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Empirical Study of Face Authentication
Systems under OSNFD Attacks

Yan Li, Yingjiu Li, Ke Xu, Qiang Yan, Robert H. Deng

Abstract—Face authentication has been widely available on smartphones, tablets, and laptops. As numerous personal images
are published in online social networks (OSNs), OSN-based facial disclosure (OSNFD) creates significant threat against face
authentication. We make the first attempt to quantitatively measure OSNFD threat to real-world face authentication systems on
smartphones, tablets, and laptops. Our results show that the percentage of vulnerable users that are subject to spoofing attacks
is high, which is about 64% for laptop users, and 93% smartphone/tablet users. We investigate liveness detection methods in
the real-world face authentication systems against OSNFD threat. We discover that under protection of liveness detection, the
percentage of vulnerable images is 18.8%, but the percentage of vulnerable users is as high as 73.3%. This evidence suggests
that the current face authentication systems are not strong enough under OSNFD attacks. Finally, we develop a risk estimation
tool based on logistic regression, and analyze the impacts of key attributes of facial images on the OSNFD risk. Our statistical
analysis reveals that the most influential attributes of facial images are image resolution, facial makeup, occluded eyes, and
illumination. This tool can be used to evaluate OSNFD risk for OSN images to increase users’ awareness of OSNFD.

Index Terms—Face authentication, online social networks, OSN-based facial disclosure, liveness detection

F

1 INTRODUCTION

Face authentication systems have been widely available on
various consumer-level computing devices such as smart-
phones, tablets, and laptops which have built-in camera
capability. Popular face authentication systems include Face
Unlock [15], Facelock Pro [12], and Visidon [46] on smart-
phones/tablets, and Veriface [30], Luxand Blink [32], and
FastAccess [47] on laptops. Face authentication requires
zero memory efforts from users and usually generates
higher entropy than legacy password [36]. Thus face au-
thentication systems provide attractive alternatives of legacy
passwords. Previously, the major obstacle for an adversary
to compromise face authentication is the physical proximity
required to capture a victim’s facial images. However, this
is no longer necessary as the emergence of online social
networks (OSNs).

OSNs provide a platform for facilitating social interac-
tions. Numerous personal data including personal images
are published in OSNs such as Facebook and Google+
at every moment. For example, 350 million images are
published by users on Facebook every day [48]. It is very
likely that these images contain facial images where the
users’ faces can be clearly seen. These facial images could
become an abundant resource for potential attackers to
exploit, which introduces the threat of OSN-based facial
disclosure (OSNFD). OSNFD affects the strength of face
authentication as OSNFD can disclose facial images and
compromise face authentication in a large scale.

• Yan Li, Yingjiu Li, Ke Xu, Qiang Yan, and Robert H. Deng are with
School of Information Systems, Singapore Management University.
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To understand the threat of OSNFD against face authen-
tication, we collect users’ facial images published in OSNs
and build a dataset containing important image attributes
that are common in real-life photos but rarely used in
prior controlled study on face authentication [8], [20].
Using these images, we simulate spoofing attacks against
typical real-world face authentication systems which are
designed for smartphones, tablets, and laptops. Since all
target systems [12], [15], [30], [32], [46], [47] are closed-
source with no programmable testing interfaces, enormous
efforts are made for image collection and testing.

We make the first attempt to provide a quantitative
measurement on the threat of OSNFD against typical face
authentication systems in use. Our study reveals that the
percentage of vulnerable users that are subject to OSNFD
attacks is high, though the percentage of vulnerable images
which can be used for OSNFD attacks is moderate. The
percentage of vulnerable users is 77% on average. Our
results are different for the systems on smartphones/tablets
and on laptops. Further investigation shows that the quality
of images is a more important factor affecting the success
rate of spoofing attacks as compared to quantity.

In order to mitigate the OSNFD attacks, various liveness
detection mechanisms are designed to distinguish between
legitimate face biometrics and forged face biometrics. We
examine the effectiveness of the liveness detection mech-
anisms available in the target face authentication systems.
Our results show that when liveness detection is in use,
the percentage of vulnerable images becomes low, which is
18.8% on average. However, the percentage of vulnerable
users is still high, which is 73.3% on average. All these
findings show that the current face authentication systems
are not strong enough under OSNFD attacks.
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We develop a risk estimation tool to evaluate how likely
certain facial images can be used in effective OSNFD at-
tacks. Logistic regression is used to extract key attributes of
facial images affecting the success rate of OSNFD spoofing
attacks. Our statistical analysis shows that the success rate
is significantly affected by image resolution, occlusion of
eye, occlusion of mouth, blurred image, facial makeup, dim
lighting condition, and illumination in general. We further
investigate the statistical significance of these attributes for
different face authentication systems with different security
settings and on different platforms among different users.
The proposed risk estimation tool achieves a precision of
81%, a recall of 83%, and an F1 score of 82% on average.
It can help users evaluate the risk of uploading their images
to OSNs, thus increasing their awareness of OSNFD threat.
We further discuss the costs and implications of mitigating
the threat of OSNFD spoofing attacks.

This paper extends a prior work [31] in that a compre-
hensive analysis on the effectiveness of liveness detection
mechanisms and a detailed statistical analysis of character-
istics of OSNFD are provided.

2 BACKGROUND
2.1 Face Authentication System and Related
Work
Face authentication is a biometrics-based user authentica-
tion mechanism, which verifies a user’s identity by using
information extracted from the user’s facial features. As
illustrated in Figure 1, a typical face authentication system
uses a camera to capture the user’s facial image/video as
input, and then verifies it with enrolled biometric infor-
mation for the claimed identity. The objective of a face
authentication system is to recognize a user as long as the
input is collected from the legitimate user, while rejecting
the inputs from all other users.

Camera

Additional
Sensor(s)

Face
Detection

Face
Matching

Face
Image/
Video

Face
Region

Stored Face
Template

Face Template

Face Authentication

Liveness Detection

Face
Image/
Video

And/Or
Sensor
Data

Accept/Reject
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Fig. 1. Work flow of a typical face authentication
system

Two key modules are involved in this verification pro-
cess. The first module is the face detection module, which
identifies the face region and removes irrelevant information
of an image. The processed image is then passed to the
next module named face matching. This module computes
a similarity score for the input image based on an enrolled
face template containing key features which can be used to
distinguish a user from other users and imposters. Different
algorithms may be used for these two modules, but all face
authentication systems generally have these two modules
and follow this work flow. In the end, a face authentication

system outputs the final decision (i.e. accepting or rejecting
a claim) according to whether or not the similarity score is
higher than a matching threshold. This threshold is carefully
chosen so as to achieve a proper balance between false
rejection rate and false acceptance rate.

It is well-known that face authentication is subject to
spoofing attacks. An attacker may compromise an authen-
tication system by displaying some images or videos of a
legitimate user in hard copies or on screen [4], [6], [13].
Liveness detection is a major countermeasure designed and
deployed to mitigate the risk of spoofing attacks.

We summarize the closely related work in terms of face
recognition and liveness detection in this section.

2.1.1 Related Work on Face Recognition
For face recognition, holistic approaches and local land-
mark based approaches have been studied before [1], [50].
The holistic approaches, such as PCA-based algorithms
and LDA-based algorithms, use the whole face region as
input. Local landmark based approaches extract local facial
landmarks such as eyes, nose, mouth, etc and feed the
locations and statistics of these local facial landmarks into
a structure classifier.

Face authentication is an important application of face
recognition. Trewin et al. [44] show that face authentication
is faster, and it causes lower interruption of user memory
recall in a comparison to other authentication solutions
which base on voice, gesture, and typical password entry.
Another advantage of face authentication is that it pro-
vides stronger defense against the repudiation threat than
token based authentication and password based authenti-
cation [36]. Besides face authentication, face identification
is another application of face recognition, which compares
an input facial image with multiple registered users and
identifies the user in the input image. Face identification
may cause privacy leakage in OSNs due to identifiable
personal images published in OSNs [19]. Compared to their
work, we focus on the impact of publishing personal images
in OSNs to the effectiveness of face authentication systems
under OSNFD attacks.

