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ABSTRACT
To attract more users on different platforms, many projects
release their versions in multiple programming languages
(e.g., Java and C#). They typically have many code snip-
pets that implement similar functionalities, i.e., cross-language
clones. Programmers often need to track and modify cross-
language clones consistently to maintain similar functional-
ities across different language implementations. In litera-
ture, researchers have proposed approaches to detect cross-
language clones, mostly for languages that share a common
intermediate language (such as the .NET language family)
so that techniques for detecting single-language clones can
be applied. As a result, those approaches cannot detect
cross-language clones for many projects that are not imple-
mented in a .NET language. To overcome the limitation,
in this paper, we propose a novel approach, CLCMiner,
that detects cross-language clones automatically without the
need of an intermediate language. Our approach mines such
clones from revision histories, which reflect how program-
mers maintain cross-language clones in practice. We have
implemented a prototype tool for our approach and con-
ducted an evaluation on five open source projects that have
versions in Java and C#. The results show that CLCMiner
achieves high accuracy and point to promising future work.

CCS Concepts
•Software and its engineering → Software libraries and
repositories; Software maintenance tools;

Keywords
cross-language clone; diff ; revision history

1. INTRODUCTION
Due to various considerations, many projects are imple-

mented in different programming languages. For example,
ANTLR [1] releases its versions in Java, C#, JavaScript and
Python. As another example, Lucene [2] release its versions
in Java and C#. When maintaining such projects, if a code

snippet is modified, programmers often copy their modifi-
cations to proper locations in other language versions, and
conduct further editions, according to the syntactic and se-
mantic requirements of the target programming language.
As a result, released versions can have similar code snippet
in different programming languages. In literature, Kraft et
al. [15] call such code snippets as cross-language code clones.

Cross-language clones can be inevitable and beneficent for
a project [13], even though sometimes code clones may be
harmful and could be removed [6]. It also becomes neces-
sary for programmers to locate and maintain cross-language
clones. For example, after a developer D1 develops a cross-
language project, another developer D2, who is not familiar
with the source code, joins the project. If D2 modifies a code
snippet in a programming language, all the clone instances
of the code snippet in another language may require similar
modifications. In particular, when a bug is reported in a
programming language, D2 often needs to check versions in
other languages. It can be tedious for D2 to locate the clones
manually. An automated cross-language clone detection tool
can be useful for D2 and reduce overlooks.

Researchers [9, 12, 10, 11] have proposed various detec-
tion approaches for code clones in one programming lan-
guage. Recently, researchers [15, 3] start to detect cross-
language code clones for the .NET language family. How-
ever, their approaches are limited to the languages that share
a common intermediate language, while many projects are
implemented in other programming languages that cannot
be addressed by existing approaches. Without a common in-
termediate language, it becomes more challenging to detect
cross-language clones. In this paper, we need to overcome
the following challenges to detect such clones:

Challenge 1. Existing approaches [15, 3] can detect
cross-language clones for the .NET language family, which
is built on the Microsoft intermediate language. These ap-
proaches assume that different programming languages share
a common intermediate language. As a result, it is feasible
to reduce source code to the intermediate language and to
detect clones based on such intermediates. However, most
languages do not have such a common intermediate lan-
guage, which makes the task challenging.

Challenge 2. Different programming languages have dif-
ferent grammars and APIs. As a result, even if code snippets
in different programming languages implements the same
functionality, their structures (even their lines of code) can
be different. It becomes more challenge to determine cross-
language clones than clones in a single language.



