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Efficient Online Summarization of
Large-Scale Dynamic Networks

Qiang Qu, Siyuan Liu, Feida Zhu, and Christian S. Jensen, Fellow, IEEE

Abstract—Information diffusion in social networks is often characterized by huge participating communities and viral cascades of high
dynamicity. To observe, summarize, and understand the evolution of dynamic diffusion processes in an informative and insightful way is
a challenge of high practical value. However, few existing studies aim to summarize networks for interesting dynamic patterns. Dynamic
networks raise new challenges not found in static settings, including time sensitivity, online interestingness evaluation, and summary
traceability, which render existing techniques inadequate. We propose dynamic network summarization to summarize dynamic
networks with millions of nodes by only capturing the few most interesting nodes or edges over time. Based on the concepts of diffusion
radius and scope, we define interestingness measures for dynamic networks, and we propose OSNet, an online summarization
framework for dynamic networks. Efficient algorithms are included in OSNet. We report on extensive experiments with both synthetic
and real-life data. The study offers insight into the effectiveness, efficiency, and design properties of OSNet.

Index Terms—Dynamic networks, network cascades, graph summarization, diffusion process, interestingness, graph mining

1 INTRODUCTION

RIVEN by the ever-increasing sizes of real-world net-
works, the problem of network summarization has
never been more important. While most existing studies con-
sider the summarization of static networks according to cri-
teria such as compression ratio, network representation,
minimum loss, and visualization friendliness [1], [2], [3],
recent developments in social network mining and analy-
sis [4], [5], location-based services [6], [7], [8] and bioinfor-
matics [3] have given prominence to the study of a new kind
of dynamic network [9], [10], [11] that captures progressive
information diffusion processes in an underlying network.
An information diffusion process in a network can be rep-
resented by a stream of interactions between node instances,
namely time-stamped pairs of nodes from the underlying net-
work, denoting the information propagation from one node
to the other at the time as indicated by the associated time-
stamp [12], [13], [14]. An example of a diffusion process is the
spread of news items among Twitter users by means of the
“retweet” functionality. Such a stream describes a dynamic
network where a diffusion process grows with each incoming
node instance pair as a new interaction in the stream.
The summarization task of such a dynamic network,
which is significantly different from that of a static one,
poses new research challenges. The critical difference lies in
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that, for a dynamic diffusion process, it is valuable to cap-
ture each “interesting” development as the process evolves,
in an online fashion. This problem, termed as dynamic net-
work summarization (DNS), has a wide range of applications,
among which we highlight several as follows.

In information visualization, massive dynamic networks
are hard to visualize due to their huge sizes and compli-
cated evolution [15]. DNS makes it possible to create online,
time-labeled summaries in the form of “trajectories” to
enable closer examination of important changes in a diffu-
sion process as it evolves. In social network studies, DNS
offers the identification of interesting dynamics in the form
of “backbones” that describe key information propagation
flow and give insight to the evolving roles of different par-
ticipants. This is useful for tasks such as change detec-
tion [16]. In road traffic analysis, DNS can capture major
traffic flows and population movement. Summaries for
given periods can be projected onto the road network to
detect traffic thoroughfares, and benefit road planning,
urban management and human mobility analysis [17].

Given a diffusion process, a straightforward approach to
obtain a summary is to periodically compute a summary
from the evolving process. Thus, the summary is repre-
sented as a sequence of summaries of static networks each
aggregating edges and nodes in a time interval of size At
(i.e., sliding window) [15]. However, this approach is costly
when networks are large. Further, the parameter At is fun-
damentally hard to set—too small a value would compro-
mise the performance and too large miss important
diffusion dynamics. Even if an appropriate At is available,
most of the previous methods, which were designed to tar-
get other criteria in the first place, fall short in producing
results that would capture and reveal interesting dynamics.

Two useful phenomena observed from social network
studies have motivated us to summarize dynamics based
on interestingness. First, user interactions on social net-
works may show the interestingness of time-stamped posts.
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For example, the release of a new Nintendo DS game as a
time-stamped post on Twitter can induce many users’
tweets [14]. We consider such a time-stamped post as a
node, and the measure of the number of user interactions as
node degree has been used for finding hot topics, detecting
burst events, and mining influential users. Second, social
networks are born for social conversations. Interesting
topics often provoke long and active conversation chains
among a group of users [13], [18], [19]. For instance, such a
long conversation chain is quite common for interesting
questions on Stackoverflow,' where users have multiple QA
discussions on a specific problem to achieve a solution. Mul-
tiple involvement of one user in a conversation chain (.e.,
node instances) often encourage the participation of other
users [20]. Ideally, a conversation chain is traceable such
that we can follow conversations from the start to a particu-
lar node instance. The traceability is straightforward to
demonstrate how users interact, e.g., on Stackoverflow, to
show a problem and its responses, traceable chains enable
us to follow user discussions. The measure of user conversa-
tions may have various applications for customer satisfac-
tion survey, user engagement study, and fraud user
detection. This study considers the two measures, which
intuitively could help us find the summaries where users
are influential and actively engaged through particular
instances in social activities. Note that in information diffu-
sion processes, interestingness is associated with user
instances. For example, in Twitter, users are interested in
particular tweets posted at specific time [21]. We regard a
user’s particular tweet as one of the user instances.

1.1 Research Challenges

We identify the following research challenges in the task of
DNS. (1) Time Sensitivity. Diffusion processes often repre-
sent vast, viral, and unpredictable processes, e.g., breaking
news and bursty events [22]. As a result, the rate of diffu-
sion can vary drastically over a short period of time [23]. It
is a big challenge to respond adaptively to dynamics and to
achieve timely summarizations. (2) Online Interestingness
Evaluation. A key challenge here is to capture the most inter-
esting nodes and edges in a summarization. Compared
with traditional network summarization, interestingness
evaluation in DNS assumes an extra degree of difficulty
because of the partial view of the network at any given time
of evaluation. (3) Summary Traceability. An important goal is
to enable a better understanding of the evolution of a diffu-
sion process throughout its life cycle. A good summary
should reveal the flow of the dynamics such that interesting
developments can be traced.

1.2 Our Approach and Contribution

To tackle the DNS problem, we propose OSNet, a framework
for online summarization of dynamic networks that aims to
produce concise, interestingness-driven summaries that cap-
ture the evolution of diffusion processes. Our contribution is
summarized as follows. 1) Unlike previous proposals that
apply optimization criteria in offline settings, we consider a
setting where network summarization occurs online, as the

1. http:/ /www.stackoverflow.com
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TABLE 1
Key Symbol Summary
Symbol Description
D(G) A diffusion process on a network G

L A labeling function.

(8, u,v,t) Interaction z: § is diffused from u to v at time ¢

I(G) A seed node set {v,} of a diffusion process D(G)

l(v) The diffusion path from the root to node instance v

d The max propagation radius or the depth of a tree
y(v) Propagation radius of a node v in a diffusion process
w(v) Propagation scope of a node v in a diffusion process
deg* () The number of direct infectees of a node

o Control parameter for w(v)

&(v) Interestingness of node instance v at time ¢

T Interestingness threshold

S(C) Traceable interesting summary

0 Acceleration Intensity

H Entropy

T A spreading tree

S(G) A set of traceable interesting summaries

n The number of chosen labeled nodes for a dataset

diffusion process evolves. 2) Based on the concepts of propa-
gating radius proRadius and propagating scope proScope, we
formalize the problem of characterizing the interesting
dynamics of an evolving diffusion process in a traceable
manner. 3) We propose OSNet that encompasses online and
incremental dynamic network summarization algorithms on
a spreading-tree model. In terms of entropy, OSNet archives
the best summaries with respect to informativeness. 4) We
propose two efficient algorithms, a tree-based and a Bloom
filter based algorithm. The false positive probability of the
proposed Bloom filter based algorithm is bounded. 5) Exten-
sive experiments are conducted with both synthetic and
real-life datasets including case studies for different applica-
tions as well as a user study to demonstrate the effectiveness
and efficiency of the proposed scheme.

