the following; 1) Cell connection

manager (225 lines of code) that uses WebSockets to communicate
with the cloud-based matchmaker using JSON objects, and 2) p2p
connection manager (1,027 lines of code) that implements the func-
tions required to support multiple communication mediums (Wi-Fi
Direct, Bluetooth, and etc.) as well as support multiple roles (client,
server, relay node, and etc.). The GameOn client also provides a
simple UI (201 lines of code) for the player to sign in, configure
which games are available, configure their in-game names (han-
dle), and to select games to play, and accept game requests. All the
components are wrapped around a central control core (539 lines
of code) that runs in separate threads.

We implemented the matchmaker in Java (188 lines of code)
using the Play Framework [31] version 2.3.7. The matchmaker
uses WebSocket and multiple threads to support multiple GameOn
clients. All client generated data is stored in a MySQL database.
The server also has a web interface for game developers to config-
ure their game requirements and access game and credit records.
The code size is small as the matchmaker currently uses “Perfor-
mance” data only to make its decisions. However, as discussed
earlier, the matchmaking logic can be easily modified to support
use other data sources as and when they become available.

6. EVALUATION
In this section, we present performance evaluation of GameOn.

We first experimented GameOn ’s performance under various real-
world use cases. In addition, we present detailed results from micro-
benchmark experiments conducted under controlled settings, in-
cluding overheads of matchmaking and hosting games as a server,
performance impacts by various underlying network topologies (star
topology vs. multi-hop topology), and impact of co-location time
to game plays.

6.1 Experimental Setup
We performed all the experiments using Samsung Galaxy S3

(running Android 4.3) and S5 (running Android 4.4.2) phone. We
used the three benchmark games described in Section 4.5 for all our
real-world usage results as well as some of our micro-benchmarks.
The matchmaker was run on an Ubuntu server with a 3.4GHz 4-
core CPU with 32 GB of memory. All power consumption values
were measured using a Monsoon power monitor [24].

6.2 GameOn Working in Real Environments
We evaluated the end-to-end real-world performance of GameOn

by playing three games on real public transports. The main goal
was to compare GameOn’s performance with that of the game played
with GameOn. Each experiment was a 10 minute game session
conducted by a four person group. After each gameplay session,
all group members were asked to report their current phone battery
level (which was compared to the reading just before the session
started). 1

Figure 7 shows the latencies observed when playing the three
games under five scenarios across three different times. In the first
scenario, the games were hosted on an Internet server that was ac-
cessed using a cellular LTE connection. All four players in this
scenario played solely as clients. The remaining four scenarios use
GameOn where one peer device is selected to be the server with all
the other peers connecting to it via Wi-Fi Direct. The four scenarios
were “All players in the same train carriage, but spread throughout
the carriage” (Train-23m), “All players spread across two train car-
riages (Train-46m), “All players spread across the same single deck

1http://tinyurl.com/gameon-videos has videos of GameOn being
used by commuters to play real games on a commuter train
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Figure 7: Game Latencies across 5 Scenarios and 3 Test Times
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Figure 8: Battery Usage after 10 Minutes of Game Play

bus” (Bus-Single-Deck), and “All players spread across the same
double deck bus with the server on the lower deck” (Bus-Double-
Deck). During game play, we periodically logged the ping latencies
to the server on each client phone.

From the figure, we observe that LTE latencies are about 10
times longer latencies than GameOn and that GameOn has very
low latencies even across different types of transport and at differ-
ent times (peak hours, normal etc.)

Figure 8 shows the battery usage of the phone when playing
those three games. Since these experiments were done on buses
and trains, we could not connect a hardware power monitor to the
phones. Instead, we just used the Android battery levels as a gauge.
The “Host” values is the power consumption of the phone that was
chosen to host the server while “Client” values are the power con-
sumption of the other client-only phones. Note: the “Host” phone
serves as both a server and a client.

From the figure, we observe that hosting a server is not that ex-
pensive – power wise. Indeed, the power consumption for Hosts
and Clients are quite similar and within the margin of error. Across
the protocols, the power consumption is also somewhat similar.