1 @@ -129,11 +129,11 @@ public class MachineProbe {
2 if (!t.isEpsilon() && !t.label.getSet().and(label).isNil() &&

next.contains(t.target)) {
3 if (p.associatedASTNode != null) {
4 - antlr.Token oldtoken = p.associatedASTNode.token;
5 + Token oldtoken = p.associatedASTNode.token;
6 CommonToken token = new CommonToken(oldtoken.getType(), oldtoken.getText());
7 token.setLine(oldtoken.getLine());
8 - token.setColumn(oldtoken.getColumn());
9 + token.setCharPositionInLine(oldtoken.getCharPositionInLine());
10 tokens.add(token);
11 break nfaConfigLoop; // found path, move to next
12 // NFAState set
13 ……

(a) MachineProbe.java

1 @@ -143,11 +148,11 @@ namespace Antlr3.Analysis
2 {
3 IToken oldtoken = p.associatedASTNode.Token;
4 CommonToken token = new CommonToken(oldtoken.Type, oldtoken.Text);
5 - token.Line = (oldtoken.Line);
6 - token.CharPositionInLine = (oldtoken.CharPositionInLine);
7 + token.Line = oldtoken.Line;
8 + token.CharPositionInLine = oldtoken.CharPositionInLine;
9 tokens.Add(token);
10 - goto endNfaConfigLoop; // found path, move to next
11 - // NFAState set
12 + // found path, move to next NFAState set
13 + goto endNfaConfigLoop;
14 }
15 ……

(b) MachineProbe.cs
Figure 1: A Pair of Matched Diffs

In this paper, we propose a new approach, CLCMiner,
which detects cross-language clones without intermediate
languages. Our approach is based on comparing revision
histories that are recorded in repository logs. Here, Diff is
a change-log tool that is widely used in Version Control Sys-
tems (VCS) such as Git, SVN, and Mercurial. In this paper,
we also call its generated delta as a diff. Each diff describes
changes of a code fragment in the source code.

The rationale for our approach is that, in multi-language
projects, versions in different languages can have similar diffs
since different versions should have similar functionalities
and developers may change all versions in similar ways (i.e.,
diffs) to perform similar tasks. Based on this insight, our
approach detects cross-language clones through comparing
the similarity among pieces of diffs in different programming
languages and aligning each diff with the most similar one,
which is called diff matching. Meanwhile, as a diff con-
tains both its changed lines of code and surrounding code
lines, it becomes easier to determine the granularity of cross-
language clones based on diffs.

This paper makes the following contributions:
• To the best of our knowledge, we proposed the first

approach that detects cross-language clones for pro-
gramming languages that do not have an intermediate
language. Our approach is based on comparing change
histories, and thus reduces cross-language clone detec-
tion into a diff matching problem.
• We conducted an evaluation on five open source projects

that release versions in Java and C#. Our results show
that our approach achieves an average precision of 87%
and recall of 93%.

2. RUNNING EXAMPLE
Figure 1 shows an example of two matched diffs in Java

and C# code fragments. We use the example to illustrate
the problem and how our approach works. The diff on the
left records two lines of changes in an if-block in Java class
MachineProbe, while the one on the right records four lines
of changes in a block in C# class MachineProbe.

The matched diff pair indicates a cross-language clone,
which has similar functionality. Both of the code fragments
intend to set the fields (i.e., line and charPositionIn-

Line) of the object token. The Java code achieves this
through method invocations (i.e., setLine() and setChar-

PositionInLine()), while the C# code achieves this through
assigning them directly. In addition, the Java jumps out of
the if-block through a break statement, while the C# code
uses a goto statement. Our approach extracts all the diffs
from the project (in both Java and C#), and matches each
diff in Java code to a diff in C# code according to the class

Log Parsing

MatchingNormalizing

Ranking & Reporting

Git Logs

AuthorCommit IDCommit
Date File Name

Token Stream

Clones

Diffs

Matched Diffs

Commit Message

Processing
Entity

Figure 2: Approach Overview

name (e.g., MachineProbe) and the text similarity (e.g., the
identifier names and the words). Thus, our approach is able
to detect the cross-language clone in Figure 1. The detailed
algorithm to match the diffs will be presented in Section 3.

