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Abstract

This paper provides a novel mechanism for identifying and estimating latent group struc-
tures in panel data using penalized regression techniques. We focus on linear models where
the slope parameters are heterogeneous across groups but homogenous within a group and
the group membership is unknown. Two approaches are considered — penalized least squares
(PLS) for models without endogenous regressors, and penalized GMM (PGMM) for models
with endogeneity. In both cases we develop a new variant of Lasso called classifier-Lasso
(C-Lasso) that serves to shrink individual coefficients to the unknown group-specific coeffi-
cients. C-Lasso achieves simultaneous classification and consistent estimation in a single step
and the classification exhibits the desirable property of uniform consistency. For PLS estima-
tion C-Lasso also achieves the oracle property so that group-specific parameter estimators are
asymptotically equivalent to infeasible estimators that use individual group identity informa-
tion. For PGMM estimation the oracle property of C-Lasso is preserved in some special cases.
Simulations demonstrate good finite-sample performance of the approach both in classifica-
tion and estimation. An empirical application investigating the determinants of cross-country
savings rates finds two latent groups among 56 countries, providing empirical confirmation

that higher savings rates go in hand with higher income growth.
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1 Introduction

Panel data models are widely used in empirical analysis in many disciplines across the social
and medical sciences. The capacity to store and retrieve vast electronic datasets on individual
behavior over time has made these models a particularly prominent research vehicle in economics
and finance. Such data usually cover individual units sampled from different backgrounds and
with different individual characteristics so that an abiding feature of the data is its heterogeneity,
much of which is simply unobserved. Neglecting latent heterogeneity in the data can lead to many
difficulties, including inconsistent estimation and misleading inference, as is well explained in the
literature (e.g., Hsiao, 2003, Chapter 6). It is therefore widely acknowledged that an important
feature of good empirical modeling is to control for heterogeneity in the data as well as for potential
heterogeneity in the response mechanisms that figure within the model. Since heterogeneity is a
latent feature of the data and its extent is unknown a priori, respecting the potential influence
of heterogeneity on model specification is a serious challenge in empirical research. Even in the
simplest linear panel data models the challenge is manifest and clearly stated: do we allow for
heterogeneous slope coefficients in regression as well as heterogeneous error variances?

While it may be clearly stated, this challenge to the empirical researcher is by no means
easily addressed. While allowing for cross-sectional slope heterogeneity in regression may help to
avert misspecification bias, it also sacrifices the power of cross section averaging in the estimation
of response patterns that may be common across individuals, or more subtly, certain groups of
individuals in the panel. In the absence of prior information on such grouping and with data
where every new individual to the panel may bring new idiosyncratic elements to be explained,
the challenge is demanding and almost universally relevant.

Traditional panel data models frequently deal with this challenge by avoidance. Complete
slope homogeneity is assumed for certain specified common parameters in the panel. Under
this assumption, the regression parameters are the same across individuals and unobserved het-
erogeneity is modeled through individual-specific effects which are either fixed or random and
(typically) enter the model additively. This approach is an exemplar of a convenient assumption
that facilitates estimation and inference.

The cross section homogeneity assumption has been frequently questioned and rejected in
empirical studies. The following is only a partial list of work where homogeneity has been found
to fail. Burnside (1996) rejects slope homogeneity in the production function of US manufactur-

ing firms; Hsiao and Tahmiscioglu (1997) find parameter heterogeneity in investment functions



using the U.S. firm level panel data; Lee, Pesaran, and Smith (1997) find that the convergence
rates of per capita output to the steady state level are heterogeneous across countries; Durlauf,
Kourtellos, and Minkin (2001) find substantial country-specific heterogeneity in the parameters in
Solow growth model that is associated with differences in initial income; Phillips and Sul (2007a)
provide a new approach to testing for economic growth convergence under heterogeneous technol-
ogy and explore these differences in the Penn World Table; Browning and Carro (2007) present
a selective overview on heterogeneity in microeconometric modelling and find that there is more
heterogeneity than econometricians usually allow for; Browning and Carro (2010) document het-
erogeneity in a dynamic discrete choice panel data model for consumer milk-type choices where
heterogeneity occurs in both the levels parameter and the state dependence parameter; Browning
and Carro (2014) show that individual unemployment dynamics are heterogenous even within a
homogeneous group of Danish workers in terms of their observed characteristics; Su and Chen
(2013) reject the null of slope homogeneity in an economic growth model for OECD countries
even after they control for unobserved heterogeneity through interactive fixed effects.