The measured latency and energy values show that GameOn is
capable of providing good local multiplayer game experience even
in different types of train and bus environments. However, does
it impact the user experience in some subtle way? To verify this,
we asked each of the 4 game players to answer two self-reported
questions on whether they felt the game was playable. To calibrate
each member, they were asked, before doing the experiment, to
play each game in a lab setting with no GameOn modifications to
understand what the unmodified game felt like under perfect con-
ditions. The two self reported questions were 1) “The game expe-
rience is the same as the one in the lab” and 2) “The phone feels

Player 1 

Player 2 

Figure 9: GameOn Being Used on a Real Public Train
hotter than it did in the lab”. For both questions, the members had
to answer using a 5-point Likert scale (1 – Strongly Agree to 5 –
Strongly Disagree).

The final score was that all 4 game players strongly agreed that
the modified game had the same experience as the in-lab unmodi-
fied version. In addition, all 4 players also strongly disagreed that
the phone felt hotter than it did in the lab. However, they also men-
tioned that one of the games, 2048, was not the easiest to play in a
multiplayer fashion due to some UI limitations. However, this bug
was not introduced by GameOn and was beyond our ability to fix.

Figure 9 demonstrates two players playing a game on the same
train using GameOn. In this use case, the two players are a half-
carriage away from each other – one sitting and one standing. Fig-
ure 10 shows the matchmaking process to start the game session. At
step (a), the player 1 starts a new game session using the GameOn
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(a) Player 1 Starts a New Game (b) Player 2 Searches for a Game to Play (c) Player 2 Joins Player 1’s Game
Figure 10: The Demonstration of the Bootstrap of a GameOn Game Play
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Figure 11: Energy Overhead of Scanning

UI, by selecting a game to host. At step (b), player 2 starts GameOn
and queries the GameOn matchmaker to find the available games
in their vicinity. Player 2 then picks one of the available games
through the GameOn UI – he can only host a game if there are no
suitable games available. Finally, at step (c), player 1 accepts the
join request from player 2, and the game starts.

6.3 Micro-benchmarks
We now present micro-benchmarks results:

6.3.1 GameOn Overheads
We evaluated the overheads of two key operations: peer discov-

ery and requesting a suitable game group from the matchmaker.
Figure 11 shows the energy cost of scanning for nearby players via
Wi-Fi Direct and that of sending a request for a game group. By
themselves, both actions cause reasonably high spikes in the power
consumption. However, compared with the power spike when the
game itself starts, the scanning and requesting costs are acceptable.

6.3.2 Resource Usage and Group Scalability
GameOn selects a player to host the game server and all the other

players will connect to this server. As shown earlier, this does not
increase the energy cost of the server device. However, what about
the scalability of the device? Can it support multiple game clients
without any performance degradation?

To understand this, we scheduled 8 clients to join a particular
server one after the other at fixed intervals over a 10-minute period.
On the server device, we logged its resource usage, including CPU
utilisation, heap usage, and network traffic using Wi-Fi Direct, ev-
ery 10 seconds. Figure 12 shows the CPU and heap usage plots.
Each plot starts from a single client case where the server phone is
connected to itself with new clients (up to a max of 8) periodically
connecting. The heap usage shows a zigzag curve due to memory
being reclaimed by the Android garbage collector at regular inter-
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Figure 12: CPU & Memory Overhead

vals. From the figure, we observe that the CPU and heap usage do
not substantially increase even when the server device is hosting all
8 client players.

We next investigate how large p2p groups can become before
performance (in terms of server ping times) and server energy con-
sumption become factors. Figure 13 shows the ping times and
power consumption when the group size scales up. When con-
nected to 8 players, the power consumption of the server increases
23.7% compared to hosting just 1 player. Thus, hosting a game
does not add a very large overhead to the phone’s energy usage.
However, we found that the ping latencies increase quite fast as
more and more clients are added. In particular, we observed a large
latency rise when the 7th client was connected. Thus, we find that a
current modern smartphone can comfortably serve as the server for
up to 6 clients. After this point, the ping latencies start to increase
significantly which could result in gameplay issues.