2.1.2 Related Work on Liveness Detection
Liveness detection is designed to distinguish between legit-
imate input face biometrics from live users and forged face
biometrics. Liveness detection methods can be categorized
according to liveness indicators, including texture pattern,
motion of 3D face, real-time response, and multimodal [7],
[9], [24].

The texture pattern based liveness detection approaches
detect specific texture patterns for fake facial images due
to printing process or properties of digital screen. Maatta
et al. propose to detect liveness by extracting local binary
patterns from a single image [33]. IDIAP team takes local
binary patterns from each video frame and builds a global
histogram for liveness detection [7]. The above approaches
usually require very diverse dataset of paper and printing
texture patterns [24]. Akhtar et al. analyze the quality of
input biometric images based on their local features and
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global structures for detecting the spoofing attacks [3]. Patel
et al. propose to detect the spoofing attacks using face
videos based on the analysis of moiré pattern which often
appears on digital screens [38]. However, the moiré pattern
on digital screen can be reduced or eliminated by resizing
or rotating photos or applying mathematical filters [41].
The effectiveness of these approaches could be affected if
the attack is performed using a photo/video displayed on a
screen with high display resolution.

The motion based liveness detection approaches assume
that a real face is a 3D object which moves differently from
2D fake faces. These approaches are usually associated with
optical flow analysis because different patterns of optical
flow represent differences between the movement of 3D
faces and 2D faces [24]. Bao et al. analyzes optical flows
generated from a holistic 3D face for liveness detection [5].
Kollreider et al. analyzes the optical flows based on the
detection of ears, nose, and mouth as these facial landmarks
generate different optical flow patterns [25]. Tirunagari
et al. propose to use dynamic mode decomposition to
analyze the movements of eyes, lip, and head and the local
binary pattern from input videos [43]. However, the above
approaches usually require high-quality input videos with
high frame rates and ideal lighting which may be difficult
to achieve in practice.

The real-time response based liveness detection ap-
proaches require interactions with users in real time, such
as eye blink and head rotation. Pan et al. propose a
solution which requires users to blink their eyes for liveness
detection [37]. However, these approaches can be bypassed
with multiple images or videos which contain the required
liveness traits [39]. In order to mitigate this threat, some
liveness detection approaches based on abrupt changes of
motions and motion continuity [11], [35] are proposed
if sufficient images of intermediate stages are available.
Considering the case of eye blink, an eye blink is an activity
containing rapid closing and opening of eyelid [37]. An
eye blink usually lasts for 0.1-0.4 seconds [21]. Thus the
motion of closing/opening eyes approximately takes 0.05-
0.2 seconds. However, the front-facing cameras on existing
mobile devices can capture 1-4 frames at most for this
motion, which may not be sufficient. This situation would
change if high-speed cameras become popular in the future.

Multimodal based liveness detection approaches take
face biometrics and other biometrics together, such as
fingerprint and iris for liveness detection [13]. Fingerprint
refers to the flowing pattern of ridges and furrows located
on the tip of a finger while iris consists of a random
structure of minutiae or points of detail. The multimodal
based approaches rely on the fusion of face biometrics
and these other biometrics for liveness detection [6], [13].
However, these approaches require additional hardware or
must be used in specific environment.

Some liveness detection approaches combine multiple
liveness indicators in order to defend against the spoofing
attacks [7], [9]. AMILAB team proposes to detect live-
ness based on texture pattern, motion of 3D face, and
real-time response together [7]. CASIA team proposes to

combine texture pattern and motion of 3D face in liveness
detection [9]. They analyze the texture by multi-scale local
binary patterns and the 3D face by dense optical flows.
These approaches can be affected by the quality of input
images/videos and illumination.

The summary of these liveness detection methods is pre-
sented in Table 1. While these liveness detection methods
can be used to thwart image and video spoofing attacks to
a certain degree, we focus on the impact of OSNFD attacks
to typical face authentication systems in use, and develop
a risk estimation tool to increase users’ awareness before
they publish their personal images in OSNs.

TABLE 1
Summary of the existing liveness detection methods.

Types of liveness
detection

Liveness detec-
tion method

Features Detection
of attacks

Texture pattern

Maatta et al. [33] Local binary patterns Photo spoof
IDIAP team [7] Local binary patterns,

global histogram
Photo spoof

Akhtar et al. [3] Local features, global
structures

Photo spoof
Video spoof

Patel et al. [38] Moiré patterns Video spoof

Motion
Bao et al. [5] Optical flow field Photo spoof
Kollreider [7] Optical flow patterns Photo spoof
Tirunagari et
al. [43]

Face dynamics, local
binary pattern

Photo spoof
Video spoof

Real-time response
Pan et al. [37] Eyeblink Photo spoof
NG et al. [35] Eyeblink Photo spoof

Multimodal Galbally et
al. [13]

Face, fingerprint Photo spoof
Video spoof

Combination
AMILAB [7] Texture, face move-

ment, eye blink
Photo spoof

CASIA [9] Texture, face move-
ment

Photo spoof
Video spoof

2.2 OSN-based Facial Disclosure and Threat Mod-
el
The OSN-based facial disclosure (OSNFD) addresses the
issue when users’ face biometrics is involuntarily disclosed
by sharing personal images in OSNs. These disclosed
face biometrics would raise security risks against face
authentication systems.

The impact of the spoofing attacks was believed to be
limited due to the requirement that an adversary had to
be physically close to a victim in order to collect the
required information. Therefore, it is generally considered
sufficiently secure as an authentication factor for common
access protection [6].

However, this belief may be questionable since OS-
NFD becomes a common phenomenon. OSNFD supplies
an adversary with abundant facial images to exploit and
makes large-scale identity theft possible for those who
use face authentication. Our work investigates the OSNFD
threat and quantitatively measures its impacts. We consider
OSNFD-based attacks where an adversary attempts to forge
a valid input from image resources disclosed from OSNFD
so as to pass face authentication. Our study focuses on
image-based attacks unless explicitly mentioned.

The OSNFD threat may be mitigated with liveness
detection technologies, which rely on extra information
sources or heuristic algorithms to distinguish a live user
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from a captured image/video. All the existing sophisticated
liveness detection technologies associate with considerable
costs, which will be explained later in Section 5.1. This
may explain that only weak liveness detection technologies
are currently deployed on the face authentication systems
designed for consumer-level computing devices [25], [37].
For example, eye blinking detection is a common heuristic
used by many face authentication systems [15], [37], [46]
including Google’s Face Unlock; however, it can be easily
bypassed using two facial images as demonstrated in [39].
Similar tricks can also apply to other weak liveness de-
tection mechanisms such as head rotation detection. The
detailed evaluation on the effectiveness of the liveness de-
tection mechanisms will be presented in Section 3.2.4. Even
worse is that the existing liveness detection mechanisms
are disabled by default in most popular face authentication
systems [15], [30], [46], as they may have negative impacts
on accessibility.

3 USER STUDY AND EMPIRICAL RESULTS

In order to quantitatively measure the impacts of OSNFD,
we conduct a user study to collect real personal images
that have been shared in OSNs. The collected images are
used to test against real-world face authentication systems
chosen from the most popular face authentication products
in terms of user base [16], [45]. Among these face au-
thentication systems, Face Unlock [15], Facelock Pro [12],
and Visidon [46] are designed for the platforms on smart-
phones/tablets while Veriface [30], Luxand Blink [32], and
FastAccess [47] are designed for the platforms on laptops
or desktops. This section describes the detailed process of
data collection and the results of our empirical analysis. We
use the following classifications in our discussion.

First, we classify the security settings of a face authenti-
cation system into low and high. Most of face authentication
products [12], [15], [30], [32], [46], [47] provide very
limited choices on security settings that generally affect the
recognition threshold used in the face matching module. For
example, Google’s Face Unlock [15] does not provide any
option for users to adjust its security strength. Most of our
tested products [12], [30], [32], [46], [47] only have two
options for users, labeled as “high accessibility” (i.e. low
security) and “high security”. Only Lenovo’s Veriface [30]
provides a scrollbar for users to adjust its security strength
from the lowest to the highest. Therefore, we use “low” to
indicate that a target system enforces the weakest security
protection, and use “high” to indicate the strongest security
protection achievable to the system.