2 PROBLEM STATEMENT

Table 1 summaries the key symbols used in the paper.

The input to the problem is a stream of time ordered
interactions representing diffusion processes on a network
G. A diffusion process on a network G, denoted by D(G), is
a stream of time-ordered interactions. An interaction
z = (8,u,v,t) € D(G) indicates that a specific story is dif-
fused from node v to node v at time ¢ € 7. Note that v and v
in z are node instances associated with the specific time-
stamp . A story is defined by a textual keyword list used to
describe an event, such as breaking news in Twitter. The
diffusion from u to v captures that node v receives the story
from u. We also say that u is an infector of v while v is an
infectee of u. We call time ¢ the infection time of node v.
Note that a diffusion process of a story can be initiated by
different nodes that are regarded as seeds or roots. For each
interaction x, we further define § to be a three-tuple as a
canonical identifier, i.e., § = (storyID,v,,t’), where storylD
is the identity of the diffusing story, v, represents the seed
node starting the diffusion, and ¢’ is the infection time of the
infector u. The diffusion process from a seed over a time
period forms a time-stamped graph, known as a network
cascade C [10], [16] where each interaction is a directed
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edge from the infector to the infectee. The output of a
dynamic process as a summary is a subset of interactions
with connected node instances of the process.

Definition 1 [Cascade C1. A cascade C' is a directed graph
C = (Vo,Eq, Ly, Lg,), representing a diffusion process
D(G) = {z = (8,ui, v, ;) } of a story propagated from a seed v,
during a time period T . The node set is Vi = Uu; + Uv;, and the
edgeset is Ec = U, (u;, v;). A node pair (u;, v;) for each x is con-
sidered as a directed edge from u; to v;. Ly, : Vo > is a node
labeling function to label nodes, and L, : Ec+— T is an edge
labeling function associated with time-stamps.

A network G with diffusion processes is termed a diffu-
sion network or a dynamic network, which, for simplicity,
we also denote by G. Given a diffusion network G, a set
Z(G) C V(G) is given that contains the seed nodes from
which a diffusion starts. The infection time of a seed v, is
given as t,,. We use ° 4+, (u) to denote the number of
direct infectees of a node u for a diffusion process from a
seed v, in a cascade C.

Before we present the definition of interestingness, two
measures are introduced to evaluate nodes in a dynamical
process by i) how far the information can travel (Measure 1:
depth) and ii) how many infectees a node can have (Measure
2: breadth). These two measures can be used for capturing
the interestingness of a diffusion process for three reasons : 1)
The two measures agree with intuition. 2) The two measures
capture the cascade, enabling reconstruction with little more
information. 3) The two measures offer a foundation for com-
puting different properties of a cascade. In addition, we
observe that other studies also suggest that the two measures
can characterize diffusion processes [18], [24].

Measure 1 [Propagation Radius (proRadius)l. The prop-
agation radius of a node v in a diffusion process from a
root (represented by a cascade (), denoted by y(v), is the
length of the path [(v) from the root of C to v, |l(v)|. The
maximum propagation radius of a node in C'is the diam-
eter of C: d(C) = max(y(v)). Note that the propagation
radius of the root is 0.

Measure 2 [Propagating Scope (proScope)l. The pro-
Scope, w(v) = deg*(v), of a node v in a diffusion process
from a root (represented by a cascade C), is the number
of infectees of vin C.

Definition 2 [Interestingness]. We represent a node v by a vec-
tor (y(v),w(v)) and use Equation (1) to quantify the total inter-
estingness of the node. As the degree distribution of many
networks follows a power-law, we use a log value of the proScope

&(v) = alogw(v) + (1 — a)y(v), (1)

where o« € [0,1] balances the two measures. We set
log w(v) = 0 if w(v) = 0. Note that cascades evolve over time
as interactions arrive. We thus use & (v) to denote the interest-
ingness of a node v at time t, which is calculated using the val-
ues of proScope and proRadius of v at t.

Definition 3 [Interesting Summary S(C)]. Given a cascade
C and a threshold v at time t, an interesting summary S(C) is
a subgraph of C satisfying that for any node v; € S(C),
&(vi) > t holds; for two nodes w and v in V(S(C)), the edge
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e = (u,v) exists in S(C) if and only if e = (u,v) exists in C.
Labels of the edges and nodes in S(C) retain the labels they
have in C.

Definition 4 [Traceable Interesting Summary S(C)].
Given an interesting summary S(C) C C at time t, a traceable
interesting summary S(C) is a super-graph of S(C), denoted
S(C) C S(C). A node v; in C'is in S(C) if: v; is the seed, or
&(v) > tv (v € O, (v; € l(vj) AN&(vy) > 1)).

As some nodes are removed from an interesting summary
(Definition 3), remaining interesting nodes may become dis-
connected. Definition 4 includes the missed nodes on the
paths from the seed to the remaining interesting nodes. A
traceable interesting summary thus is possible to reveal the
flow of dynamics and interesting developments can be
traced throughout their life cycle. To explain the evolution in
a traceable interesting summary, we next introduce the con-
cepts diffusion rise and diffusion decay, defined by the notion
of acceleration intensity. In the rest of the paper, we use a
summary (summaries) to indicate a traceable interestingness
summary (summaries) for simplicity.

Definition 5 [Acceleration Intensity ol. Given a node v; as
an infector of a node v; in a cascade C, the acceleration intensity
is defined based on the diffusion from v; to v in C as

o(vi, vj) = &J(vjt)i:fti(vl)’ e
J ?

where t; and t; are the infection times of v; and v;, respectively.

We can now define the rise and decay of a diffusion pro-
cess: When ¢ > 0, the propagation process from v; to v; is a
diffusion rise process; otherwise, it is a diffusion decay
process.

The goal of the DNS problem is to better understand net-
work dynamics. A summary thus needs to be informative
with respect to the original data. There are several methods
to evaluate informativeness. Among these, we propose to
use Entropy. A review of Shannon Entropy and details are
presented in Section 3.3.1. Here we denote the entropy of a
traceable interesting summary S(C) by H(S(C')). Recall that
the entropy gains when its value decreases. We thus aim to
find a summary with minimal entropy to achieve the best
informativeness. The problem is stated as follows:

Problem Statement (Interestingness-driven Diffusion Process
Compression). Given a diffusion network G with seed sets
UZ(G), stories diffuse from each seed over time. The dynamic pro-
cess is represented by a stream of interactions, which forms a set
of cascades {...,C;,...}. The output of the problem at time t is a
set of traceable interesting summaries S(G) = {...,S;(Ci),...}
(1S:i(Cy)| > 0). The entropy (H(S(C'))) of each summary S;(C;),
which reveals diffusion rise and decay, is minimized subject to the
balancing parameter 0 < o <1 of the aggregate score and the
interestingness threshold t > 0.