Figure 14 shows the network usage of the server in terms of the
number of bytes exchanged over the Wi-Fi Direct link. We observe
that both the received and transmitted traffic grows quadratically as
the group size increases. A transmitted packet from the server usu-
ally includes a snapshot of the whole group state, while a received
packet usually includes only a single client command or update.
Thus, on the server, the amount of data received is usually much
lower than the amount sent.

6.3.3 Support for Other Topologies
In all previous experiments, we have used a star topology where

every client is connected directly to the server. However, in some
cases, a client may not be able to connect directly to the server
(when the client is at the other end of a crowded train for example).
For example, Figure 15 shows a scenario where the four players are
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spread out linearly so that the rightmost player does not have a reli-
able connection with the server client. In these cases, is it possible
to leverage intermediate clients as relay nodes to form a multi-hop
linked-list topology where a node is connected to an intermediate
node that connects it to the server? GameOn supports multi-hop
networks but with some limitations. In particular, joining two Wi-
Fi Direct groups (to create a multi-hop network) at the same time
is not allowed, even in the latest version of Android. This joining
of groups feature is an optional feature in the Wi-Fi Direct stan-
dard that has not been implemented in Android. Thus, to create a
relay node for a multi-hop environment, we have to use two dif-
ferent networking technologies / radios. In this case, we will have
to use Bluetooth together with Wi-Fi Direct with one side of the
linked-list using Bluetooth and the other side using Wi-Fi Direct.
However, as stated earlier, Bluetooth is not the best protocol for
the scenarios GameOn is tackling. We re-visit these claims using a
three-node scenario as shown in Figure 15.

Figure 16 shows the energy consumption when using three nodes
with a star and a linked-list topology. We instrumented the Racer
game so that it automatically looped the same track to create a re-
peatable trace. For each experiment, we turned off all background
processes and measured the power consumption using the Mon-
soon power monitor. It should be noted that the absolute numbers

Server(Game host) 

Client 3 Client 2 (Relay) 
Client 1 (Sink) 

Link used by the sink in single-hop 
Link used by the sink in multi-hop 

The arrows indicate the server information flow direction.
Dotted Wi-Fi Direct link indicates poor connectivity.

Figure 15: Single-hop vs. Multi-hop Topologies
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are not that interesting as they are device-specific. Instead we focus
on the difference between the two topologies.

We observed that in the star topology, the server node (the one
sending most of the data) consumes the most power followed by
the other two nodes (client 2 and client 1). When using the linked-
list topology, the host (server) and sink (client 1) nodes consume
similar power to the star topology. However, the relay node (client
2) uses 13% more power in the linked-list case. This is because it
has to use two radios (Wi-Fi Direct and Bluetooth) simultaneously
to bridge the two sides of the relay.

We now evaluate the effectiveness of the linked-list topology at
reducing latency spikes caused by nodes being too far away from
each other. To do this, we placed two node (a source and a sink)
two train carriages apart from each other on a public train (that was
moving and picking up passengers etc.). We then placed a relay
node in between the two nodes (i.e., the relay node was 1 carriage
away from both the source and the sink). The source and the sink
were then connected to each other using Wi-Fi Direct. The source
was also connected to the relay node via Wi-Fi Direct while the sink
connected to the relay node via Bluetooth. The sink then started
pinging the source across both the direct Wi-Fi Direct connection
as well as the multi-hop (via the relay) Bluetooth connection.