Second, we classify face authentication systems into
mobile and traditional. A system is labeled as mobile if
it is used for smartphones or tablets, while a traditional
system is used for laptops or desktops. A mobile system is
usually more tolerant to varied environments, as it should be
accessible no matter where a user uses the device. Laptops
is considered as traditional as it is not expected to be
used from anywhere at any time like what users expect
smartphones and tablets.

Third, we classify users into different groups according
to the pattern of their sharing behaviors. As observed in our
study, it is quite common that a user tends to upload edited
images where facial landmarks are significant changed to
create better visual appeal. Therefore, it is also an important
factor that needs to be considered.

These classifications represent three major factors that
affect the effectiveness of OSNFD-based attacks, which
are security settings, target platforms, and user behaviors,
respectively. We use them as controlled parameters to
evaluate the severity of OSNFD, and more sophisticated
statistical analysis will be given in the next section to
identify the key attributes that can be used to mitigate the
OSNFD threat.

3.1 User Study and Data Collection
74 participants are involved in our user study, including
36 males and 38 females with an age range between 19
and 35. Most of these participants are university students.
Each participant is paid with 10 dollars as a compensation.
The study consists of three parts, all conducted in a quiet
room. In the first part, we ask each participant to select
and download 20 facial images published within the last
12 months in popular OSNs such as Facebook, Google+,
Instagram, and etc. The downloaded facial images are used
for spoofing attacks to the face authentication systems in
our test. A facial image is defined as an image where a
participant’s face can be seen. A participant’s face may
not be perfect due to many negative effects such as blur,
occlusion (e.g. covered by a sunglasses), head rotation.
Such negative effects are examined in our study.

In the second part, we capture each participant’s facial
images with 35 controlled head poses and 5 typical facial
expressions using a Canon EOS 60D (18.0-megapixel D-
SLR CMOS camera). The resulting images are 5184×3456
in size with the inner pupil distance of the subjects typically
exceeding 400 pixels. 35 controlled head poses are specified
by both horizontal and vertical rotations. Rotation angles
are represented as (rotH , rotV ), where rotH is the angle
of horizontal rotation while rotV is the angle of vertical
rotation. The value range of rotH includes 0◦, 10◦ to
left/right, 20◦ to left/right, and 30◦ to left/right, while the
value range of rotV includes 0◦, 10◦ to up/down, and 20◦

to up/down. We choose these boundary values according
to the common restriction of existing face authentication
systems [1], which indicates that a participant cannot pass
user authentication if rotH exceeds 30◦ or rotV exceeds
20◦ degrees. In our test, the captured images with head
rotation are used to examine the impact of head poses to
the face authentication systems by displaying these images
to the camera on an LCD screen. They also serve as the
ground truth for labeling the head poses of downloaded
facial images.

Each participant’s facial images are captured with not on-
ly controlled head poses, but also typical facial expressions,
including neutral expression, smile without showing teeth,
smile showing teeth, closed eyes, and open mouth. The
images with facial expressions are used to investigate the
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impact of facial expressions to the target face authentication
systems. During image capturing, a continuous lighting
system is used to eliminate the shadow on participants’
faces.

We use a helmet equipped with a gyroscope to control the
head rotation of participants. The use of gyroscope achieves
a low measuring error of less than 1 degree for measuring
head rotation in all cases [34]. For each head pose, we ask
participants to face to the DSLR camera and help them
adjust their heads to the frontal position in the way similar
to [20]. Then the participants rotate their heads to the
required angles with help of the gyroscope. The gyroscope
generates real-time rotation angles and broadcasts them via
WiFi. This rotation information is received and displayed
on an iPad screen, and shown to the participants. Then,
we ask the participants to hold their head poses while we
remove their helmet gently without causing any movement
of their heads during the helmet removal. After that, the
images of each head pose are captured immediately.

In the final part, each participant is asked to fill in
a questionnaire for collecting the participant’s attitudes
towards the usage of face authentication systems and OSNs.

3.2 Empirical Results

Based on collected images, we inspect the realistic threat
of OSNFD against the latest versions of popular real-world
face authentication systems. Our experiment procedure is
similar to prior work [8], [28], which is described as
follows: Each participant enrolls his/her frontal images into
all tested face authentication systems in a quiet room with
normal lighting. During the enrollment, each of the face
authentication systems enrolls participant’s faces via a built-
in camera. Note that except Facelock Pro, the enrollment
processes of the tested face authentication systems are
automatic and similar which do not require any partici-
pants’ interference. The enrollment process by Facelock
Pro differs from the other face authentication systems in
that users need to click on a button in order to trigger
image capturing by Facelock Pro. After enrollment, we use
each participant’s own OSN images to test whether they
can be used to log in a target face authentication system
for his/her own account. The authentication processes of
these tested systems are automatic and essentially the same.
The participant’s OSN images are displayed on an LCD
screen with a resolution of 1600×900 pixels. The result on
whether a target system can be spoofed by an OSN image
is recorded for each target system and for each image.

In our user study, we are interested in vulnerable images
and vulnerable users. A vulnerable image, denoted by
V ulImage, is defined as a facial image which is wrongly
accepted as a genuine user by a face authentication sys-
tem during user authentication and therefore enables an
adversary to circumvent the face authentication system. The
examples of vulnerable/non-vulnerable images are shown in
Figure 2. A vulnerable user, denoted by V ulUser, is a user
enrolled in a face authentication system who has at least
one vulnerable image published in OSNs.

Fig. 2. Examples of vulnerable/non-vulnerable images

Table 2 shows that all tested face authentication systems
are vulnerable to OSNFD in general. On average, 39%
of OSN images and 77% of participants are vulnerable.
Among these face authentication systems, Visidon is more
vulnerable at its low security level, for which 68% of the
images and 97% of the participants are vulnerable. Note
that Google’s Face Unlock comes as a built-in feature
in all Android-based systems whose versions are higher
than 4.0 [15]; 45% of the OSN images and 86% of the
participants are vulnerable in this case.

TABLE 2
Overall percentage of V ulImage and V ulUser

V ulImage% V ulUser%

Face Unlock 45% 86%
Facelock Pro 46% 96%

Visidon 68% 97%
Veriface 27% 73%

Luxand Blink 20% 41%
FastAccess 33% 80%

Average 39% 77%

Although the percentage of vulnerable images is mod-
erate in Table 2, the quantity of vulnerable images is very
large due to the huge amount of images in OSNs. The
large amount of vulnerable images existing in OSNs create
an online arsenal for potential attacks. Since users usually
share their personal images with their friends in OSNs,
most of them tend to publish their images in which their
faces can be clearly viewed. Consequently, the percentage
of vulnerable users is high as observed in our study.

In the following, we analyze the security settings, target
platforms, and user behaviors to the effectiveness of OS-
NFD attacks in terms of vulnerable images and vulnerable
users. We also evaluate the effectiveness of the liveness
detection mechanisms available in the target face authen-
tication systems which can be used to mitigate OSNFD
attacks to a certain degree.

3.2.1 Impacts of Security Settings
Security settings specify the security strength of a face
authentication system against potential attacks. As previ-
ously explained, most of face authentication products [12],
[15], [30], [32], [46], [47] provide very limited choices
on security level. So we focus our analysis on lowest
and highest security level that can be provided by each
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system, which are denoted as low security and high security,
respectively. Since there is only one security level in Face
Unlock and the observed security strength of Face Unlock
is comparable to the other systems in low security level,
we classify its security level as low. As expected, Figure 3
shows that the face authentication systems in low security
level are facing more severe OSNFD threat than those in
high security level. On average, 40% of the images and 79%
of the participants are vulnerable for the face authentication
systems in low security level while 8% of the images
and 30% of the participants are vulnerable for the face
authentication systems in high security level.
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Fig. 3. Percentage of V ulImage and V ulUser in
different security levels

The change of security settings generally affects the
recognition threshold in the face matching module. As
the security level is raised, the recognition threshold be-
comes higher which imposes more restrictions for matching
between login facial image and pre-stored facial image.
Therefore the face authentication imposes more rigid re-
strictions on the login facial image. The major restrictions
observed in our study are head pose and lighting condition.

For head pose, we use acceptable head pose range to
measure the tolerance of a face authentication system on
head pose variations. It describes the head rotation range
of head poses with which at least 50% of the participants
successfully log in the face authentication systems. In these
tests, we use the images collected with controlled head
poses as test inputs (i.e. login images) for the systems
where the participants’ frontal face images are enrolled as
described at the beginning of Section 3.2. The results show
that the systems in low security are more tolerant for the
variations of head poses than the systems in high security
by about 10◦.