3. APPROACH AND IMPLEMENTATION
3.1 Overview

The same functionality implemented in different languages
may diverge in the syntax, but the functionality in one lan-
guage (e.g, Java) can be used as a reference for implemen-
tation in another language (e.g., C#). As a result, similar
variable or method names can be used in such cases. To
detect cross-language clones, CLCMiner adapts natural lan-
guage processing (NLP) techniques to calculate the similar-
ity among pieces of diffs in different programming languages
and selects the most similar one for each diff as a pair of
matched diffs. Each pair of matched diffs refers to a pair of
potential clones. Base on the most similar one, we expect
that other similar ones can be further detected by single-
language clone detection tools. Therefore, CLCMiner so far
does not report the second most similar or other similar ones
for each diff. Finally, CLCMiner ranks the matched pairs of
diffs according to their diff similarity and reports top ones
as potential cross-language clones.

Figure 2 shows an overview of CLCMiner. Each blue rect-
angle represents a processing step, and each red rounded
rectangle represents an entity. The input of CLCMiner is
git logs, and its output is a ranked list of detected potential
cross-language clones. The approach has four main steps:

1. Log Parsing. This step extracts diffs and their at-
tributes from revision logs.

2. Normalizing. This step normalizes diffs and pre-
pares for the comparison in the next step.

3. Diff Matching. This step matches diffs in different
languages by comparing their similarity values. For
each diff, its matched one is the most similar one.

4. Ranking & Reporting. This step ranks matched
diffs according to their similarity and reports cross-
language clones.



Table 1: Attributes of Example Diffs
FN MachineProbe.java MachineProbe.cs

CID 7288ec550b52a1b969ce6f1db62377241c36ed66 e589c63956a9e06aec08b146c2871211c13b1d56
CA Sharwell Sharwell
CD Mon Mar 28 15:33:44 2011 -0800 Tue May 3 20:16:15 2011 -0800

CM
Convert all Tool grammars to ANTLR v3. The only remaining dependency on v2 is the
StringTemplate 3.2’s use of the v2 runtime

(C# 3) Code cleanup

TS

if t is epsilon t label get set and label is nil next contains t target if p associated ast
node null antlr token oldtoken p associated ast node token token oldtoken p associated
ast node token common token token new common token oldtoken get type oldtoken get
text token set line oldtoken get line token set column oldtoken get column token set char
position in line oldtoken get char position in line tokens add token break nfa config loop

i token oldtoken p associated ast node token common token token new
common token oldtoken type oldtoken text token line oldtoken line token
char position in line oldtoken char position in line token line oldtoken line
token char position in line oldtoken char position in line tokens add token
goto end nfa config loop goto end nfa config loop

3.2 Log Parsing
In a Version Control System (VCS), repository logs record

code evolution histories. For example, the structure of git
logs is organized as follows: a git log consists of several com-
mits; each commit is related to one or more files; each file is
related to one or more diffs; each diff records one or more
change hunks that occur in a code fragment [5].

Log parsing is a preparation step that extracts useful in-
formation from repository logs. CLCMiner parses a log into
a list of diffs, and attaches each diff with a set of attributes,
including Commit Date (CD), Commit Author (CA), Com-
mit ID (CID), File Name (FN), and Commit Message (CM).
For example, Table 1 lists the attributes of the diffs in Fig-
ure 1. Some attributes (e.g., FN ) are useful for matching
diffs, and others (e.g., CID) help to uniquely locate the code.

3.3 Normalizing
Normalizing is to remove uninteresting contents from the

diffs and transform the rest contents into normalized com-
parison units. CLCMiner uses the token streams of the diffs
as the comparison unit, and normalizes them as follows:

1. Removing Comments. To relieve the impact of
comments in natural language, CLCMiner removes the
comments from the diff firstly.

2. Lexing. CLCMiner employs a lexer to lex the code in
the diff without comments into a token stream.

3. Removing Punctuations. Punctuations and num-
bers are removed from the token stream, as they often
do not indicate significant semantics.

4. Post Processing. Camel case tokens are split by
the uppercase letters and tokens with underscores are
split by the underscores. After that, all tokens are
transformed to lowercases. This step paves difference
between programming styles.

In Table 1, Column “TS” lists the two normalized token
streams of the diffs in the running example.