To solve the problem, two sub-problems have to be
solved: i) How to model the dynamics on the top of graphs?
Is the cascade model suitable? The diffusion processes we
discuss are evolving over time. And all the cascades on a
node are merged. This may cause problems for the summari-
zation because the interestingness of a node is associated
with time-stamps and stories as node instances. This requires
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Fig. 1. Overview of the OSNet framework.

to design a labeling function to distinguish the node instan-
ces, which is ineffective. ii) How to set proper values for «
and t for different diffusion processes? Given an « in the
range [0,1], each connected subgraph of a cascade C over
time can be a summary, which yields a hard graph decompo-
sition problem. On the other hand, the scale of a summary
mostly depends on the threshold t. A proper value is neces-
sary because we intend to find all interesting developments.
We proceed to develop the OSNet framework that encom-
passes new and incremental techniques capable of continu-
ously summarizing dynamics based on a spreading tree
model in step with the evolution of diffusion processes.

3 OUR METHOD

3.1 Framework Overview
An overview of OSNet is shown in Fig. 1. The input is a dif-
fusion process D(G). Instead of using cascades, we model
the interactions by a set of indexed spreading trees. A collec-
tion of spreading trees is equivalent to a cascade network.
There are indexes on storyID and seeds, such that we can
insert an interaction into a spreading tree 7; efficiently. By
Equation (1), the interestingness-based operator is to evalu-
ate the interestingness of nodes in spreading trees with two
parameters, « and t. We evaluate the interestingness of a
node v when it infects new nodes (i.e., w(v) increases). If v
has & (v) > 1, it is inserted into a summary S(7;). The sum-
maries are also indexed in the same way as 7. We thus
insert v into S(T;) by searching storyID and seed. Once a
node v is inserted into tree T, it is tagged with its branch
such that a node cannot be reinserted into the summary
S(T;). We only insert new nodes and edges into a tree over
time, and it is not necessary to rebuild any part of 7" or S(T').
When a node v of T} is to be inserted into S(7;) at time ¢,
there exist three cases: 1) S(7;) does not exist and v is not a
seed (v € Z(G)); 2) S(T;) exists and the infector of v in 7 is
already in S(7;); 3) S(T;) exists and the infector of v in T} is not
in S(T;). Cases 1) and 2) are straightforward. We can create a
new tree for case 1); and for case 2), we insert v as a child of its
infector in S(7'). In case 3), the insertion of v renders S(7;) dis-
connected, and the process thus cannot be traced from the
seed to v. A solution is to recover all the nodes in the path
from the root to v. We call this problem the Recovery Problem.
We proceed to present the spreading-tree model in
Section 3.2. Parameters used for interestingness evaluation
are discussed in Section 3.3. Two algorithms for the recov-
ery problem are proposed in Sections 3.4 and 3.5.

3.2 Spreading-Tree Model
Although network cascades can model diffusion processes,
several issues of dynamics challenge the effectiveness of
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network cascade model. First, the time-stamped instances
of a node are merged in cascades because a node in a cas-
cade model can only appears once [10]. However, in
dynamic networks, the interestingness is defined on node
instances. Namely, a node becoming interesting is associ-
ated with a specific time in an interaction. To distinguish
node instances in different interactions and cascades, a cas-
cade model requires a labeling scheme as extra effort. Fur-
thermore, as cascades are directed graphs, there exist
backward and forward edges or even cycles. This makes a
cascade hard to interpret and navigate between node instan-
ces. Second, summary search on cascades can be regarded
as subgraph search. However, graph search is usually time-
consuming since it involves isomorphism checks. Third,
since cascades are merged into one directed graph, the
graph search space grows exponentially, which makes
dynamic summarization even harder. We propose to
instead use a Spreading-Tree model. First, spreading trees
are constructed directly by interactions without any other
efforts. A spreading tree models an individual diffusion
process. Information is diffused from the root to the leaves.
The model distinguishes interactions and cascades by itself.
Next, tree search is relatively efficient. Numerous proposals
of efficient tree operations (e.g., update) exist. Third, there
are no backward and forward edges in spreading trees. The
tree structure is not as complex as a cascade. The search
space is proportional to the scale of the interactions.

Definition 6 [Spreading Tree T']. A spreading tree T = (v,,
V' E', Ly1, Lg), is a rooted and labeled n-ary tree, where
v, € V' is the root, V' is a multiset of node instances,
E CV'xV'isa set of edges, Ly : V"2, is node labeling
function, and Ly : E'—T is an edge labeling function.

Intuitively, a node represents a specific user instance in a
diffusion process, and the node’s label is the identity of the
user; an edge in a spreading tree connects an infector node
with an infectee node, and the edge’s label is the infection
time of the infectee node. A non-root node has one infector.
A non-leaf node has one or more infectees, and a leaf node
has no infectees.

Given a diffusion network G, each seed v, € Z(G) forms
the root of a spreading tree. When an interaction
z = (8,u,v,t) € D(G) arrives, the spreading tree for § is
updated by inserting a new node labeled v and an edge
labeled t from an existing node labeled u to v. Note that both
u and v are labels of the nodes. To find the existing node u,
we search the tree in breadth-first order starting from the
root until a node with label u and infection time ¢ is found.
Therefore, although multiple nodes have the same label, the
three-tuple § can determine from which node to insert the
edge to the new infectee.
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Fig. 2. Spreading tree.

To illustrate the construction procedure, assume that a
new interaction x = (8, Jaycee, John,t) is to be inserted into
the tree in Fig. 2a. Note that we need to be able to determine
whether to insert a node John as an infectee of the leftmost
node labeled Jaycee or the leaf one.

In Twitter, we can use “@mention” tags to form § and to
identify the correct existing node where to insert an edge
for an interaction. For example, as shown in Fig. 3, when
Jaycee tweets with “@John” as a reply to the tweet by Vine-
app at #, John is then the infectee of the leftmost Jaycee
under Vineapp instead of Windows in Fig. 2a. Fig. 2 shows
two spreading trees extracted from Twitter. Each edge rep-
resents an interaction x, and each tree captures the spread
of a story. It follows from the tree construction procedure
that multiple nodes may have the same label (e.g., Windows
in tree 7). It also follows that there are no cycles [10], [25].

In summary, the spreading-tree model achieves the fol-
lowing properties: 1) cascades can be modeled as spreading
trees such that the summarization on cascades equals the
task on spreading trees; 2) the trees are separated by seeds;
3) a node can be duplicated in a spreading tree, which
shows that the model distinguishes node instances; 4) the
size of the trees is proportional to the scale of the interac-
tions; 5) infection occurs top-down, and diffusion occurs
from a parent node to a child node.

3.3 Self-Adjusted Parameters

Although using fixed values for parameters is simple to
implement, there are two main issues that demand better
approaches. First, for a single diffusion process, prediction
of the network statistics (change rate, number of infectees,
propagating range, etc.) is usually difficult. It is hard to find
parameter settings that can best capture the dynamics. Sec-
ond, different diffusion processes vary substantially in
range and scope. Thus, the same settings are not likely to
work across different processes. Our study aims to provide
a self-tuning mechanism that adapts to differences in the
summarization of dynamics.

3.3.1 Alpha Estimation
Recall that the entropy H of a random variable E with possi-
ble values {ey,...,e,} is defined as

H(E) == ple:)logap(e;), ®3)

where p(e;) is the probability mass function of outcome e;.
H(E) is close to 0 if the distribution is highly skewed and
informative.
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Fig. 3. A user interaction example from Twitter.