For lighting condition, we further classify it into different
types of illumination and low lighting [14], [26], [50].
The face authentication systems in low security level are
observed to have higher tolerance for variation of lighting
conditions than the systems in high security level. In our
study, illumination is observed in 27% (394 out of 1440)
of the OSN images while low lighting is observed in 18%
(266 out of 1440) of the OSN images. On average, 81%
of the OSN images with illumination and 79% of the OSN
images with low lighting cannot be used to log in the face
authentication systems in low security level while 96% of
the OSN images with illumination and 94% of the OSN
images with low lighting cannot be used to log in the
systems in high security level.

On the other hand, a face authentication system in low
security level has higher tolerance for varied login environ-
ments, which is necessary for the system to be usable in
the complex environments. Clear tradeoffs between security
and accessibility are observed on our tested systems at
different security settings. An increase in security strength
inevitably decreases the accessibility. We conduct a follow-
up experiment to collect quantitative evidence for the
impact of these tradeoffs.

20 participants are invited to this follow-up study. The
participants’ facial images have been enrolled in the face
authentication systems during our user study as described
in Section 3.2. To mimic different login environments, the
experiments are conducted between 2pm-4pm in a sunny
day at four fixed indoor/outdoor locations, including 1)
a meeting room with a normal lighting condition, 2) a
meeting room with a dim lighting condition, 3) outdoor
ground in the sunshine, and 4) shelter of a building. This
setting simulates a situation when a user registers to an
authentication system in one place, but uses it in many
other places. The participants are asked to login to each
face authentication system without activating any liveness
detection. In this experiment, no OSN images are used;
only live legitimate users attempt to login. Each participant
has at most three chances for each login before we record
it as a false rejection.

Table 3 shows the false rejection rates of the face
authentication systems at the low security level are lower
than those at the high security level. The highest false
rejection rate observed is 85% for Veriface at its high
security level. This will cause a significant concern on the
accessibility. From our questionnaire on user perception,
70% of the participants think it is important to successfully
log in their smartphones, tablets, or laptops at the time
they want to use. If the face authentication system is not
always functional, 67% of the participants give up using
the system which causes the serious accessibility problem
to their devices. This may also explain why the popular
face authentication systems always use low security level
by default.

TABLE 3
Significant increase in false rejection rates when using

high security level settings. The increments of false
rejection rates are more significant for traditional
platform-based systems (the last three systems).

System Security
level

Room+
normal
lighting

Room+
dim
lighting

Outdoor
ground

Shelter

Face Unlock N/A 0% 5% 10% 0%

Facelock Pro
Low 0% 10% 10% 0%
High 0% 45% 60% 25%

Visidon
Low 0% 5% 5% 0%
High 5% 55% 65% 50%

Veriface
Low 0% 25% 35% 20%
High 10% 60% 85% 60%

Luxand Blink
Low 0% 30% 50% 45%
High 5% 55% 70% 55%

FastAccess
Low 0% 15% 30% 15%
High 5% 55% 65% 55%
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3.2.2 Impacts of Target Platforms

The target platform of a face authentication system imposes
the platform-specific requirements on both security and
usability. In our tested systems, Face Unlock, Facelock
Pro, and Visidon are targeting for mobile platform, while
Veriface, Luxand Blink, and FastAccess are targeting for
traditional platform.

Figure 4 shows that the OSNFD threat for mobile plat-
form is generally more severe than the OSNFD threat for
traditional platform. On average, in low security level, 53%
of the images and 93% of the participants are vulnerable
for the face authentication systems on mobile platform
while 27% of the images and 64% of the participants are
vulnerable for the systems on traditional platform. In high
security level, 10% of the images and 43% of the partic-
ipants are vulnerable for the face authentication systems
on mobile platform while 7% of the images and 22% of
the participants are vulnerable for the face authentication
systems on traditional platform.
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Fig. 4. Difference in V ulImage and V ulUser between
systems targeting for mobile platform and traditional
platform.

These results clearly show the difference caused by
platform-specific requirements. Compared to a traditional
system, a mobile system is usually designed to be more
robust and more tolerant to varied environments such as
outdoor environment in order to meet accessibility expec-
tation by users. Meanwhile it leads to the more severe
OSNFD threat for mobile platform based systems. This
difference is confirmed by the results of our questionnaire,
which shows that 91% of the participants believe that it is
important to log in smartphones or tablets in both indoor
and outdoor environment while only 36% of the participants
think it is important to log in laptops in both indoor and
outdoor environment.

This difference is also revealed in our tests on head
pose and lighting condition. Our results show the systems
targeting for mobile platform have higher tolerance for
variations of the head poses than the systems targeting for
traditional platform by about 10◦.

Our tests on lighting conditions further show the face
authentication systems targeting for mobile platform are
more tolerant to variations of the lighting conditions. In
our study, 81% of the OSN images with illumination and
77% of the OSN images with low lighting cannot be used to
log in the face authentication systems targeting for mobile
platform, while these rates increase to 96% for the images

with illumination and 96% for the images with low lighting
on traditional platform.

3.2.3 Impacts of User Behaviors
The difference in user behavior is another major factor in-
fluencing the quality of shared images that decides whether
these images can be eventually used for successful OSNFD-
based attacks. Our study reveals that the participants who
publish more facial images in OSNs are not necessarily
more vulnerable than those who publish less facial images
in OSNs. In fact, the OSNFD threat is more severe among
the participants who publish facial images with higher
quality in OSNs.
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Fig. 5. Difference in V ulImage and V ulUser between
females and males

To illustrate the impact of user behaviors, we use the
different sharing behaviors and the different OSNFD threat
between females and males as example. In our study,
female participants are reported to publish facial images
in OSNs more frequently than male participants in general.
On average, each of the female participants publishes 65
facial images per year while each of the male participants
publishes 34 facial images per year. However, the OSNFD
threat for the females is less severe than that for the males,
as shown in Figure 5.

This can be explained by the lower quality of the OSN
images published by the females. We find that the female
participants are more likely to publish blurred images,
edited images, or images with their makeup. The blur,
edit, and makeup can degrade the quality of an image and
therefore lead to the difficulty in face recognition [10], [23].
In our study, 12% of the OSN images suffer from these
negative effects. Among these low quality images, 61% are
published by the females while only 39% of the images are
published by the males. All of these blurred, makeup, or
edited images fail to pass at least one face authentication
system.

3.2.4 Effectiveness of Liveness Detection
Liveness detection can be used to mitigate OSNFD attacks.
The purpose of liveness detection is to distinguish between
a real face and a fake face. Among the six tested face
authentication systems, liveness detection mechanisms are
available on three of them. In particular, Face Unlock and
Visidon’s liveness detection detects eye blink while Veri-
face’s liveness detection detects head rotation1. We examine

1. At the moment of activating liveness detection, Face Unlock and
Visidon show users messages requiring the users to blink their eyes while
Veriface shows users messages requiring the users to rotate their heads.
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the effectiveness of these liveness detection mechanisms
against OSNFD attacks.

We randomly choose 20 subjects (including 10 females
and 10 males) and their OSN images to test the available
liveness detection mechanisms. In order to imitate the re-
quired facial motions including eye blink and head rotation,
we use Photoshop software to modify these images as
shown in Figure 6. In particular, for imitating eye blink,
we firstly replace the eyes in each original image with two
black lines to imitate the closed eyes. Then the original
image with open eyes and the modified image with closed
eyes are displayed on an LCD screen alternatively and
quickly so as to imitate eye blinks [39]. To imitate head
rotation, we firstly flip the face in each original image
containing horizontal head rotation ranging between 10◦

and 20◦ and generate a face image with mirrored head
pose. Then the original image and the modified image with
a mirrored head pose are displayed on an LCD screen
alternatively and quickly so as to imitate the head rotation
as required by Veriface and other head rotation based
liveness detection.