3.4 Diff Matching
Diff matching is the process to align a diff in a language

(e.g., Java) to the diff in the other language (e.g., C#),
according to their similarity. Bag of Words (BOW) [8] rep-
resents a piece of text as a bag (multiset) of its words, dis-
regarding grammar and the ordering of words. CLCMiner
adopts BOW to build a characteristic vector, each dimension
of which represents the number of times that a word appears
in the token stream of a diff, to calculate the similarity be-
tween two diffs. Table 2 shows the characteristic vectors
for the token streams in Table 1. Column “Token” lists the
words appearing in the token streams. Columns “Java” and
“C#” list the numbers of times that each word occurs in the
diff of MachineProbe.java and MachineProbe.cs respec-
tively. Column “Difference” lists the absolute value of the
difference between the numbers of occurrence. For example,

Table 2: Characteristic Vectors
Token Java C# Difference

#add 1 1 0
#and 1 0 1
#antlr 1 0 1

#associated 3 1 2
#ast 3 1 2

#break 1 0 1

. . . . . . . . . . . .

#token 11 10 1
#tokens 1 1 0
#type 1 1 0

Total 80 59 61

token “break” appears in the diff of Java code once but does
not appear in the C# code, and the difference is 1 (|1− 0|).

We use the distance between two vectors to measure the
similarity of two diffs. For two vectors, Vi(vi1, vi2, . . . , vin)
and Vj(vj1, vj2, . . . , vjn), their distance is defined as:

Distance(Vi, Vj) =

∑n
k=1 |vik − vjk|∑n
k=1(vik + vjk)

In the example, the distance is 61/(80+59) = 0.4388. The
smaller the distance is, the more similar two diffs appear.

Algorithm 1 shows the details for matching diffs. It takes
as input two lists of diffs, each of which represents changes of
the code fragments in a programming language. The output
is a list of matched diff pairs, each of which is from different
input lists. CLCMiner compares the sizes of the two diff
lists and sets the small one and the large one as source and
target respectively (Lines 1–2). The diffs, whose file names
are the same, are called neighbors of each other. For each
diff in source (ds), CLCMiner searches target for its near-
est neighbors by comparing the distances from ds to all of
its neighbors in target (Lines 3–18). The shortest distance
indicates the nearest one. As long as there exists a neighbor
in target for ds, ds can be matched; otherwise, it cannot.

CLCMiner only matches a diff to its nearest neighbor to
report clone pairs, instead of reporting all its top-k nearest
neighbors to form clone groups. This takes into considera-
tion that, with the nearest neighbor, the other top-k nearest
neighbors and even clones in files with different names can be
detected by a single-language clone detector to build more
comprehensive clone groups. Section 5 discusses more about
this setting for future work.

3.5 Ranking and Reporting
Each pair of matched diffs is called clone candidates. We

rank all such pairs according to their distances. The pairs
whose diff distances are lower than 0.5 are to be reported
as code clones because it is empirically determined (cf. Sec-
tion 4) that such short distance pairs of diffs are highly likely
to be cross-language clones.

4. EVALUATION
We implemented CLCMiner, and conducted evaluations

to answer the following research questions:



Algorithm 1: Diff Matching

Input: List dListj dListcs
Output: List dPair

1 source = minimumList(dListj , dListcs);
2 target = maximunList(dListj , dListcs);
3 foreach ds ∈ source do
4 distance← 1;
5 foreach dt ∈ target do
6 if dt.fileName().equals(ds.fileName()) then
7 if Distance(ds, dt) == distance then
8 pairs.add(ds, dt);
9 end

10 if Distance(ds, dt) < distance then
11 pairs.clean();
12 pairs.add(ds, dt);
13 distance← Distance(ds, dt);

14 end

15 end

16 end
17 dPair.addAll(pairs);

18 end
19 return dPair;

• RQ 1. What is the clone ratio distribution with re-
spect to the diff distances?
• RQ 2. What is the accuracy of CLCMiner?
• RQ 3. What is the impact of the other attributes on

cross-language clones?