We measure the entropy of a summary S(C') and aim to
maximize the informativeness of S(C) to have the maxi-
mum possible information out of 7. Given a set of continu-
ous interactions D(G) by time ¢ (denoted by D(G),), the
probability of diffusing story « from v; to v; is regarded as a
conditional probability based on the percentage of v; was an
infectee out of all the interactions in set D(G),

2 fen (v )
D(G)|
where p( ;) (v;) is the probability of the node that directly
infects v; obtained by the occurrences of v; in spreading « by
t . Note that for a seed node, the probability of its infector is
1 in order to guarantee that a root is infected. The function
Jiet)(vj, ) is an indicator that is 1 if v; is an infectee in inter-
action z € D(G) when storyID = k by time ¢, otherwise 0.
Then we use the entropy I, ;)(S(C)) as an informativeness

measure of a summary S(C') with respect to 7'

D) (Vj]Vi) = Py (Vi) X , )

ISl
Hyer(S(C)) = — Z Pty (Vj]0i)10g Pty (v]vi).- (5)

=1

Thus, S(C) is the most informative by time ¢ with respect
to T if the value of its entropy H, is minimized. Before
we present the details of the estimation, Lemma 1 is intro-
duced as a property of a summary’s entropy.

Lemma 1. If ftwo summaries S(T) and S'(T) satisfy
d(S(T)) > d(S'(T)), V!(S'(T)\S(T)) =0, and |I(v)] > d(S’
(T)) where v € V'(S(T)\S'(T')), then we have H,, 4 (S(T)) <
Hp(,(_ﬁ(sl(T)) holds.

The proof is omitted due to the space limitation. It shows
that the entropy is smaller for those summaries with greater
depth. By Equation (1), to achieve the smallest entropy, we
need to minimize o because a smaller « yields a higher
weight for depth such that deep summaries are preferred.
In the remainder of the section, we present the bounds on «
followed by our estimation based on entropy.

Theorem 1. Let n as the maximal number of nodes in a summary

S(T) with a threshold t. Given log¥/n — 1 —d > 0, the lower
bound of « is

T—d
o —
ol_log\d/n— —d

, otherwise 0, (6)

where d is the depth of the summarized tree.
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Proof. Given a node v in a summarized tree S(T), we have
alogw(v) + (1 — a)y(v) > . The maximal value of y(v) is
the depth of the summarized tree d such that the fanout is
lower-bounded by e(*~(!=)%/« which is positive. Since the
size of S(T) is bounded by n, (el™(-0d/e)d . .
telrmadfe 1 = S (e(r=(-ad/e)l <y holds.  As
e(t—(1-a)d)/a is (e(r—(l—a)d)/a)d +r1< Zi‘lzo
(elr=(-a)d)/ayt <y the
(el (=a)dfey? 4 1 <y completes the proof assuming
log Wn=1—d > 0,otherwise the lower bound of is 0. O

positive,

Transforming inequality

As we know, the minimum « turns out to produce the most

informative summaries. Thus given logV/n —1—d > 0 by
Equation (6) we have the estimation for « as

e whent > d,a=(t—d)/(logV/n—1-d),

e whent<d a=0,
to obtain the minimum entropy. The summarization can
therefore adapt dynamically.

3.3.2 Threshold Selection

The goal of the DNS problem is to find the most interesting
developments of dynamics over time as summaries. This
naturally requires OSNet to only focus on the small set of
the interesting nodes and edges in a spreading tree 7. Our
goal is to find a proper threshold that can make the summa-
rization converge fast and produce a small sized summary
over time. However, the changes and differences of dynam-
ics challenge the setting of such a threshold. Therefore, a
selection mechanism adapting to the trends of dynamics
(i.e., rise and fall) is necessary.

The idea of the proposed solution is to maintain a variable
7’ for each spreading tree T, which is the maximum value
(MAX) of £ (v;), v; € T by time t'. During the summarization,
we compare a new interestingness score & (v;) with 7't if
&(vj) > 7', then v = &(vj), and vj is inserted into the corre-
sponding S(T'). If we have a value of 7’ that is large enough,
OSNet converges to a relatively steady state until there is a
more interesting node, e.g., far away from the seed and with
many infectees, to exhibit another rise of the diffusion. Thus,
in a summary S(7') based on MAX, the interesting nodes (by
the first condition in Definition 3) in deeper levels always
show diffusion rises from those in lower levels. From an
interesting node to a node recovered for the next interesting
node, the flow is always a diffusion decay.

Other methods than MAX would be possible, e.g., aver-
age value (AVG) of & (vi) as 3, oy & (vi)/|V]. We compare
these alternatives experimentally in Section 4.

3.4 Tree-Based Approach

An efficient way in a tree-based data model to solve the
Recovery Problem is to construct S(1') as a search tree. The
basic idea is that all the siblings in each level of S(T'),
namely the nodes getting infected from the same infector,
are ordered. We thus can perform a binary search. The
canonical ordering is based on time-stamps labeled on tree
branches (edges) and node labels. If a node v; gets infected
from v; at time ¢;, v; is inserted as: the time-stamps as edge
labels of all the siblings on the left are not later than ¢;, and
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the node labels on the left are not lexicographic larger than
v;. Lemma 2 presents the worst case search cost of the
search tree.

Lemma 2. Let a tree T have n nodes and the fanout of T is d. We
have the worst case search cost when d(1") is minimum as

O(lOg gn(d—l)-%—l) (lOg 2’L(d—1)+1) . 1)10g 2d)

Algorithm 1 captures two essential aspects of OSNet: 1)
Constructing spreading trees (lines 7 to 10); 2) summarizing
the most interesting dynamics into S(7") (lines 13 to 16). We
proceed to explain the details. We allow users to terminate
a summarization process through the variable breakFlag in
line 6. Depending on the applications, one can also use a
bound on the size of S(T') to abort the algorithm. Note that
we have no limitation on n. Once a new interaction
x(8, vi, v, t) arrives (line 7), we call mapT in line 8 to retrieve
the T of story 8. Next, branchOut in line 10 inserts an
infectee v; from v; with edge label ¢ into 7. We implement
each S(T') as a search tree. From line 11, we summarize the
updated node according to Equation (1). If the node’s inter-
estingness exceeds the threshold, it shows a diffusion rise,
and the node is inserted into S(7"). Parameters are adjusted
in line 12 as discussed in Section 3.3.

Algorithm 1. Algorithmic Description of the OSNet

Input: Network G, seed set Z(G).
Output: A set of summarized spreading trees, S(G).
1: begin

2:  Threshold t — 0; ¢ «— 0; n «— |V|
3:  Boolean breakFlag «— false;
4:  List path «— null;
5. Spreading tree set Set(7") rooted by seeds in Z(G);
6: if breakFlag == false then
7 if 2(8, v;,vj,t) < D(G)|t;;] exists then
8: T — mapT(Set(T),9);
/*addzontoT.*/
9: v; < Search(T,v;);
10: branchOut(v;, v;, t);
11: if £(v;) > tthen
12: 7 &(v;), setw;
/*retrieve path fromT. */
13: while v;.getIn fector(T) ¢ Z(G) do
14: path.Push(v;.getIn fector(T));
15: S(T) «— getST(Set(7),T);
16: insertPath(S(T'), path);

17:  return Set(7T);

Before inserting a node into S(T"), we retrieve the path
from the root in line 13 by iteratively pushing an infector
(function Push) into list path. We then insert the missed
nodes and edges into S(7') in line 16. These nodes show dif-
fusion decays from the last interesting node, but rises to the
next. Summaries are returned as necessary in line 17.