Fig. 6. Modified sample facial images

Figure 7 shows that the liveness detection mechanisms
which we test can still be bypassed due to OSNFD attacks.
When the liveness detection mechanisms are turned off, on
average, 62.5% of images and 90% of users are vulnerable.
After the liveness detection mechanisms are turned on,
18.8% of images and 73.3% of users are vulnerable on
average.
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Fig. 7. Percentage of V ulImage and V ulUser for three
face authentication systems where liveness detection
is turned on/off

The detection of eye blink and head rotation relies
on accurate detection of facial landmarks, including eyes,
mouth, nose, and ears, which requires high-quality login
facial images with high resolutions and good lighting

conditions [34], [50]. This reduces significantly the per-
centage of vulnerable images when the liveness detection
mechanisms are turned on. However, since most images are
high quality, the decrease in the percentage of vulnerable
users is moderate, which is still high even if the liveness
detection mechanisms are turned on.

In our user study, the eye blink based liveness detection
on Face Unlock and Visidon is more vulnerable to OSNFD
attacks than the head rotation based liveness detection
on Veriface. With liveness detection, on average, 24.3%
of images and 90% of users are vulnerable for Face
Unlock and Visidon while 8% of images and 40% of
users are vulnerable for Veriface. Compared to the eye
blink based liveness detection, the head rotation based
liveness detection put more restrictions on the quality of
login facial images because the detection of head rotation
usually requires an accurate localization of multiple facial
landmarks including eyes, nose, mouth, and ears. It is
thus more difficult for attackers to discover and manipulate
appropriate facial images to bypass the liveness detection
on Veriface as compared to Face Unlock and Visidon. We
also examine Visidon and VeriFace in high security level
with liveness detection on. In particular, the percentages of
the vulnerable images for Visidon and VeriFace decrease
to 15% and 2%, respectively, while the percentages of the
vulnerable users for Visidon and VeriFace decrease to 50%
and 25%, respectively.

We further evaluate the accessibility of the face authenti-
cation systems with liveness detection activated by a follow-
up study. 20 participants are asked to login to the three
face authentication systems with liveness detection on. The
results of our study show that the false rejection rates on
the systems with their liveness detection on are higher than
those with their liveness detection off, especially for the
outdoor environments where mobile devices and laptops
are usually used. The highest false rejection rate observed
is 95% for Veriface. This is because the systems with
their liveness detection on impose more restrictions on
the quality of login images and the environments of login
process. The activation of liveness detection leads to lower
accessibility to end users.

TABLE 4
The false rejection rates of three face authentication

systems with liveness detection on.

System Security
level

Room+
normal
lighting

Room+
dim
lighting

Outdoor
ground

Shelter

Face Unlock N/A 0% 5% 20% 0%

Visidon
Low 0% 5% 15% 0%
High 5% 65% 80% 60%

Veriface
Low 0% 40% 55% 40%
High 20% 80% 95% 75%

4 RISK ESTIMATION

Although the OSNFD threat is significant as shown in the
previous section, we observe the effectiveness of OSNFD-
based attacks may be significantly reduced by manipulating
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certain attributes of facial images. In this section, we
examine these key attributes via statistical analysis in terms
of the three major factors including security settings, target
platforms, and user behaviors which affect the effectiveness
of OSNFD-based attacks. These key attributes are used to
develop an estimation tool for end users to calculate the
risk of their shared images.

4.1 Key Attributes

From the theoretical perspective, there are still many chal-
lenges for face recognition algorithms. These challenges
also become key attributes that limit the effectiveness of
spoofing attacks. The common attributes addressed in the
prior study [1] include head pose, lighting condition, facial
expression, facial occlusion, and image resolution. Beside
these traditional attributes, we also observe blur, facial
makeup, and editing (using Photoshop-like software) as
the extra key attributes which often appear in the real
world images shared in OSNs, though they are usually not
considered in the controlled settings of traditional study on
face authentication. We describe the details of these key
attributes as follows.

Head pose is a prominent challenge to face recognition.
The performance of face recognition algorithms in face
authentication can be significantly affected if the head pose
in a login image and the head pose in the pre-stored facial
image are different [50]. The affecting variations of a head
pose mainly include two out-of-plane rotations, namely
horizontal rotation and vertical rotation [34].

Lighting condition is another prominent challenge in the
realm of face recognition. The variation of lighting condi-
tions mainly includes illumination and low lighting [14],
[26], [50]. The illumination is mainly caused when direct
light shoots on the 3D structure of a face and strong shad-
ows can be casted which diminish facial features [14], [50].
The illumination can be classified into side illumination
and top/bottom illumination [14]. Low lighting is another
negative lighting condition, which usually happens when a
facial image is taken in dim environment or with extreme
bright background. The low lighting may diminish facial
features since the luminance in face region is too low for
face recognition algorithms to recognize [26].

Facial expression such as smile, surprise, etc, can
change face geometry and therefore affect the performance
of face recognition algorithms [1]. The common facial ex-
pressions include neutral expression, smile without showing
teeth, smile showing teeth, closed eyes, open mouth, and
other expressions.

Facial occlusion often happens in real world due to
additional accessories on face, such as sunglasses, scarf,
hands on face, etc. The occlusion can result in the failure
of face appearance representation or imprecise facial feature
searching and localization, and therefore have negative in-
fluence on the performance of face recognition algorithms.
The common facial occlusions include forehead occlusion,
eyebrow occlusion, eye occlusion, cheek occlusion, and
mouth occlusion [1].

The resolution of an image can affect accuracy of facial
landmark localization and therefore influence the perfor-
mance of face recognition algorithms. As the resolution
of face images decreases, the performance of the face
recognition algorithms drops [50].

The blur in a facial image causes difficulty in accurate
localization of edges of facial region and facial landmarks
(i.e. eyes, nose, mouth, etc) by face recognition algorithms
and therefore harms the performance of the algorithms.

Facial makeup can substantially change the appearance
of a face and facial landmarks, such as the alternations of
perceived facial shape, nose shape, location of eyebrows,
etc. These alternations by the facial makeup, especially by
non-permanent facial makeup, challenge face recognition
significantly [10].

The editing of an image introduces noise pixels and
changes the appearance of the face in the image [2], [10].
Face recognition algorithms can be affected by these noises
and appearance changes due to the edited image.

The labeling of the collected OSN dataset is performed
by three researchers with the help of some automatic
tools. For each OSN image, the face region in the image
is firstly extracted using popular face detection software
Picasa [17]. Then the resolution of the face region, which is
a positive number, is automatically calculated by a program
we developed, named ResolutionCalculator. The head poses
in the image, which vary between 0 and 90, are estimated
with typical head pose estimation algorithms including
POSIT and LGBP [34]. The estimated head poses are also
manually validated by comparing the OSN image and the
participant’s images with controlled head poses which are
captured in our user study. The rest of the attributes in the
image are manually labeled with binary values “yes/no”
(i.e. 1 or 0) by three researchers in a majority-vote manner.
In particular, we manually label the attributes related to
lighting conditions according to the shadow and histogram
of face region. The attributes related to facial expressions,
facial occlusions, blur, makeup, and edit are manually
labeled by comparing the OSN image with the images
captured earlier in our user study.

All these attributes significantly degrade the image qual-
ity and therefore lead to the failure of OSNFD-based
attacks. They are used as input parameters to build our
risk estimation tool in the next section.

4.2 Risk Estimation Model
We use binomial logistic regression [22] to model the
impact of the key attributes introduced in the previous
subsection. The notions of these attributes are defined in
Table 5. Then the key attributes of each image can be
represented by an input parameter vector, denoted as V =
(rotH , rotV , illsd, illtb, dm, bg, FExn, FExs, FExst,
FExce, FExm, FExot, Occfh, Occeb, Occeye, Occchk,
Occmh, res, blur,mk, ed). For the output, we assign an
OSN image to either a positive class or a negative class.
The positive class means the image can be used to pass the
login of a specific face authentication system, otherwise the
image will be in the negative class.