Despite general agreement that slope heterogeneity is endemic in empirical work with panels,
few methods are available to allow for heterogeneity in the slope parameters when the extent
of the heterogeneity is unknown. In the following discussion we group the methods that are
available into two broad categories and consider the different approaches pursued within them.
In the first category, complete slope heterogeneity is assumed and regression coefficients are taken
as differing across individuals. Several approaches are adopted in the literature. Perhaps the most
common method is to use a random coefficient structure in which the parameters are assumed to
be independent draws from a common distribution — see Hsiao and Pesaran (2008) for an overview
of the approach. The random coefficient model allows for estimation of the mean coefficient effect
but is uninformative about responses at the disaggregate level, thereby missing what is often
the object of interest. A second approach uses Bayesian methods to shrink the individual slope
estimates towards the overall mean — see Maddala, Trost, Li, and Joutz (1997). This approach is
based on the presumption that the slope parameters, while not precisely the same, are sufficiently
similar to warrant shrinkage toward the mean — a presumption that may be questionable in some
empirical applications. A third approach is to parameterize individual slope coefficients as a
function of observed characteristics — see Durlauf, Kourtellos, and Minkin (2001) and Browning,
Ejrnaes, and Alvarez (2010). Apparently, this approach depends crucially on the specification of
the functional coefficient and is subject to potential misspecification problems. A fourth approach
is to estimate the individual slope coefficients using heterogenous time series regressions for each
individual, which is only feasible in systems where the time dimension 7' is large. Even in this
case, there is a considerable debate on the options: whether to pool the data and obtain a single
estimate for the whole sample, whether to estimate the equations separately for each individual,

and whether to rely on the average response from individual time series regressions — see Pesaran



and Smith (1995), Baltagi and Griffin (1997), Hsiao, Pesaran, and Tahmiscioglu (1999), Pesaran,
Shin and Smith (1999), and the survey by Baltagi, Bresson, and Pirotte (2008).

The second category takes a totally different viewpoint on the nature of the heterogeneity
in panels. In place of complete slope homogeneity or heterogeneity an intermediate approach is
adopted in which the panel structure models individuals as belonging to a number of homogeneous
groups or clubs within a broadly heterogeneous population. In this framework, the regression
parameters are the same within each group but differ across groups. Two essential questions
remain: how to determine the unknown number of groups (dubbed convergence clubs in the
economic growth literature); and how to identify the individuals belonging to each group. These
are longstanding questions of statistical classification in panel data. No completely satisfactory
solution has yet been found, although various approaches have been adopted in empirical research.
For instance, Bester and Hansen (2013) consider a panel structure model where individuals are
grouped according to some external classification, geographic location, or observable explanatory
variables; Bai and Ando (2013) consider a multifactor asset-pricing model where there exist group-
specific pervasive factors influencing a subset of assets and the group membership is assumed to
be known. So the group structure is completely known to the researcher, an approach that is
common in practical work because of its convenience. In the economic growth literature, for
example, countries are often classified according to continental location or economic development
levels, which both lead to determinate group structures. In spite of its convenience, this approach
to panel inference is inevitably misleading when the number of groups and individual identities
are incorrectly classified.

Several approaches have been proposed to determine an unknown group structure in mod-
eling unobserved slope heterogeneity in panels. The first approach is to apply finite mixture
models that do not assume a known group structure. For example, Sun (2005) considers a para-
metric finite mixture panel data model by employing a multinomial logistic regression to model
membership probabilities. Sun’s model comprises a heterogenous linear panel regression model
that relates the response variable to explanatory variables and a logistic regression that identifies
individual memberships. In a related thematic, Kasahara and Shimotsu (2009) and Browning
and Carro (2011) study identification in discrete choice panel data models for a fixed number of
groups using nonparametric discrete mixture distributions. The second approach is based on the
K-means algorithm in statistical cluster analysis. Lin and Ng (2012) and Sarafidis and Weber
(2011) propose to modify the K-means algorithm to perform conditional clustering to estimate
linear panel structure models but no asymptotic properties of that procedure or the estimators are
derived. Bonhomme and Manresa (2014) introduce time-varying grouped patterns of heterogene-
ity in linear panel data models, propose two classification algorithms that are also closely related
to the K-means algorithm, and study the asymptotic properties of the resulting estimators. Ando