3.5 Path Hierarchical Locating Bloom Filter

The recovery procedure performs a search on S(7') and
recovers the missed nodes/edges on the path I(v;) from the
root vy in 7. The time complexity to retrieve { from T is lin-
ear in the length, O(]i(v;)|). Lemma 2 shows that the search
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Fig. 4. Indexing for fast recovery.

complexity on S(T') depends on the fanout and the depth
that is bounded by the scale of the tree. Although the search
performs well on trees in general, large-scale and continu-
ous dynamics are challenging for the recovery procedure,
especially when the fanouts, depths, and lengths of the
paths are large.

We thus propose a fast recovery method called
Path Hierarchical Locating Bloom Filter (PhBF), which is an
extended version of a Bloom filter. Similar to a Bloom filter,
the time complexity of PhBF to search a node or an edge is
constant, such that PhBF is able to efficiently determine
which segment of a path needs to be recovered in S(T) and
where it should be inserted [26]. In PhBF, two Bloom filters
encode an edge-node pair. Each bit that equals one points to
a location in the hierarchical tree S(7"), which is the physical
address of the infector in a pair. Fig. 4 gives an example of
the proposed approach. Compared with a Bloom filter,
PhBF has the following benefits: 1) it is capable to void
encoding conflicts between nodes and edges; 2) it has well-
proved false positive bounds for checking ordered pairs in
a path; and 3) it has an indexing structure to locate physical
addresses of the indexed nodes and edges.

We map each 7 to its summary S(7"). When an interaction
x is inserted into 7', we retrieve its path to the root in the cor-
responding 7'. For instance in Fig. 4, for the interaction where
a node Jaycee branches to Windows with edge ¢», a path
(Vineapp, to, Jaycee, to, and Windows) is retrieved (the bold
path in 7). In our method, we check the path from the root to
the leaf node to determine which segments have to be recov-
ered. Each check concerns a node-edge pair of the path. We
thus start the check with the pair consisting of the root Vine-
app and the edge t,. Because PhBF hashes the nodes and
edges in S(7T'), the edge ¢, is not indexed in PhBF. The check
of the pair thus fails. In the figure, we can see that the Vine-
app is in S(T), but that edge ¢, is not. PhBF then returns seg-
ment ¢, that is to be inserted into the root node location.

The design of PhBF is detailed below. First, each edge-
node pair from top to down in S(7T') is hashed into the edge
Bloom filter and node Bloom filter. In total, |D(G)| (.e.,
>>|S(T')]) pairs are hashed into the PhBF without consider-
ation of the leaves. A PhBF begins with arrays of all Os for
the node and edge filters. Each node or edge of a pair in a
Bloom filter is hashed k times by different hash functions,
and each hash yields a bit location that is set to 1. If one bit
is set to 1 from O, this bit is inserted into a queue that con-
tains the location of the infector.

For example, in Fig. 4, when we hash the edge labeled ¢,
or the node Jaycee, the location of the root node is pushed
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into the queue. If this bit is already set to one, the location is
pushed to the back of the queue.

Next, when we check a path [ in 7', we start from the edge-
node pair (such a pair is also termed a value) next to the root
in . We maintain a pointer P to the root in S(7'). If both ele-
ments of a pair are hashed to bit locations with 1s by the k
hash functions, we update P to be the common location of the
pair in the queue; otherwise, P and the checking pair are
returned. With the returned pointer, we insert the path / from
the checking pair into the location indicated by P.

We proceed to analyze the properties of PhBF. As we
know, the complexity of a Bloom filter is constant to check
whether a value is hashed. Hence, the checking for each pair
is constant. Since there can be multiple locations for a bit with
one, we compute the intersection of the queues of the node
and edge filters, which contain exactly one common location
for all k£ hash functions because such a pair exists in the pro-
cess if and only if such an interaction « is modeled in 7". The
complexity for this is O(m), where m is the size of the queue.

A Bloom filter never produces a false negative, but may
produce false positives. PhBF has an upperbound on the
false positive probability. We hash a path into PhBF by
using k hash functions. The number of pairs is 7, and the
length of a Bloom filter is m. After all the pairs are hashed
into PhBF, the probability that a specific bit is still 0 is

p=(1-2 " In PhBF, the probability that the bits are 1s is

(1 —p)*. We can now bound the false positive probability.
Let a be the number of paths, and let b be the number of
checked pairs in the path. To store the weight we can intui-
tively use 16 bits (float value), or we can encode the weight
by log(a). For the number of hash functions and the length
of PhBF are usually set empirically [26].

Lemma 3. The probability of a false positive of PhBF that con-
siders a non-existing path as existing in a summary S(T') is

C(bkk k
aC(Eik,k)) (1-p)".

By construction, PhBF has much fewer false positives
than the Bloom filter because the false positive probability

.. aC(bk,k) k
C(nk, k) (1 - )

(1-p)",

Theorem 2. Let ¢ be the probability that a value is legal. The
probability of a false positive during the recovery of a path in
PhBF is % ¢".

while in the Bloom filter, the probability is

and “C,Zif is obviously below 1.

Proof. Each path is a set of b pairs. We hash these b values
into PhBF. If all the values are legal (a value is legal if this
value is in PhBF) and have equal weight, this path is a
positive path. The probability that all b values are legal is
¢". For the b values, there are n’ possible combinations.
For each path, the probability of all the values having the
same location can be represented as t’, and there are a
paths. The probability that a path is positive if all the

. . b
pairs are legal is %7. O

Lemma 4. The false positive probability of an edge-node pair (i.e.,
a value) in PhBF is upper-bounded by a (> 1)k.

Proof. For all the C(nk, k) possible situations where all the
corresponding bit locations are set to one, we have
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k components

(AR (Ak)--- (Ak— K+ 1)
CORF) = e — w1~ Kl
_ (k= k+ 1)) ™
= k!
 (Ak k) k- 1)
=B R
Similarly, we have
A1k
C(ik, k) < ("]j) .
Hence, we obtain
aC/(bk, k) v ak!(bk)F X
=7 (1-p)"<———(1-p)
C’(nf, k) k:k(nb— )"kl )
_ k1 _ o)k < k-
a(z—7) 1 -p)" Salz—)

a

Theorem 3. The false positive probability of a path in PhBF is

upper bounded by - (525)"

n—1

Proof. The probability of a path in PhBF is a,?—fl, and thus we
have (ZZ;)(; qb < az?*fl < abl—l (,1f1)bk~ o
We show the psudocode of PhBF in Algorithm 2. Lines 4

to 15 check the parts of a path that are missing in S(7),

within which we get the locations by using the edge and

node filters (lines 7 to 10). Edge and node hash functions are
denoted by fe,, and fn,, (m € [0— k)), respectively. The
common locations for each index are kept in A,,, and we

check whether there is such an edge-node pair in line 11,

where the same location for both filters should appear for k

functions. If such a location exists in S(T'), we break the

check of the path and insert the checked parts into S(7T')
from the last infector v; (line 13); otherwise, we continue the

check from line 15. The insertion is done in lines 16 to 17.

Note that in the implementation, we check the path in a bot-

tom-to-top fashion because we can then directly recover the

missed parts and skip the repeated checking of the top parts
of T for paths. This is efficient, especially when the missed
parts are relatively short.

Complexity Analysis. The space used by Algorithm 1
includes the space used for spreading trees and the space
used for summaries. The space for spreading trees equals
the space of the |D(G)| received interactions. The space can
be compressed by using statistics to reduce some parts of a
tree. For example, we can associate a label with a node as
the number of infectees instead of inserting all infectees.
The space for summaries is in the worst case the same as
that of the original data. This occurs when all the leaf nodes
of a T" have the maximum interestingness score (Equa-
tion (1)). In practice, the space is much lower.