10

TABLE 5
Parameters related to the key attributes

Attribute Parameter Notation

Head pose
Horizontal rotation rotH

Vertical rotation rotV

Lighting condition

Side illumination illsd
Top/bottom illumination illtb

Dimness dm

Bright background bg

Facial expression

Neutral FExn

Smile without showing teeth FExs

Smile showing teeth FExst

Closed eyes FExce

Open mouth FExm

Other expressions FExot

Facial occlusion

Occluded forehead Occfh

Occluded eyebrow Occeb
Occluded eye Occeye

Occluded cheek Occchk

Occluded mouth Occmh

Resolution Resolution res

Blur Blur blur

Facial makeup Makeup mk

Edit Edit ed

Binomial logistic regression is a classic probabilistic
classification model [22], which accepts multiple predictor
variables as inputs, and predicts the outcome for a depen-
dent variable which has only two possible types, such as
“positive” vs “negative”. Thus it is a proper tool to calculate
the probability of an image assigned to the positive class
based on the key attributes extracted from an OSN image.
Given a parameter vector Vi of a facial image i and a
face authentication system in a security level, the regression
function is

ln (pri/(1− Pri)) = β0 + β1v1 + · · ·+ βmvm (1)

where pri is the probability that an image i is assigned
to the positive class, v is a parameter in Vi, and β is a
regression coefficient. The risk score of the facial image
i is the value of pri. The facial image i is assigned to
the positive class if pri ≥ 0.5. Otherwise, i is assigned
to the negative class. The correctness of these assignments
is verified with the ground truth data collected from the
previous empirical analysis.

For each combination of face authentication system and
its security level, we examine the model fitting of binomial
logistic regression and the significance of the parameters by
using the real world OSN images and run binomial logistic
regression on SAS software [42]. The detailed statistical
test results are reported in Appendix A. The likelihood ratio
test and wald statistic [22] for all the face authentication
systems are smaller than 0.0001.

Our statistical analysis shows the most influential at-
tributes are resolution res (p-value p < 0.0001), occlud-
ed eye Occeye (p = 0.0255), occluded mouth Occmh

(p = 0.0223), makeup mk (p = 0.0094), blur blur
(p = 0.0283), dimness dm (p = 0.0413), and illumination
illsd (p = 0.0469). Resolution res has positive impact
on the risk of OSNFD. It is because higher resolution

contributes to more accurate facial landmark localization
and results in better performance of face recognition and
increases the risk of OSNFD. The occluded eye Occeye,
occluded mouth Occmh, makeup mk, blur blur, dimness
dm, and illumination illsd have negative impact and lower
the risk of OSNFD. In particular, the occluded eye and
occluded mouth leads to decrease in the performance of
face recognition algorithms, as accurate localization of
eyes and mouth is important for the alignment process
in all major face recognition algorithms [1]. Makeup can
significantly change the appearance of the face and the
facial landmarks and therefore lowers the performance
of face recognition. The blur, dimness, and illumination
are prominent attributes which cause difficulty in face
recognition since it diminishes facial features and leads to
difficulty in localization of these facial features.

The parameters related to other attributes, including head
pose and facial expression, are generally not statistically
significant. Among the collected OSN images, the varia-
tions of head pose and facial expression are limited since
users are usually cooperative when these images are cap-
tured and tend to publish the images from which they are
easily recognized. As observed in our study, the head poses
in most OSN images are within the acceptable head pose
ranges of the face authentication systems, which causes
the insignificance due to lack of samples with extreme
head pose. On the other hand, facial expressions observed
in most OSN images are only mild-mannered expressions
including neutral expression, smile without showing teeth,
smile showing teeth, closed eyes, open mouth. These
common expressions do not have significant impact as
they have been well handled in current face recognition
algorithms [1]. Other extreme facial expressions, such as
making faces, do significantly affect the face recognition,
but they are observed in only 5% of the OSN images.

In the following subsection, we further analyze the
detailed impacts of the key attributes from the three major
perspectives including security settings, target platforms,
and user behaviors which can affect the effectiveness of
OSNFD-based attacks as shown in 3.2.

4.2.1 Detailed Impacts of the Key Attributes
The security settings of the tested face authentication
systems can be configured to either low security level or
high security level. As shown in Table 9 and Table 10
in Appendix A, for evaluating the risk of OSNFD on
face authentication systems at the low security level, the
most influential attributes are resolution res (p < 0.0001),
occluded eye Occeye (p = 0.0014), occluded mouth Occmh

(p = 0.0079), makeup mk (p = 0.0068), blur blur
(p = 0.0283), dimness dm (p = 0.0248), and illumination
illsd (p = 0.0469). For evaluating the risk of OSNFD on
face authentication systems at the high security level, the
most influential attribute is resolution res (p < 0.0001).

From the low security level to the high security level,
the authentication systems raise the recognition threshold
and impose more rigid restrictions on the quality of login
facial images. In our study, for the systems at their low
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security level, the average resolution of vulnerable images
is 92481 pixels. However, for the systems at their high
security level, the average resolution of vulnerable images
increases to 111552 pixels. The resolution res makes a
significant contribution to the risk of OSNFD.

The face authentication systems are classified into mobile
platforms and traditional platforms. Our statistical analysis
shows that resolution res (p < 0.0001), head pose rotV
(p = 0.0029), occluded eye Occeye (p = 0.0223), occluded
mouth Occmh (p = 0.0223), makeup mk (p = 0.0094),
blur blur (p = 0.0012), and illumination illsd (p = 0.0239)
are significant attributes for evaluating the risk of OSNFD
on mobile platforms while resolution res (p < 0.0001),
blur blur (p = 0.0283), dimness dm (p = 0.0413), and
illumination illsd (p = 0.0469) are significant attributes for
evaluating the risk of OSNFD on traditional platforms.

Compared to the face authentication systems on mobile
platforms, the systems on traditional platforms impose more
rigid restrictions on the quality of login face images such
as higher image resolution and better lighting conditions.
Our results show that the average resolution of vulnerable
images for mobile platforms is 89633 pixels while the
average resolution of vulnerable images for traditional
platforms increases to 110747 pixels. Besides blur blur
and illumination illsd, the dimness dm makes a significant
contribution for evaluating the risk of OSNFD on traditional
platforms because the existence of dimness leads to a low
face recognition rate.

The quality of the facial images published by female
participants is generally lower, as it is presented in Sec-
tion 3.2.3. According to Table 8 in Appendix A, makeup
mk (p = 0.0002), resolution res (p < 0.0001), occluded
eye Occeye (p = 0.0014), and head pose rotV (p = 0.0008)
are the most influential attributes for evaluating the risk
of OSNFD for female participants while resolution res
(p < 0.0001) is most influential attribute for evaluating
the risk of OSNFD for male participants.

Female participants are more likely to publish their
facial images with makeup, non-frontal head poses, low
resolutions, and occluded facial landmarks. These attributes
can degrade the quality of images and lead to a low face
recognition rate. Thus, makeup mk, resolution res, occlud-
ed eye Occeye, and head pose rotV make a significant
contribution to the evaluation of the risk of OSNFD for
females. Compared to the female participants, the risk of
OSNFD for the facial images published by male partici-
pants is mainly affected by image resolution res.

4.3 Model Evaluation

To evaluate the performance of the proposed risk estimation
tool, we use a subject-disjoint cross-validation method. In
each round, for each of the face authentication systems at
a specific security level, we randomly choose 80% of the
OSN images to train the model and use the risk estimation
tool to automatically classify the rest of the images. The
selection of the images for training set and evaluation set
is subject-disjoint. The above process is repeated by 10

rounds. The performance is measured by standard classi-
fication evaluation metrics, including precision, recall, and
F1 score [40].
Precision is defined as the percentage of the true positive

images among the images assigned to the positive class
by the risk estimation tool, which can be calculated by
tp/(tp + fp) where tp is the number of true positive
images and fp is the number of false positive images.
Recall is defined as the percentage of the true positive
images detected by the risk estimation tool among the
positive images in ground truth, which can be calculated by
tp/(tp+fn) where tp is the number of true positive images
and fn is the number of false negative images. F1 score
considers both the precision and the recall, which can be
calculated by F1 = 2×precision×recall/(precision+recall).

Table 6 shows the performance evaluation metrics of the
risk estimation tool. On average, the risk estimation tool
achieves a precision of 81%, a recall of 83%, and an F1
score of 82%. The performance evaluation indicates that the
risk estimation tool detects most of the vulnerable images
which can lead to successful OSNFD-based attacks if these
images are published in OSNs.