4.1 Setup
In our evaluation, we use five open source projects imple-

mented in both Java and C#, i.e., ANTLR3, FpML, Log4j
(Log4net), Spring, Lucene. Table 3 shows the projects and
lists LOCs, log sizes, numbers of commits and diffs.

We apply our approach to each project to obtain the
ranked list of cross-language clone pairs as the report. Col-
umn “#Matched Diff Pairs” in Table 3 lists the number of
matched diff pairs according to the file name and diff sim-
ilarity. Due to the large number of clone candidates and
limited manpower, we randomly sampled, in a uniform way,
a small percentage of the clone candidates in the reported
ranked lists and manually labelled whether they were actual
clones. As listed in Table 3, for ANTLR3, FpML, Log4j
(Log4net), and Spring, we sampled over 6% of all the re-
ported clone candidates in each project; for Lucene, we sam-
pled about 2%. Two co-authors manually labelled whether
they were actual clones separately based on the clone def-
inition of Bellon [4] and the functionality equivalence. If
there exists a difference between the labels given by the
two co-authors, it will be labelled and decided by a third
co-author. We calculated the clone ratio and its distribu-
tion w.r.t. the distances, where the clone ratio is defined as
CR = #clones

#candidates
× 100%.

4.2 Result

4.2.1 RQs 1 & 2. Distribution and Accuracy
Figure 3 shows the clone ratio distribution and the accu-

mulated clone ratio, w.r.t., diff distances. The clone ratio
distribution in Figure 3(a) indicates: 1) almost all the can-
didates whose diff distances are lower than 0.3 are clones;
2) almost none of the candidates whose diff distances are
larger than 0.7 is clone; 3) when distances increase from 0.3
to 0.5, the clone ratio decreases gradually; 4) when distances
increase from 0.5 to 0.7, the clone ratio decreases greatly.

The accumulated clone ratio in Figure 3(b) also decreases
with the increasing of the diff distance. When the diff dis-

Table 3: Characteristics of Subject Projects
Projects #LOC

Logs
#Commit #Diffs

#Matched
#Samples

(MB) Diff Pairs

ANTLR3
Java 49,617 32 572 2,839

7,117 710
C# 97,304 31 648 18,962

FpML
Java 17,810 244 329 2,736

3,993 259
C# 16,548 227 183 2,206

Log4j 30,287 46 2,644 19,172
2,599 166

Log4net 30,885 36 925 7,391

Spring
Java 551,475 335 11,971 162,739

6,080 400
C# 224,807 316 1,747 20,160

Lucene
Java 867,110 821 24,988 286,628

59,377 908
C# 434,577 883 1,320 43,073

tance is lower than 0.5, the clone ratio decreases slowly and
when the diff distance is larger than 0.5, the clone ratio
decreases greatly.

Based on the above observation, it is reasonable to set
0.5 as the proper threshold distance. If the diff distance is
lower than 0.5, its related clone candidate is considered as
a clone; if the diff distance is larger than 0.5, its related
clone candidate is not considered as a clone. In other words,
we only report as clones the pairs of code fragments in the
ranked list whose diff distance is lower than 0.5.

We use precision and recall to evaluate the accuracy of
CLCMiner. In this way, for ANTLR3, FpML, Log4j (Log4net),
Spring and Lucene, w.r.t. the manually labelled clone sam-
ples, the report precisions are 86%, 90%, 71%, 68% and 90%
respectively and the average precision is about 87%. For the
clone candidates in the five projects whose diff distance is
between 0.5 and 1, the clone ratios are 3%, 8%, 2%, 5%, and
2% respectively. Since it is impossible to know how many
actual cross-language clones in the projects, we calculate the
recall based on the number of the missed clones whose dis-
tance is larger than 0.5. In this way, the recalls of the five
projects are 90%, 97%, 71%, 69% and 98% respectively and
the average recall is about 93%.

4.2.2 RQ3. Impact of More Attributes of Diffs
For matching diffs, BOW is not the only choice. We iden-

tify the following attributes that may be used to improve the
effectiveness of matching cross-language clones in future.