Figure 17 shows the latency results. We observe that the direct
link between the source and the sink (i.e., the star topology) showed
variable ping times as the distance was far and the link quality was
thus affected by passenger movements etc. However, the link via
the relay node showed much more predictable and stable perfor-
mance. However, the ping times for the Bluetooth link are still
high (yet stable) as Bluetooth is not the best protocol (as shown
earlier) for this type of environment.
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6.3.4 Improving Matchmaking With Time Predictions
In this final test, we show that using predictions of how long a

particular trip will last for a given individual can have big positive
effects on the matchmaking performance. To perform this test, we
selected only the trips that started from one of the starting train
stations (called k) to a specific train station at our university. The
starting train station was chosen because the trains start off empty
there (so everyone on that train when it leaves got on at station k)
and it was not an interchange station. I.e., everyone had to swipe
their NFC cards at that station itself to get into it. It was not possible
for them to enter at some other station and take another train to this
station. 2) We picked a specific time (8 a.m.) and day (1st Monday
of Nov.) and extracted all the commuters who entered station k
at that time and day. 3) We then exhaustively created all possible
2, 3, 4, 5, 6 person groups that could be created from the set of
people who entered that station. 4) We then computed how long
each of these groups actually stayed together (i.e., the minimum co-
location time until someone in that group left the train). This result
represents a naive matchmaker that just selects people randomly
and hopes that they will be together long enough.

Figure 18 shows the results of this test. We observe that the time
the entire group was together is quite low and with a very high
standard deviation (indicating that some groups were together for
much less time). In addition, as the group size increased, the time
spent together decreased significantly as the probability of any one
person in the group leaving increased. This result shows that just
randomly grouping people together can lead to bad outcomes.

However, we found that using predicted individual trip times can
result in better estimates. First, we created historical buckets for
each user (similar to Balan et. al [5]) that was station, day, and
time specific. We then used this history to calculate, for each user,
a predicted trip start time (with stdev.) for any station at any time
and day. This prediction lets us increase the minimum co-location
time for all group sizes as we can cluster passengers by their pre-
dicted trip times. For example, our standard deviation for any given
trip time and group size dropped to a few % compared to 60-70%
with the naive approach. However, this approach can lead to data
sparsity issues. For example, only 3,500 of the 15,948 passengers
(22%) used to generate Figure 18 had multiple trips from that sta-
tion from which we could calculate a history. We plan to look at
techniques to improve this yield in future work.
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Figure 18: Group Size versus Collocation Time

6.4 Summary
In this section, we showed that GameOn works well in the real

world with good latencies and end-user experiences with up to 4
players in a variety of bus and train environments. We then showed
that the energy, CPU, ping latencies, and memory overheads of
hosting a game server are minimal if the number of game clients
is kept low (under 8). Next, we should that we could support multi-
hop p2p methodologies in addition to he base star topology. Finally,
we showed that naively predicting the co-location time can result
in very sub-optimal matches.

7. DISCUSSION
The idea of commuters playing games with fellow commuters

raises a number of interesting questions. In particular, why would
commuters play games on their phones as they drain a lot of energy.
Even though, as we showed earlier, GameOn itself does not have
a large energy overhead, the base energy consumption of a game
is already huge – on the order of few Watts in some cases! Thus
playing a game for about 20 to 40 minutes will significantly reduce
your phone’s battery lifetime. So why would people do that?

One reason why might be that they are commuting either to work
/ school or back home. In both cases, there is an opportunity to
charge their phone at the other side (at their work desk, classroom,
home). Thus, playing a game with whatever “residual energy” is
left in the phone might be okay as a recharge point is available
immediately afterwards. However, we have not investigated this
willingness in more depth beyond the survey presented earlier (Sec-
tion 3.1.4).

Another concern raised is that multiplayer games usually result
in someone losing. What happens if that person gets angry and
starts looking for the person(s) they lost to? Would it be a form
of “game-rage” (similar to road rage)? Identifying the people you
are playing with will be hard in crowded trains where everyone
is awake and using their phone. But what about on longer train
journeys where a majority of commuters are sleeping? These types
of social phenomena and implications need to be investigated in
more details.