We quantify the I/O cost in experiments. If |D(G)| = n,
the time complexity to build spreading trees is O(nlogn) for
performing a binary search on n interactions. The time com-
plexity to retrieve a path from 7" is O(d(7")), which is at most
O(logn). For PhBF, we need to hash n = ab pairs into the
Bloom filter by k hash functions, so the time complexity is
O(nk). To recover a path, we need to hash b pairs into PhBF
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by k hash functions, so the time complexity is O(bk). The
comparison costs at most kb. In total, the time complexity is
O(bk), where bis at most equal to O(log ), which is the maxi-
mum depth. The time complexity is thus O(nlogn) in total.

4 EXPERIMENTAL STUDY

This section presents an extensive series of experiments to
evaluate OSNet. We compare OSNet with existing algo-
rithms as well as implementations of OSNet. We also study
the efficiency and design properties of OSNet. Case study
and applications, including a user study, are further dis-
cussed on two large scale real-life dynamic networks.

4.1 Experimental Methodology and Settings

The experiments consider four questions: 1) Sense-Making
Evaluation: Compared with the state-of-the-art, do the sum-
maries generated by OSNet make sense and achieve the goal
of capturing interesting dynamics? Do summaries of OSNet
meet user expectations? 2) Parameter Study: Can we use fixed
parameters? What are the effects of the parameters? Does
OSNet converge fast, using MAX or AVG? 3)Algorithm Effi-
ciency: Does PhBF perform better than the tree-based
approach for the recovery problem? 4) Real-life Data: How
does OSNet work on real-life data? Does OSNet adapt to dif-
ferent dynamics? What can we derive from the summaries?

Algorithm 2. Fast Recovery PhBF

Input : Summarized spreading tree S(7'), a path Path.
Output: Updated summarized spreading tree S(7T').
1: begin
2 Buffer edge < null, node «— null;
3: Integerflag — 0;
4:  fori « 0 to |Path| do
5: node «— Path[i];
6
7
8

edge — getEdge(node, v;);
form — 0 to k do
addrA — hashEdge( fe,,, edge);

9: addrB < hashNode( fn,,, node);
10: A,, — addrA N addrB;
11: if AgN...NA, # () then
12: flag=1i+1;
13: v; < Path[flag];
14: break;
15: v; < node;
/* recovery path */
16: fori — Otoflag—1do
17: branchOut(v;, Path[i], get Edge(node, v;));

18:  return S(7);

Experiments on synthetic data are used to test whether
our methods produce expected results in a controlled envi-
ronment. As OSNet makes no assumption on the influence
of underlying networks, the intentional test of graphs with
various distributions are not considered for this study.
Instead, we provide sets of interactions generated by differ-
ent distributions, which are on a set of nodes G containing
10,000 labeled nodes. With a random seed set Z(Gy), we then
start the propagation for each seed. The number of infectees
of a node v obeys the following models to simulate different
dynamics as interactions: I) Gaussian distribution (G); II)
Poisson distribution (P); IIT) Zipf distribution (Z), which is an
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approximate power law probability distribution. We define
the modeled number of nodes (n) to be the number of labeled
nodes we choose for a dataset, and we require that their
numbers of infectees obey one of the three distributions.

All experiments were conducted on a 3.2 GHz Intel Core
i5 with 16GB 1,600 MHZ DDR3 main memory and running
OSX. All algorithms were implemented in JDK 1.6.

4.2 Sense-Making Evaluation on Synthetic Data

The sense-making experiments consist of two parts. In the
first part, we compare OSNet with several existing algo-
rithms using synthetic data. In the second part, we use a
real-life dataset and conduct a user study. We study
whether summaries meet user expectations. We also com-
pare with summaries generated by other algorithms.

To enable existing methods to support diffusion pro-
cesses, we generate a graph sequence for each dataset, in
which each graph aggregates all edges and nodes in a time
interval At. Due to the space limitation, we only report
results for several time intervals. Similar findings apply to
other intervals. We compare our techniques against the fol-
lowing state-of-the-art algorithms:

e DisSim-Alg: This is a graph compression algorithm
that abstracts a large graph into a smaller graph that
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contains approximately the same information. It is
developed based on the notion of dissimilarity
between the decompression graph and the original
graph. We use an existing implementation [3] and
set the weight of an edge to 1 if the adjacent nodes
diffuse infection by time ¢: otherwise, edge weights
are set to 0.

e MDL-Alg: MDL is a successful and popular tech-
nique for graph compression. We compare against a
recent study by Navlakha et al. [2] where a graph is
compressed and represented as a graph summary
and a set of corrections. We use the original
GREEDY algorithm that offers the best compression
and lowest cost [2]. To enable cliques to be merged
into a single supernode, we add self-edges to each
node before applying the algorithm.

(OSNet). Figs. 5, 6, 7, and 8 show a diffusion process
D(G) from t; to t, using data generated by applying Zipf
distribution. The infector as the central node of each group
is labeled with a canonical identifier for ease of explanation.
The node with identifier 0 is the seed of the propagation. In
the four figures, the red and darker nodes are the nodes that
are already infected; the grey and lighter nodes are other
nodes in the synthetic networks. To facilitate visualization,
we remove the background nodes and edges in the underly-
ing networks that are not involved in the diffusion process.
Figs. 9, 10, 11, and 12 present the summaries by OSNet from
t1 to t4. The results show the approach is incremental and a
summary in each figure grows based on the previous
results. The intuitively interesting nodes are captured, and
the summaries are traceable and connected paths, such that
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we can spot the dynamics from the start to the nodes i) that
can infect many others; ii) that are far from the seed. We
observe that the summaries in Figs. 10 and 11 are the same.
Back to the original diffusion process D(G) from ¢, to ¢3, the
diffusion reached nodes 86 and 87 at t3. However the num-
ber of infectees is quite few. Compared with the other nodes
in S(T), 86 and 87 are thus not that interesting to be summa-
rized. This actually shows from ¢, to ¢3 the diffusion process
falls down in diffusion from nodes 19 and 20, and OSNet
adapts to the changes in diffusion. In contrast, at time ¢4,
both 108 and 109 have many infectees and they are far away
from the seed 0. They again expedite the diffusion process
and are captured as interesting nodes by OSNet. If we only
summarize the two without including nodes 86 and 87, we
lose the connections that allow us to interpret how informa-
tion propagates. Thus, 86 and 87 are recovered and
included. The findings show that OSNet is capable of find-
ing a small set of connected interesting nodes that meaning-
fully capture the diffusion process.

(DisSim-Alg). We aggregate interactions by varying slid-
ing window At to generate graph sequences and try various
values for the internal compression ratio parameter. We
report three representatives at ¢; in Fig. 13 where a node
with negative number indicate supernode (i.e., a cluster of
graph nodes).

The findings show that the summaries vary a lot w.r.t. com-
pression ratio. Comparing (a) and (c) where (c) is with a
higher compression ratio, the graph size of (c) is much smaller
but it is with less information of the propagation because
DisSim-Alg aims to minimize the dissimilarity according to
edge weights. To maintain a smaller dissimilarity, some edges
or superedges are removed (e.g., (c)). Fig. 13b shows a sum-
mary produced by using a smaller At that is larger than that
of (a). This occurs because when the compression ratio is
achieved, although new edges and nodes arrive, the algorithm
only considers the dissimilarity and does not attempt further
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compression. As a result, the algorithm does not adapt to
dynamics and capture traceable flows well.