and Bai (2013) consider SCAD estimation of panel data models with unobserved group factor



structures. Lin and Ng (2012), Bonhomme and Manresa (2014), and Ando and Bai (2013) all
assume that N and T pass to infinity jointly. Lin and Ng (2012) propose another method to
estimate a panel structure model by turning the problem of parameter heterogeneity into the
estimation of a panel threshold model with an unknown threshold value and using the individ-
ual time series estimates of the parameters to form threshold variables. Phillips and Sul (2007)
develop an algorithm for determining group clusters that relies on the estimation of evaporating
trend functions to determine convergence clusters. Again, joint limits as (N, T) — oo are used in
the development of the asymptotic theory.

The present paper proposes a new method for econometric estimation and inference in panel
models when the slope parameters are heterogenous across groups, individual group membership is
unknown, and classification is to be determined empirically. Our modeling strategy therefore falls
within the second category discussed above. It is an automated data-determined procedure and
does not require the specification of any modeling mechanism for the unknown group structure.
The approach we suggest involves a new variant of Lasso (Tibshirani, 1996) technology that is
designed to classify parametric slope coefficients in a heterogeneous panel model into a group
structure in which both the groups and the elements in the groups are data-determined. Like
Lin and Ng (2012), Bonhomme and Manresa (2014) and Phillips and Sul (2007), we assume
that (N,T) — oo jointly (Phillips and Moon, 1999). But in our asymptotic theory 7' can pass
to infinity at a very slow rate, even a slowly varying rate such as O ((ln N )He) for any € > 0
in the case of uniformly bounded regressors, thereby opening up empirical applications of the
method to short wide panels. The methods proposed here have several novel aspects in relation
to earlier research and they contribute to both the Lasso and econometric classification literatures
in various ways, which we outline in the following paragraphs.

First, our approach is motivated by one of the key features of Lasso technology that enables
the method to deliver simultaneous variable selection and estimation in a single step. This
advantage is particularly useful when the set of unknown parameters is potentially very large
but may also embody certain sparse features. In a typical panel model structure, the effective
number of unknown slope parameters {3;, ¢ = 1,..., N} is not of order O (N) as it would be if
these parameters were all incidental, but rather of some order O (Kj), where Ky denotes the
number of unknown groups within which the slope coefficients are homogeneous. Moreover, when
the number of groups is finite, Ky is fixed and so the order of unknown coefficients is then O (1)
as (N,T) — oo. Hence, in many empirical applications the set of unknown slope parameters in
a panel structure model surely exhibits the desirable sparsity feature, making the use of Lasso
technology highly appealing.

Second, the procedures developed in the present paper contribute to the fused Lasso literature
in which sparsity arises because some parameters take the same value. The fused Lasso was

proposed by Tibshirani, Saunders, Rosset, Zhu, and Knight (2005) and was designed for problems



with features that can be ordered in some meaningful way (e.g., in time series regression where
the time periods have natural ordering). The method cannot be used to classify individuals
into different groups because there is no natural ordering across individuals and so a different
algorithm to locate common individuals is required. The present paper develops a new variant of
the Lasso method that does not rely on the order of individuals in the data and which therefore
contributes to the fused Lasso technology.

Third, standard Lasso technology involves an additive penalty term to the least-squares,
GMM, or log-likelihood objective function and when multiple penalty terms are needed, they
also enter the objective function additively. To achieve simultaneous group classification and
estimation in a single step our variant of Lasso involves N additive penalty terms, each of which
takes a multiplicative form as a product of Ky penalty terms. To the best of our knowledge, this
paper is the first to propose a mixed additive-multiplicative penalty form that can serve as an
engine for simultaneous classification and estimation. The method works by using each of the
Ky penalty terms in the multiplicative expression to shrink the individual-level slope parameter
vectors to a particular unknown group-level parameter vector, thereby producing a joint shrinkage
process. This process is distinct from the prototypical Lasso method that shrinks an individual
parameter to zero and the group Lasso method that shrinks a parameter vector to a vector of
zeros (see Yuan and Lin, 2006). To emphasize its role as a classifier and for future reference, we
describe our new Lasso method as the classifier-Lasso or C-Lasso.