7.1 Limitations
The main limitations of the current GameOn prototype are: 1)

The matchmaker, while supporting many attributes well (as far as
we can tell), cannot be completely validated as we do not have data
for many of the skill and player-centric attributes. 2) We have built
GameOn to handle only the system aspects of multiplayer games.
Unfortunately, we have no control over the game itself which has
a larger say on user satisfaction. For example, GameOn can han-
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dle cases where users join and leave a game in the middle (as long
as the player hosting the server does not leave) and GameOn can
handle alternate game modes such as “spectator mode” if those
modes use standard networking APIs. However, GameOn, by it-
self, can do very little to make a game “fun” which is ultimately
the most important criteria. And 3), the multi-hop support needs to
use Bluetooth and Wi-Fi Direct for multi-hop settings (thus lower-
ing its range to what Bluetooth supports) as Android does not cur-
rently allow multiple Wi-Fi Direct connections. Finally, the survey
presented in Section 3.1.4 was conducted mostly with undergrad-
uate students and thus may not be generalisable. In addition, our
performance experiments were conducted using only two different
models of phones. Thus results may vary with other phone types.

8. RELATED WORK
p2p game matchmaking: Switchboard [22] proposed tech-

niques to predict latencies during a game play using quick pre-game
measurements. Htrae [2] predicts inter-player latencies using geo-
location data. Ly et al. [21] developed an approach to select the
best detour route for game packets. However, these systems and
techniques were targeting game consoles or devices connected to
the Internet. Our goal is to use p2p networking to connect players
on public transport.

Mobile p2p applications: Collaborative smartphone applica-
tions have emerged in diverse application domains such as media
sharing [15] and context sensing [19][20]. Like GameOn, they pro-
pose several core techniques to enable in-situ collaboration among
co-located smartphones. McNamara et al. [15] devised a scheme to
predict remaining co-location duration for stable exchange of mul-
timedia files. CoMon [19] proposed a resource planning mecha-
nism to maximise benefit while achieving fairness. However, build-
ing a system for collaborative mobile gaming imposes a set of
unique challenges due to the strict gaming latency and power re-
quirements. To address these, we developed a new end-to-end sys-
tem, GameOn, with careful attention to various system components
such as network protocols, peer discovery, matchmaking, and low
latency game play. Some airlines offer multi-player games among
passengers during long-haul flights [35]. However, only a few lim-
ited games can be supported through wired entertainment systems
embedded in passenger seats whereas GameOn can support com-
modity mobile games on smartphones without any infrastructure
support in buses or trains.

Mobile p2p framework: There have been efforts to develop
generic platforms to facilitate development of various mobile p2p
applications [10]. For example, the well-known open source project
Alljoyn [3], aims to provide a set of APIs and runtime to easily
build network connections among multiple mobile devices. GameOn
opens a new application domain of multiplayer gaming by support-
ing game-specific requirements that Alljoyn does not support. It
will be an interesting to test if Alljoyn can work with GameOn.
There have also been prior work to re-write binaries without source
code access. RetroSkeleton [9] presents an app rewriting frame-
work that allows developers to integrate new features into exist-
ing apps. GameOn did not use re-writing methods initially as we
wanted to understand the challenges required to port existing games
to use GameOn.

9. CONCLUSION
In this paper, we presented GameOn, a system for allowing com-

muters on public transportation to play multiplayer games with
each other using Wi-Fi Direct as a p2p communication medium.
We motivated the reasons why GameOn is useful (long commute

times) and then described the various components of GameOn. Fi-
nally, we presented extensive evaluation results showing that GameOn
works. Even though GameOn is a proof-of-concept idea, it has
been implemented and works quite well with the modified games
(videos available at http://tinyurl.com/gameon-videos ). How-
ever, this is just step one. Our broader goal is to use GameOn as a
platform for providing many different types of commuter friendly
engagement channels. For example, we plan to extend GameOn to
allow users who share similar interests (that are discovered through
specific types of games) to meet up with each other in the physical
world. We are also considering system-level support for spectator-
mode; where commuters can join existing games as passive ob-
servers instead of active players. Both of these planned extensions
should increase the adoption rate of GameOn.
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