(MDL-AIg). The summary by MDL-AIg on the same dif-
fusion process is shown in Fig. 14. MDL-Alg is parametric-
less, which computes the best cliques to merge in order to
maintain a low cost. Particularly, in Fig. 14, the rightmost
clique means node ‘1’ connects with supernode ‘—121" with
edge weight 16. However, separate cliques cannot support
the traceability of a diffusion process.

4.3 Parameter Study
We evaluate the effect of three parameters that are used in
OSNet. The first is o in Equation (1) used to balance the
weights. The second is the threshold z. The last is the maxi-
mal number of nodes n that can be in S(T) we used to esti-
mate o in Equation 3.3.1.

(Weight o on proScope). We increase o from 0 to 1 in steps of
0.1. For synthetic data, we generate the maximum spreading
trees with depth 100, and 7 is 1,000. Note that in the experi-
ments, we set d = 2 for finding summarized trees as the mini-
mum depth of interesting summaries. For Gaussian (G)
datasets, we set the mean to 100 and the standard deviation to
20. The expect value for Poisson distribution (P) is 50. The
maximum deg™ (v) of the Zipf distribution (Z) is 200. Conse-
quently, we have three datasets with 89,037 (G), 45,306
(P), and 36,892 (Z2) interactions, respectively. We set t to
100. Fig. 15 shows the I/O efficiency with respect to c.
We count the I/O cost as the size of summaries, namely
the number of interactions in S(7"). The I/O cost for the
dataset P is 0 that means that no node in the propaga-
tion process gains a score that reaches 100. The findings
show that the same fixed threshold does not work well
across different datasets. For both G and Z in Fig. 15, the
1/O cost decreases as « increases. As we know, o con-
trols the weight of proScope. Thus, when « is small, the
proRadius becomes more important in Equation (1). As a
result, nodes that are far away from a seed are more
likely to be captured, which yields a higher 1/O cost.

(Threshold ). We compare our proposal that uses the current
maximum score against using the average historical score
AVG. We use the same datasets as above. Fig. 16 shows the
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findings on dataset G, which indicate that the I/O cost of MAX
is much lower than that of AVG. And with a given «, the sum-
marization with MAX converges faster to a relatively steady
state than with AVG. MAX requires less updates on the summa-
rized spreading trees than does AVG. Compared with the find-
ings in Fig. 15, the I/O cost increases as « increases when using
AVG, because a larger value of « yields a larger score. This
allows more nodes of a D(G) to be summarized, which
increases the I/O cost. However for MAX, the cost remains
almost the same when « < 0.6 and it increases only slightly
afterwards. We obtain similar results on the other two datasets.

By Equation 3.3.1, « never decreases because 7 is based
on the MAX strategy. This is beneficial for summarization
for two reasons: i) With MAX, a larger « allows a bit more
nodes to be summarized if diffusion rises; ii) a larger «
decreases the influence of proRadius such that the summari-
zation converges faster. This keeps OSNet from capturing
too many nodes even when many are far away from seeds.

(Maximum Possible Summary Size). We evaluate the effect
of maximum possible summary size n in Equation 3.3.1 by
varying the parameter from 10,000 to 100,000. The findings
in Fig. 17 for all the three datasets show that the I/O cost
increases as the parameter increases. A larger maximum
possible summary size n yields a smaller «. Fig. 17 thus
shows the same I/O cost trend as does Fig. 15. However,
the variation in Fig. 17 is slight. For simplicity, we suggest
to set the parameter as maximum possible summary size to
be the number of nodes, which is also the maximum num-
ber of nodes that can be summarized in an S(7').

4.4 Algorithm Efficiency

We evaluate the efficiency of the PhBF-based the tree-based
OSNet in two situations: 1) the efficiency of summarizing a
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large number of diffusion processes; 2) the efficiency as
varying the length of recovery paths when the number of
diffusion processes is fixed. In both experiments, d in Equa-
tion 3.3.1 is set to two as the lower bound of the expected
depth of the interesting summaries in search. In a similar
way, we generate three datasets with n = 100 following the
three distributions P (expect value is 20), G (mean is 100,
deviation is 20), and Z (deg" (v) = 100). For each distribu-
tion, we vary the number of diffusion processes (.e.,
spreading trees) from 1,000 to 4,000 with step 1,000 and gen-
erate five sets for each number. The average runtime gains
of PhBF outperforming tree-based method are shown in
Fig. 19. Fixing the number of trees as 1,000 for each distribu-
tion dataset, we vary the length of recovery paths and ran-
domly pick paths from each tree and recovery locations, the
results of runtime gain are reported in Fig. 20. The findings
reveal that the PhBF-based approach outperforms the tree-
based approach especially for power-law graphs.

4.5 Case Study and Applications
4.5.1  Social Networks

We use data from Sina Weibo, a Chinese Twitter-like micro-
blogging service platform (http://www.weibo.com) that
has two important features that are not yet offered by Twit-
ter: 1) A user can comment on any other user’s tweets,
which yields more user interactions; 2) The retweeting/for-
warding chain is visible to the public, which is important
for studying diffusion processes. Our dataset covers more
than 1.8 million users, and we reconstruct the diffusion pro-
cesses from their replies. There are 41,561 cascades (diffu-
sion processes) with 2,211,221 interactions. We show that
the probability density distribution (PDF) of the cascade
size (Log-Log) as a property of the original data in Fig. 21.
OSNet outputs 8,647 summaries in which a seed has at least
one infectee. Among the results, the summary with the
most edges has 62 edges. The PDF of the summary size
(Log-Log) is shown in Fig. 22, which shows that most of the
summaries are small. The lower bound of depth in Equa-
tion 3.3.1 is set to 4 since the majority of the diffusion pro-
cesses (> 78 percent) are with depths smaller than four.
Interactions are read from external files by random access.
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Fig. 18 shows the runtimes of the tree-based and the PhBF-
based OSNet. Fig. 23 shows a sample of diffusion processes
represented by cascades. Fig. 24 gives the corresponding
OSNet summaries where a rectangle node is a root.
Although the cascades in Fig. 23 may merge on some nodes,
the summaries are separated from each other w.r.t. stories.
In the study we find that some of the summarized nodes are
actively engaged in other diffusion processes, which meets
the intuition of the interestingness.

(User Study for Sense-Making Evaluation). A user study is
conducted as a field study on Sina Weibo data. The study is
conducted using a questionnaire in which we show an
example of dynamics with 100 interactions and give a list of
questions, each with several options. We obtain 27 partici-
pants with either a computer science or a sociology back-
ground and cover participants from five different countries
(China, Denmark, India, Korea, and Singapore). We visual-
ize the example as network cascades [10], [25]. The ques-
tions can be summarized into four categories: 1) (Seed) Do
the participants think the seed is interesting and necessary
to know for understanding the dynamics? 2) (Interesting-
ness) With only few nodes to represent the dynamics, do
the participants agree with the intuitions that the nodes
with more infectees (high degree) and far away from the
seed are more interesting in the dynamic process? 3) (Trace-
ability) Is traceability necessary for understanding a dynam-
ical process? Do the participants think a set of connected
nodes is suitable for understanding dynamics? 4) (Algo-
rithms) Among the summaries generated by DisSim-Alg,
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Fig. 25. Summarization of traffic. A red dot indicates major traffic thor-
oughfare, and dark lines indicate roads.
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Fig. 26. Hot spots detection in traffic networks. In the heat map, color
density indicates the normalized traffic density.