Fourth, we develop a limit theory for the C-Lasso that demonstrates its capacity to achieve
simultaneous classification and consistent estimation in a single step. As mentioned in the Ab-
stract, the paper develops two classes of estimators for panel structure models — penalized least
squares (PLS) and penalized GMM (PGMM). The former is applicable to panel models without
endogenous regressors and with or without dynamic structures, while the latter is applicable to
panel models with endogeneity or dynamic structures. In either case, we show uniform classifi-
cation consistency in the sense that all individuals belonging to a certain group can be classified
into the same group correctly uniformly over both individuals and group identities with probabil-
ity approaching one (w.p.a.1). Conversely, all individuals that are classified into a certain group
belong to the same group uniformly over both individuals and group identities w.p.a.1. Under
some regularity conditions, such a uniform result allows us to establish an oracle property of the
PLS estimator that it is asymptotically equivalent to the corresponding infeasible estimator of
the group-specific parameter vector that is obtained by knowing all individual group identities.
Note that traditional Lasso only possesses the selection consistency and oracle property under the
so-called restrictive irrepresentable condition. This shortcoming of Lasso motivated Zou (2006)

1

to propose the adaptive Lasso that possesses these attractive properties.” Unfortunately, our

'Other methods that possess the selection consistency and oracle property include the Bridge and SCAD
(smoothly clipped absolute deviation) procedures; see Knight and Fu (2000) and Fan and Li (2001).



PGMM estimator generally does not have the oracle property despite the uniform selection con-
sistency of the C-Lasso. The uniform classification consistency also allows us to develop a limit
theory for post-C-Lasso estimators that are obtained by pooling all individuals in an estimated
group to estimate the group-specific parameters.

Fifth, C-Lasso enables empirical researchers to study panel structures without a prior: knowl-
edge of the number of groups, without the need to specify any ancillary regression models to model
individual group identities, and with no need to make any distributional assumptions. When the
number Ky of groups is unknown, a BIC-type information criterion is proposed to determine
the number of groups and it is shown that this procedure selects the correct number of groups
consistently. The same information criterion can also be used to determine a data-driven tuning
parameter for the PLS or PGMM estimation.

Sixth, while the focus of the present paper is on linear panel data modeling, the methodology
developed here can be extended to nonlinear models such as discrete choice models, to semipara-
metric and nonparametric models, to models where only a subset of parameters are allowed to
be group-specific, and to models where one considers group-specific effects along the time dimen-
sion. Extension to panel data models with interactive-fixed effects is also possible and is presently
under way.

We envisage a large number of potential empirical applications of the C-Lasso approach within
economics and finance and more broadly across the social and business sciences. The following list
provides three distinct areas of application in international macroeconomics, microeconometrics,
and nonstationary panel econometrics.

1. Economic Growth Convergence: Much of the recent literature on economic growth
addresses sources of possible heterogeneity, including the occurrence of multiple steady states
and history-dependence in growth trajectories - see Deissenberg, Feichtinger, Semmler, and Wirl
(2004) and Durlauf, Johnson, and Temple (2005) and Eberhardt and Teal (2011) for overviews of
the relevant growth theory and empirics. Contingent upon historical conditions economic systems
may converge towards distinct steady states, the empirical manifestation of which are the so-called
convergence clubs that occur in cross-country growth studies. In an application to cross-country
growth, Phillips and Sul (2007a) evaluated evidence in support of panel data growth clustering,
locating three convergence clubs and one divergent group among 88 countries in the Penn World
Tables in terms of real per capita GDP over the period 1960-1996. Their methodology involved
a stepwise algorithm with multi-level decision making to isolate the convergence clubs. The
panel structure framework suggested in the present paper is a natural setting to consider growth
convergence and the C-Lasso procedure provides a one step classifier and estimation approach
with no sequential decision making. The method can also be used to isolate convergence clubs
and remaining divergent elements in the panel.