TABLE 6
Effectiveness of our risk estimation tool

System Security level Precision Recall F1 score
Face Unlock N/A 73% 77% 75%

Facelock Pro
Low 70% 69% 69%
High 81% 75% 78%

Visidon
Low 79% 90% 84%
High 86% 92% 89%

Veriface
Low 79% 68% 73%
High 90% 98% 94%

Luxand Blink
Low 84% 87% 85%
High 87% 90% 88%

FastAccess
Low 77% 67% 72%
High 89% 95% 92%

Average N/A 81% 83% 82%

5 DISCUSSION

5.1 Costs of Liveness Detection

The liveness detection mechanisms deployed on popular
face authentication systems include eye-blinking and head
rotation detection. The advantages of such liveness de-
tection include no additional hardware support, moderate
quality of input images, and relatively low usability cost,
which are important to consumer-level products as they are
price-sensitive and accessibility-first.

Various liveness detection mechanisms have been pro-
posed to enhance face authentication, including blinking
eyes, rotating head, smiling, frowning, extending tongue,
wrinkling nose, raising eyebrows, and opening mouth [18].
To evaluate the usability of such liveness detection mech-
anisms, we conduct an online survey among all 74 par-
ticipants in our user study. The online survey includes a
number of questions on a 5-points Likert scale to collect
the participants’ preference and perception on these mech-
anisms related to the facial motions and facial expressions.
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In the Likert Scale, 5 means most comfortable, while 1
means most uncomfortable from a user’s point of view.

Figure 8(a) shows that most users prefer blinking eyes
and smiling in liveness detection while wrinkling noses,
frowning, and extending tongue have a lower usability. On
the other hand, the facial motions and facial expressions
with higher Likert scores can be easily manipulated or they
are more likely to appear in OSN images. Our study shows
that blinking eyes can be easily manipulated by modifying
facial images and smiling is observed in 65.7% of OSN
images. Therefore, the liveness detection based on them is
more vulnerable to the OSNFD attacks although more than
80% of users like to use them, as shown in Figure 8(b).
In contrast, the less preferable facial expressions, including
wrinkling noses, frowning, and extending tongue, are ob-
served in only 4.7% of OSN images. The liveness detection
based on these facial expressions can mitigate OSNFD
attacks more effectively, because it is more difficult for
adversaries to obtain suitable OSN images which contain
different facial expressions and similar conditions so that
they can be stitched together to simulate facial motions.
Unfortunately, only 47.7% of the users would like to
conduct such facial expressions in our user study.
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3.35
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3.36

Blinking eyes
Smiling
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Extending tongue

Wrinkling nose
Raising eyebrows

Rotating head
Opening mouth
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(a) 5-point Likert scale scores,
ranging from 1 (most uncomfort-
able) to 5 (most comfortable), for
the facial motions and facial expres-
sions
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Raising eyebrows

Rotating head
Opening mouth
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% (Users)

(b) Percentage of users choosing to
activate liveness detection based on
the facial motions and facial expres-
sions

Fig. 8. Usability of facial motions and facial expres-
sions commonly used in liveness detection

TABLE 7
Costs associated with existing liveness detection for

face authentication, where * indicates that a significant
cost is incurred for end users or device manufacturers.

Types of
liveness
detection

Examples of
liveness detection
methods

Image
quality

Additional
hardware

Usability
cost

Real-time
response

Eye blinking [15],
[46], head
rotation [30],
facial expression

Low/Middle No Middle/High*

Motion of
3D face

Optical flow from
holistic face [5],
optical flow
lines [25]

High* No Low

Texture
pattern

LBP based texture
analysis [7], [33]

High* No Low

Multimodal Face and finger-
print or iris [13]

Middle/High* Yes* Middle/High*

The liveness detection methods based on facial motions
and facial expressions require real-time response during
face authentication. Besides the liveness detection methods
in this category, several sophisticated liveness detection

techniques, including texture pattern, motion of 3D face,
and multimodal techniques, have been proposed for face
authentication [13], [24]. However, all of them are associ-
ated with considerable costs as shown in Table 7 [24], [37].
Their costs include requiring additional hardware, high-
quality images, ideal environments, and high user collab-
orations. They may not be suitable for existing consumer-
level face authentication systems and need to be further
improved.

However, more powerful front-facing cameras with high-
er speed and resolution and various sensors are emerging in
mobile devices, which open up new possibilities for reliable
and usable liveness detection including both hardware-
based liveness detection and multi-biometrics.

5.2 Implications of Our Findings
Face authentication does provide an attractive alternative of
user authentication for its non-intrusive and zero-memory
procedure. However, the appearance of OSNFD brings
a significant threat to question the practicality of face
authentication as a usable authentication factor. Nowadays,
a huge amount of personal facial images/videos have been
published in OSNs that can be accessible to potential adver-
saries without the previously required physical proximity.
Therefore, face biometrics can now be disclosed in large
scale and acquired by adversaries remotely. Face biometrics
are no longer secrets only owned by the users and can be
disclosed to anyone who has access to victim’s personal
images shared in OSNs.

Raising the security level of face authentication systems
could mitigate the OSNFD threat by scarifying the accessi-
bility, which leads to the inconvenience for legitimate users.
Liveness detection is another major countermeasure to
mitigate the spoofing attack against the face authentication
systems. Unfortunately, existing liveness detection tech-
niques available on consumer-level computing devices can
be easily circumvented by one or two facial images as pre-
sented in Section 3.2.4. More reliable liveness detection like
multi-modal mechanisms usually relies on using additional
authentication factor (e.g. another biometrics such as voice
and fingerprint). This introduces another liveness detection
problem for the additional authentication factor, which may
not be reliable. For example, voice and fingerprint can also
be spoofed. Even worse, more serious privacy concerns
will rise if a system requires to collect many biometrics
information from a user [49], which may eventually cause
the rejection of the liveness detection mechanism.

The current face authentication systems are not strong
enough to thwart OSNFD attacks. The existing liveness
detection techniques are either too weak to defend against
OSNFD attacks or not suitable to be deployed on consumer-
level devices. More reliable and usable liveness detection
is needed to mitigate the threats.

5.3 Limitations
Ecological validity is a challenge to any user study. Like
most prior research [19], [38], our study only recruits
students in university. These participants are more active
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in using consumer-level computing devices and sharing
images in OSNs. Thus the evaluation of the OSNFD may
vary with other populations.

In the user study design, it is still a challenge to collect
facial images with precisely controlled head poses [34].
Like the prior head pose data sets [20], [29], the accuracy
of the head poses in our data set may be affected by the
poor ability of the participant to accurately direct his/her
head, the unconscious movement of human beings and limit
of resources. In another experiment of examining the false
rejection rates of the face authentication systems, we choose
4 locations to mimic different login environments in daily
life. Since it is impossible for all the participants to do the
tests at the same time and at the same physical positions,
the background of image inputs captured by the camera
may change.

Another challenge in our study is to accurately estimate
parameters [27] such as head pose, illumination, and make-
up in our collected OSN dataset. Since the accuracy of
automatic labeling tools is limited [1], we manually label
the OSN images with the help of automatic tools.

It is also possible to further improve our risk estimation
tool. To our best knowledge, our work is the first attempt
to semi-automatically detect the vulnerable images that can
be used to attack face authentication. Our current risk esti-
mation tool can serve as a baseline for future improvement
by refining the key parameters and the statistical model.
It is also valuable to incorporate automatic high accuracy
labeling for those hard-to-label attributes like illumination
and facial makeup, once the ongoing research [10], [14],
[34] resolves these challenges.

6 CONCLUSION
In this paper, we investigated the threat of OSN-based
facial disclosure (OSNFD) against some real-world face
authentication systems. Our results show that these face
authentication systems are vulnerable to OSNFD attacks.
We analyzed the vulnerability of typical face authentica-
tion systems against OSNFD attacks in terms of security
settings, target platforms and user behavior. We further
develop a risk estimation tool to help users evaluate the
risks of publishing their personal images in OSNs. We also
examined the existing liveness detection methods in the
presence of OSNFD attacks and showed that the effective-
ness and usability of the existing liveness detection are not
sufficient and need to be improved.
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TABLE 9
The statistical test results for the risk of OSNFD on
different face authentication systems at low security

level.