Author. As a developer may have a programming style
that may persist even across different languages, we hypoth-
esize that a pair of diffs from different language versions of a
project may be more likely to be clones if they are authored
by the same developer. To investigate the hypothesis, we
look into the labels for the clone reports sampled in the way
mentioned in Section 4.1. Among these five projects, all
sampled pairs of diffs in Spring and Log4j (Log4net) were
committed by different persons; about only 0.5% of the diff
pairs in Lucene were committed by the same developer, and
about only 1% in FpML were committed by the same de-
veloper. ANTLR3 has a more pronounced difference: about
74% of diff pairs were made by different authors. So for
each pair of diffs in the sampled reports, we have a variable
indicating whether it is clones and another variable indicat-
ing whether it is made by the same author. A simple t-test
showed that diff pairs made by the same author are statis-
tically more likely to be clones than those made by different
authors, but the correlation between the two variables is
very weak (Pearson’s correlation coefficient is about 0.08).

Commit Time. As the functionalities in different lan-
guage versions of a project are likely to remain consistent,
changes in one language version may induce similar changes
in another within a short period of time. Similarly, we in-
vestigate whether the commit time difference between the
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Figure 3: Clone Ratio Distribution

two diffs in a reported pair is correlated with whether the
pair is a clone with t-test and Pearson’s correlation. We no-
ticed that five projects exhibit different correlations between
commit time differences and clones. In FpML and Spring,
the diff pairs with shorter time differences are statistically
more likely to be clones, but the correlation coefficients be-
tween these the two variables are very weak (-0.19 and -0.11).
In Log4j (Log4Net), the effect is reversed: the diff pairs
with longer time differences are statistically more likely to
be clones, although the correlation is still weak (0.33). In
ANTLR3 and Lucene, whether diff pairs are clones statis-
tically has no effect on their time differences.

Commit Message. As a commit message often summa-
rizes the changes in the commit, a diff pair may be more
likely to be clones if they share similar commit messages. So
we also investigate whether the distance between the com-
mit messages of a diff pair is correlated with whether the
pair is a clone. We calculate the distance between commit
messages via the same technique we used for code (Section
3.4), and we check the relationship with t-test and Pearson’s
correlation. We found mixed results too as many commit
messages are empty or very brief and non-informative: in
FpML, ANTLR3, and Spring, clone pairs have statistically
shorter commit message distance, while in Log4j (Log4net)
and Lucene, clone pairs have statistically longer distance,
and the correlation coefficients are all weak.

As a summary, there is no clear deciding attribute for
diff pairs to be clones, besides the code itself. It could be
a combined effect of various attributes, even some contexts
beyond diffs. In our future work, we plan to investigate
whether the combination of more attributes, together with
additional ones discussed in Section 5, can be used to im-
prove cross-language clone detection.

5. DISCUSSION AND FUTURE WORK
Using comments in code. In diff normalization (Sec-

tion 3.3), code comments were removed as we hypothesized

that comments in natural language may be too high-level
and appear similar even for non-clones and thus are not
accurate enough for clone detection. However, during the
manual labelling of the sampled diff pair reports, we no-
ticed that many clone pairs either contain quite different
comments for different parts of the two code fragments in the
pair or contain almost exactly the same comments (which
may indicate an actual copying-pasting operation). In our
future work, we plan to more systematically investigate how
comments in code are related with clones.

Relaxing file names. Diff matching (Section 3.4) used
a requirement that potentially matched diffs should be from
files of the same name, and thus all code in every reported
clone pair has the same file name. However, cross-language
clones can appear in files with different names, especially
if they are from different projects. The requirement was
added to reduce the pair-wise matching time for projects
involving too many commits; it is a trade-off between effi-
ciency and recall. In the future work, we will optimize our
matching algorithm and analyze how the file names impact
cross-language clones that may be from different projects.

Detecting clone groups and change propagation.
CLCMiner matches a diff in one language to its nearest
neighbors in another language only, as we focus on the fea-
sibility of using diffs for detecting cross-language clones. We
can change the setting to return all the neighbors of a diff
whose distance is within a small threshold, which can en-
able us to detect cross-language clone groups, in addition to
pairs. Also, by linking clone groups based on clone transi-
tivity within a threshold and complemented with a single-
language detector, we will be able to study how changes
are propagated even through different languages, extending
similar studies within the same language [20].