2. Subsample Studies of Stability: Much empirical research is concerned with studying



the stability of certain regression coefficients over subsamples of the data. In this work, the whole
sample is split into multiple subsamples and regression relationships are checked for coefficient
stability. The groupings may be arbitrarily selected or may be determined by covariates or
thresholds, each of which may have a significant impact on the findings. For example, in order
to test whether financing constraints affect investment decisions, Fazzari, Hubbard, and Petersen
(1988) divided a sample of firms into multiple groups based on empirical proxies such as the
dividend-income ratio. Similarly, in testing whether liquidity constraints affect consumption
decisions in PSID data, Zeldes (1989) uses two different wealth-to-income ratios as prescribed
variables to divide the sample into subsamples. Sample splitting techniques of this type are
inevitably vulnerable to the choice of prescribed driver variables. The methodology of the present
paper does not require driver variables or thresholds to determine regression stability.

3. Panel Unit Root Grouping: Several approaches are available for testing the presence of
unit roots in panel data. Two popular tests in applications are the Levin, Lin, and Chu (2002) and
Im, Pesaran, and Shin (2003) tests. Levin, Lin, and Chu (2002) devise an adjusted t-test for a unit
root for various panel data models, assuming that all individuals (countries, regions, industries,
etc.) have the same autoregressive (AR) coefficients while permitting individual specific effects
as well as dynamic heterogeneity across individuals. Im, Pesaran, and Shin (2003) propose a test
based on the average of the augmented Dickey-Fuller statistics computed for each individual series
in heterogenous panels. Both tests rule out the possibility that some individual series have a unit
root while others do not - precisely the empirical possibility that many argue is the most relevant
in practical work (e.g., Maddala and Kim, 1998). Our methodology is designed to directly address
this possibility and can be used to classify a subgroup of unit-root processes in the panel from a
wider class of stationary and nonstationary processes.

The rest of the paper is organized as follows. We study the C-Lasso PLS estimation and
inference of panel structure models in Section 2. PGMM estimation and inference is addressed in
Section 3. Section 4 reports Monte Carlo simulation findings. We apply our method to study the
determinants of cross-country savings rates in Section 5. Final remarks are contained in Section
6. Proofs of the main results in the body of the paper are given in Appendices A and B. The
supplementary Appendices C and D provide primitive conditions for some high level conditions
that are used in the body of the paper and bias correction for the C-Lasso estimates, respectively.

NOTATION. Throughout the paper we adopt the following notation. For an m X mn real
matrix A, we write the transpose A’, the Frobenius norm ||A| (= [tr (AA’)]1/2), and the Moore-
Penrose inverse as AT. When A is symmetric, we use fiy,,y (4) and p, (A) to denote the largest
and smallest eigenvalues, respectively. I, and 0,x1 denote the p x p identity matrix and p x 1
vector of zeros. 1{-} denotes the indicator function and “p.d.” abbreviates “positive definite”.
The operator L denotes convergence in probability, B, convergence in distribution, and plim

probability limit. We use (N,T') — oo to signify that N and T pass jointly to infinity.



2 Penalized Least Squares Estimation

This section considers panel structure models without endogeneity. It is convenient to assume
first that the number of groups is known and later consider the determination of the number of

unknown groups.

2.1 Panel Structure Models

The dependent variable y;; is measured for individual ¢ = 1,..., N over time ¢t = 1,...,7. The

generating mechanism is the panel structure model
Vit = BY e + 11y + uit (2.1)

where z;; is a p x 1 vector of exogenous or predetermined variables, u, is an individual fixed effect
that may be correlated with some components of z;;, u;; is the idiosyncratic error term with zero

mean, and ﬁ? is a p x 1 vector of slope parameters such that
af ifi € GY
Bl=1 S (22)
04(}(0 if 7 € G?(O
Here oz? # of for any j # k, Uf:‘)ng = {1,2,...,N}, and G N G? = ¢ for any j # k. Let
Ny = #Gg denote the cardinality of the set Gg. For the moment, we assume that the number
Ky of groups is known and fixed but that each individual’s group membership is unknown. In

addition, following Sun (2005) and Lin and Ng (2012), we implicitly assume that individual group

membership does not vary over time. Let

az(alv'"?a[(o) andlBE(/Blw"vﬁN)‘ (23)

Let B; denote the parameter space of 3;.> We assume that B; are compact uniformly in i and
denote the true values of a and B as a® and 3%, respectively. We are interested in developing
econometric methods to infer each individual’s group identity and to estimate the p x Ky matrix

a® of group-specific coefficients.