MDL-Alg, and OSNet, which one do the participants think
best describes the dynamics? The statistical results for each
category are: 1) 85.2 percent. 2) 96.3 percent. 3) 92.6 percent.
4) All participants consider OSNet as the best for under-
standing the dynamics. The results show that when the par-
ticipants try to understand dynamics, i) the nodes that have
many infectees and are far from the seeds are more interest-
ing (from 2)); and ii) traceable summaries are more compre-
hensible and intuitive (from 1) and 3)).

4.5.2 Traffic Networks

Different sources of traffic information were merged to pro-
duce this work. A shapefile (a popular geospatial vector
data format that describes the geometry of a network) of the
city region of Shenzhen” was provided along with sequen-
ces of road segments tagged with taxi identifiers and time-
stamps representing taxi movements. The shapefile con-
tained 264,425 road segments. We obtained one year of GPS
data from approximately 15,000 taxis in Shenzhen to cap-
ture the traffic dynamics [8], [17].

For traffic dynamics, first, we define a road network
based on road segments (edges) and road junctions (nodes).
Second, the traffic dynamics is defined by the speed on each
edge [17]. Third, we apply OSNet, and then determine the
major traffic thoroughfares.

Fig. 25 is based on the result of summarizing one year of
data capturing traffic dynamics and shows a sample of
major traffic thoroughfares in the results. The major traffic
thoroughfares are all located at the intersections of high-
ways and ordinary city roads. Traffic diffusion thus rises
when traffic moves towards the thoroughfares in the city.
With the thoroughfares shown in dynamic traffic data by
OSNet, we can provide routing services according to traffic
conditions. In Fig. 26, we visualize one week of traffic
dynamics by means of a heat map, in which the regions
with continuous heavy traffics have values close to one,
termed hot spots. The results of applying OSNet are shown
in the figure, where the numbers are ID indicators of such
regions and the arrows indicate sequences of traffic flows

2. http:/ /en.wikipedia.org/wiki/Shenzhen
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between the indicators. We can observe the start, rise, and
decay of traffics from the evolution of the hot spots. For
instance, the summary from 8 to 9 shows that the region 8 is
the start of heavy traffic and that the traffic moves towards
region 9 in a decaying manner because the propagation
stops at 9 and the size of region 9 is smaller than that of 8.
We compare this result with a baseline: average usage of
the road, that is, the average speed of the traffic. The base-
line describes the traffic density as the same purpose of our
approach. Out of the 13 hot spots, the baseline gives the
same set of hot spots as our approach. But the difference
between the baseline and our approach is that our approach
is also able to describe the sequence of the traffic flow. Dif-
ferent from statistical methods which provide complex
models and detailed figures for traffic optimization and
planning, such online summarization serves to offer impor-
tant visual cue for easy overview and intuitive understand-
ing of the dynamic traffic flow, which is top priority for
most real-life traffic monitoring and management systems
to achieve quick response and comprehensive evaluation
for both global and local situations, especially for operation
personnel at the front line.

5 RELATED WORK

Graph Mining. Statistical methods [27], [28] are widely used
to characterize properties of large graphs. However, most
methods do not produce topological summaries thus hard
to interpret. Graph pattern mining [29] can be used for sum-
marizing graphs, but usually yields overwhelmingly large
numbers of patterns. Although constraint-based graph min-
ing approaches [19], [20] are introduced to reduce the num-
ber, they only work for specific constraints. Further,
summaries of dynamics are not inherently frequent. Graph
partitioning algorithms, such as Compact Matrix Decomposi-
tion (CMD) [30], are useful in detecting dense subgraphs
but node attributes are largely ignored. Next, graph OLAP
has been introduced to summarize large graphs [31]. How-
ever, most studies are designed for static networks and are
limited to user-specified aggregation operations. Graph clus-
tering methods, such as meta attributes and statistical mod-
els [32], for measuring distance of link structures, have
attracted much attention for summarization.

Graph Compression. Graph compression and simplifica-
tion mainly focus on generating compact graph representa-
tions to simplify storage and manipulation. Much of the
work has focused on lossless web graph compression [1],
[33], [34]. Web pages with similar adjacency lists are
encoded using reference encoding. Most of these studies,
however, only focus on reducing the number of bits needed
to encode a link, and few compute topological summaries
since the compressed representation is not really a graph.
An exception is a study [34] that computes graph summa-
ries by grouping web pages based on a combination of their
URL patterns and k-means clustering. Lossy topological
summarization is another graph compression study. Based
on the MDL principle, Navlakha et al. [2] propose an error
bounded representation that recreates the original graph
within a bounded error. Toivonen et al. [3] merge nodes of a
graph that share similar properties to achieve a summary.
Fan et al. [35] propose query-preserving graph compression
that retains equivalent query results on two particular query
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classes. Compared with these studies, our approach is
developed to summarize diffusion processes. Diffusion pro-
cesses as dynamic graphs do not belong to those special
families of graphs (e.g., unlabeled and static trees or planar
graphs that have repeated patterns and infrequent change
nodes/edges) for which efficient storage compression has
been proposed in graph compression literature [36]. As a
result, direct adaption of these methods is not possible for
online summarization of dynamic networks.

Compared with the preliminary work [37], the techni-
ques are significantly extended. We extend OSNet to embed
different methods to support path recovery problem, and
we propose a more efficient method based on Bloom filters
compared with a tree-based method. New experiments are
conducted to explore the new techniques. Moreover, we use
OSNet for city transportation analysis.

Graph Dynamics Analysis. As one of the attempts to con-
sider time-evolving networks, Liu et al. [15] compress
weighted time-evolving graphs, which is equivalent to com-
pressing a sequence of static graphs. Ferlez et al. [38] pro-
pose TimeFall to monitor network evolution that clusters
texts in scientific networks and uses MDL to connect clus-
ters. This class of studies are inherently distinct from ours
in four aspects: 1) we use general networks and do not have
assumptions on text processing; 2) OSNet takes as argument
an interaction stream rather than a time-stamped offline net-
work; 3) a sequence of time-sliced graphs are not assumed;
4) we aim to summarize diffusion processes. There are also
studies on temporal dynamics of social networks, including
inferring cascades [39], finding common progression stages
in event sequences [5], predicting cascades [4]. They focus
on tasks different from ours.

Diffusion Modeling. Many diffusion models are proposed
to model information diffusion and adoption, which can be
distinguished as explanatory models (e.g., NETINF [39],
NETRATE [40], INFOPATH [41]) based on complete diffu-
sion data to retrace implicit path from generative probabilis-
tic models and predicting models of cascade unfolding
based on historical data [42]. Independent cascade and lin-
ear threshold models are two extensively studied graph-
based influence diffusion models originally summarized by
Kempe et al. [25]. The two models are based on the intuition
that often decision is correlated with the number of friends.
This work does not consider the influence of nodes and
makes no assumption on underlying networks. The study
takes complete and timely interactions in cascades as infor-
mation diffusion for the purpose of summarization.

6 CONCLUSION AND FUTURE WORK

Motivated by information diffusion studies, we proposed
the problem of dynamic network summarization and pro-
vided an online, incremental summarization framework,
OSNet, capable of simultaneously capturing the most intui-
tively interesting summaries.

There exist limitation and open questions for this study,
which however points several promising directions for
future work. For instance, 1) dynamic addition of seed
nodes and unobservable diffusion processes [39], [43] are
beyond the consideration of this study; 2) this work has no
assumption on underlying networks that may have influ-
ence on the effectiveness of summarization; 3) this study
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assumes simple cascades as information diffusion, which
could be extended to support other models considering
user influences and explicit time granularity of interactions;
4) definitions of interestingness may be application-ori-
ented, which may require a generalized version of OSNet.
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