Attributes Face
Unlock

Facelock
Pro

Visidon Veriface
Luxand
Blink

FastAccess

rotH
P value 0.8207 0.6517 0.6068 0.441 0.1371 0.9559
Coefficient -0.00098 -0.00172 -0.00201 -0.00407 -0.0128 -0.00027

rotV
P value 0.0005F 0.0002F 0.7292 0.8102 0.1242 0.0011F
Coefficient -0.0313 -0.0299 -0.00283 -0.00246 -0.0246 -0.0315

illsd
P value <.0001F 0.0239F 0.0206F 0.0469F 0.0414F 0.034F
Coefficient -1.5931 -0.7479 -0.6632 -0.7501 -2.2443 -0.6005

illtb
P value 0.2152 0.5554 0.337 0.6778 0.746 0.7218
Coefficient -0.5369 -0.2072 -0.2962 -0.2357 -0.4123 -0.195

dm
P value 0.2765 0.0248F 0.0035F 0.0004F 0.0049F 0.0228F
Coefficient -0.2414 -0.4608 -0.5629 -1.2419 -2.2378 -0.6126

bg
P value 0.5851 0.6232 0.1426 0.2427 0.2585 0.5456
Coefficient -0.2138 -0.1686 -0.4182 -0.638 -1.3363 -0.3025

FExn
P value 0.4701 0.5031 0.9539 0.4619 0.6762 0.4608
Coefficient 1.1708 12.1979 1.7251 1.7988 1.8263 2.4745

FExs
P value 0.6091 0.6978 0.9533 0.8321 0.9083 0.7664
Coefficient 1.3664 0.6781 12.3712 0.4969 -0.496 0.7354

FExst
P value 0.6674 0.9167 0.9547 0.8156 0.697 0.996
Coefficient 1.1483 0.1826 12.002 -0.5469 -1.6799 0.0125

FExce
P value 0.9982 0.7453 0.9623 0.9883 0.9932 0.9067
Coefficient 0.00669 -0.7071 9.9899 -13.4194 -13.7513 0.3331

FExm
P value 0.9982 0.7453 0.9623 0.9883 0.9932 0.9067
Coefficient 0.00669 -0.7071 9.9899 -13.4194 -13.7513 0.3331

FExot
P value 0.6135 0.6329 0.9608 0.7905 0.7797 0.7205
Coefficient -1.3496 -0.8336 10.3791 -0.6231 -1.2065 -0.886

Occfh
P value 0.2785 0.3658 0.0801 0.0137F 0.1161 0.0885
Coefficient -1.2366 0.2072 -0.4292 -0.7965 -0.8285 -0.6359

Occeb
P value 0.6332 0.17 0.2477 0.6318 0.0579 0.2146
Coefficient -0.1374 -0.3652 -0.3076 -0.1757 -1.3736 -0.4163

Occeye
P value <.0001F 0.0014F <.0001F 0.0835 0.1596 0.0009F
Coefficient -2.3839 -0.8268 -1.2979 -0.668 -1.5658 -1.4977

Occchk
P value 0.0853 0.0124F 0.0355F 0.1415 0.5469 0.0909
Coefficient -0.5953 -0.7223 -0.5271 -0.5805 0.378 -0.6681

Occmh
P value 0.0005F 0.0001F 0.0007F 0.0079F 0.9721 0.0046F
Coefficient -1.8545 -2.1559 -1.2322 -2.1112 -15.1083 -1.9149

res
P value <.0001F <.0001F <.0001F <.0001F <.0001F <.0001F
Coefficient 1.9227 2.1419 3.2119 4.7961 8.2094 4.474

blur
P value 0.5405 <.0001F 0.0003F 0.0283F 0.0078F 0.0072F
Coefficient -0.2191 -1.6006 -1.0922 -1.1189 -2.4965 -1.3147

mk
P value <.0001F <.0001F <.0001F 0.0068F 0.9713 0.0001F
Coefficient -3.5659 -1.6768 -2.0062 -1.3347 -13.4519 -2.7998

ed
P value 0.4278 0.3935 0.2544 0.7024 0.0483F 0.8062
Coefficient -0.3167 -0.3378 -0.4549 -0.215 -1.9747 -0.1177

TABLE 10
The statistical test results for the risk of OSNFD on

different face authentication systems at high security
level.

Attributes Facelock
Pro

Visidon Veriface
Luxand
Blink

FastAccess

rotH
P value 0.3614 0.242 0.0511 0.883 0.082
Coefficient -0.00539 -0.013 -0.0296 -0.00147 -0.0213

rotV
P value 0.0029F 0.3448 0.4049 0.5589 0.1232
Coefficient -0.0352 -0.0198 -0.0312 -0.0116 -0.0397

illsd
P value 0.0974 0.7467 0.679 0.4299 0.8434
Coefficient -1.0475 -0.7183 -4.3193 -1.0409 -0.4704

illtb
P value 0.066 0.3217 0.917 0.0272F 0.6541
Coefficient -1.222 -2.2165 -1.0495 -2.8132 -3.7415

dm
P value 0.3431 0.0599 0.351 0.9508 0.0413F
Coefficient -0.3239 -1.6103 -5.8915 -13.8053 -2.3548

bg
P value 0.8877 0.6957 0.9844 0.9672 0.8458
Coefficient -0.1001 -5.4439 -0.1927 -11.3403 -0.4639

FExn
P value 0.657 0.9657 0.9896 0.828 0.9678
Coefficient 6.5169 8.1925 3.2357 6.7898 -6.7898

FExs
P value 0.8312 0.9785 0.9953 0.9662 0.9819
Coefficient 1.188 4.0849 3.7357 0.6321 3.8179

FExst
P value 0.9907 0.9874 0.9983 0.9731 0.992
Coefficient -0.0653 2.3982 1.3745 -0.502 1.6839

FExce
P value 0.9879 0.9879 0.9987 0.994 0.9912
Coefficient -12.9673 -2.551 1.0544 -11.515 -1.943

FExm
P value 0.9879 0.9879 0.9987 0.994 0.9912
Coefficient -12.9673 -2.551 1.0544 -11.515 -1.943

FExot
P value 0.8219 0.9796 0.9955 0.9546 0.9877
Coefficient -1.2547 -3.8644 3.5507 -0.8491 2.5989

Occfh
P value 0.089 0.1873 0.0003F 0.0919 0.0706
Coefficient 1.222 -4.0753 -5.6302 -2.28 -4.1719

Occeb
P value 0.1085 0.1116 0.0262F 0.7679 0.6558
Coefficient -0.8694 -1.7841 -3.6723 -0.2618 -0.6768

Occeye
P value 0.0223F 0.578 0.5021 0.0255F 0.585
Coefficient -1.6262 -6.2644 -4.1741 -1.4811 -3.6529

Occchk
P value 0.0611 0.3064 0.2473 0.4126 0.2548
Coefficient -1.1122 -1.3555 -7.6076 -0.8082 -1.7596

Occmh
P value 0.0223F 0.1787 0.4788 0.9708 0.524
Coefficient -2.5118 -1.8801 -8.1448 -14.8264 -7.7025

res
P value <.0001F <.0001F <.0001F <.0001F <.0001F
Coefficient 4.1225 10.8057 18.9514 8.512 12.0517

blur
P value 0.0012F 0.6068 0.3789 0.9698 0.4244
Coefficient -2.6587 -9.975 -9.4925 -15.2418 -8.9533

mk
P value 0.0094F 0.697 0.7208 0.9717 0.6202
Coefficient -2.6839 -6.6644 -3.3963 -12.5103 -5.1342

ed
P value 0.0461F 0.2398 0.5003 0.0287F 0.5336
Coefficient -1.5032 -1.5236 -10.3199 -2.9023 -9.4999

TABLE 8
The significant attributes for the risk of OSNFD among

females/males.

Attributes Female Male

rotV
P value 0.0008F 0.3212

Coefficient -0.0393 -0.0256

Occeye
P value 0.0014F 0.9952

Coefficient -0.8417 -0.209

res
P value <.0001F <.0001F

Coefficient 1.9447 9.2784

mk
P value 0.0002F 0.7873

Coefficient -0.9086 -7.0665
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APPENDIX A
STATISTICAL TEST RESULTS

In this section, we provide the detailed results of statistical
tests. The results include P values and estimated coefficients
of the key attributes. The statistically significant results are
marked with F.
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