2.2 Penalized Least Squares Estimation of a and 3

Our starting point is to develop PLS estimation of a and 3 when the elements of x;; are either

strictly exogenous or predetermined so that least squares criteria are appropriate. We first apply

When the B,’s are group-specific, we can also regard the respective parameter spaces B; to be group-specific.



ordinary least squares (OLS) regression, minimizing the following objective function®
1 d 2
Qo.nt (B, p) = WZZ (vit — Biwie — 1)~
i=1 t=1

where p= (fi1, to, .-, fipy)’- Since the individual effects j; are not of primary interest, we concen-

trate them out and obtain the following concentrated function

N
1
Qunt (B) = 7 Z (Gt — Bizin)?,

IIMH

~OLS o\t - o\t -
giving the OLS estimates [, = (% Zle a:z-ta:;t> (% Zthl xityz-t> , where Z;; = mj —
T 23:1 zi and Gip = yig — T 23:1 Yit-
Motivated by the literature on group Lasso (e.g., Yuan and Lin, 2006), we next propose to

estimate 3 and a by minimizing the following PLS criterion function

)\
QINT)\l (:67 ) Ql,NT 2 ZH =1 H/B ak” ) (2‘4)

where A\; = Ajn7 is a tuning parameter. Minimizing the above criterion function produces
classifier-Lasso (C-Lasso) estimates B and & of 3 and «a, respectively. Let BZ and &j denote the
i and k™ columns of B and &, respectively, i.e., & = (&y, ..., dx) and 3 E(Bl, ...,BN).

The penalty term in (2.4) takes a novel mixed additive-multiplication form that does not
appear in the literature. Traditionally Lasso includes an additive penalty term to the least-
squares, GMM, or log-likelihood objective function. When multiple penalty terms are needed,
they also enter the objective function additively. In contrast, the C-Lasso method has IV additive
terms, each of which takes a multiplicative form as the product of K separate penalties. Each of
the K penalty terms in the multiplicative expression shrinks the individual-level slope parameter
vector 3; to a particular unknown group-level parameter vector ay. This approach differs from
the prototypical Lasso method of Tibshirani (1996) that shrinks a parameter to zero as well as
the group Lasso method of Yuan and Lin (2006) that shrinks a parameter vector to a vector of
ZEToS.

Note that the objective function in (2.4) is not convex in 3 even though it is (conditionally)
convex in oy when one fixes a; for j # k. In Section 4.2 we propose an iterative algorithm to

obtain the estimates & and B

STt B;’s are identical across 4, the approach will yield the well known within-group (WG) estimator or least
squares dummy variable (LSDV) estimator, or fixed effects Guassian maximum likelihood estimator (MLE) in the
literature; see, e.g., Kiviet (1995), Hahn and Kuersteiner (2002), and Alvarez and Arellano (2003). As will be clear,

this appraoch can be easily extended to nonlinear panel data models.
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2.3 Preliminary Rates of Convergence for Coefficient Estimates

We first present sufficient conditions to ensure the consistency of (B, &). Let @y = wip —
71 23:1 Wit QA“;@ = % Zthl Ty, and le = % Zthl Zi+tl;+. We make the following assump-
tion.
ASSUMPTION A1. (i) % S Ftis = Op (1) for each i =1, ..., N.

(ii) QA”;@ Lt Qizz > 0 for each i =1,...,N. There exists a constant czz such that imn7)—oo
ming<;<ny Mmin(Qz‘,azf:) > czz > 0.

(i) % 20 || @iz ‘2 = 0p (T7).

(iv) Np/N — 11, € (0,1) for each k=1,..., Ky as N — oc.

(V) Mt = 0 as (N,T) — oc.

Assumption A1(i) is rather weak and will be satisfied in most (stable) large dimensional linear
panel data models without endogeneity. Sufficient conditions for A1(i) to hold are % 23:1 TitUit,
ﬁ ST i, and %Zthl zit = Op (1) for i = 1,..., N. More primitive conditions for Al(i) to
hold include E (uy) = 0, E (z4ui) = 0 and suitable moment and weak dependence conditions
on the process {(zit,uit),t > 1} that ensure CLT val