Detecting clones beyond revision histories. Based
on revision histories, CLCMiner is limited to detect cross-
language clones that have been changed in the past in the
same project. For clones that are never changed, we can
explore more language attributes that can identify clone re-
lations (e.g., using deep learning to build vector represen-
tation of programs [18]) across languages. This limitation
can also be compensated by a single-language detector that
can detect cross-project and same-language clones based on
certain clone transitivity across projects and languages.

Crossing more languages. Increasing demands for cross-
platform mobile applications (e.g., iOS and Android) raise
the need for quick development that can reuse code across
more diverse kinds of languages (e.g., Objective-C, Swift,
and Java). In our future work, we plan to adapt CLCMiner
to more languages and explore more attributes that can
identify co-change relations and be used to detect clones
and facilitate code reuse across different languages.

Handling false positives. Although CLCMiner reports
high precisions, there is still space for improvement. We in-
vestigated the false positives and found various characteris-
tics causing “accidental similarity” among diffs: 1) a short
method is defined in one diff but invoked in the other diff ;
2) the diffs contain code that handles exceptions or errors;
3) the diffs contain a large number of same string constants
used differently; 4) the diffs contain a number of different
numeric values which were excluded by our normalizing step;
5) the diffs contain code that uses the same set of library
functions (e.g., File I/O, HttpHeaders) in different ways. In
future work, we will refine CLCMiner to handle such cases.



Comparing with token-based clone detection. Some
token-based clone detection techniques [19], can run in plain
text mode to detect some cross-language clones. For ex-
ample, CCFinder lexes each line of source files into token
sequence and utilizes suffix-tree-based substring matching
algorithm to search for similar subsequences. Different from
CCFinder, CLCMiner splits each camel case identifier (e.g.,
the variable name) and utilizes the statistical method to cal-
culate the distance between diffs and search for similar diffs.
We will compare CLCMiner with CCFinder in future work.

6. RELATED WORK
Cross-language clone detection. The number of var-

ious software systems implemented in multiple languages is
increasing considerably [14], but cross-language clone detec-
tion is limited. Kraft et al. [15] conduct the first study on
code clones that span over multiple languages. They imple-
mented a tool called C2D2 based on the CodeDOM library
in the Microsoft .NET framework, which uses NRefactory
Library to generate the Unified CodeDOM graph for both
C# and VB.NET. Al-omari et al. [3] present a clone detec-
tion approach for the .NET language family too, based on
the Common Intermediate Language (CIL). It can detect
cross-language clone pairs in C#, J#, and VB.NET. Com-
pared with these work, our approach focuses on detecting
cross-language clone detection on different platforms with-
out common intermediate languages.

Data mining in VCS. There are considerable studies
of data mining in Version Control Systems (VCS). Zimmer-
mann et al. [21] apply data mining on version histories to
recommend related syntactic changes. Gı̂rba et al. [7] apply
concept analysis on VCS to identify groups of co-changes.
McIntosh, et al. [16] mine source and test code for accom-
panying build changes. Meng et al. [17] mine revision histo-
ries to identify updated API interfaces. We mine VCS for a
different purpose, i.e., detecting cross-language clones.

7. CONCLUSION
This paper proposes a novel approach, CLCMiner, that

detects cross-language clones without common intermediate
languages. Our key idea is to utilize diff similarity. We have
implemented and evaluated its prototype on five open source
projects. The results show that CLCMiner can detect many
cross-language code clones with a high precision of 87% and
recall of 93% on average (w.r.t. distance threshold 0.5).

To improve CLCMiner in our future work, we plan to
refine the handling of false positives, detect more cross-
language clones not captured in revision histories by incor-
porating in single-language clone detectors, and detect more
clone groups across more languages (e.g., Objective-C, Swift,
and Java) as described in Section 5.
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