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Abstract. In this paper, we introduce a novel framework called SASA
(Smart Ambient Sound Analyser) to support different ambient audio
mining tasks (e.g., audio classification and location estimation). To gain
comprehensive ambient sound modelling, SASA extracts a variety of
acoustic features from different sound components (e.g., music, voice
and background), and translates them into structured information. This
significantly enhances quality of audio content representation. Further,
distinguished from existing approaches, SASA’s multilayered architec-
ture seamlessly integrates mixture models and aPEGASOS (adaptive
PEGASOS) SVM algorithm into a unified classification framework. The
approach can leverage complimentary strengths of both models. Exper-
imental results based on three large test collections demonstrate the
SASA’s advantages over existing methods on various analysis tasks.

Keywords: Ambient intelligence + Environmental sound analysis

1 Introduction

Rapid advances in mobile computing and multimedia technologies have led to an
explosive growth of various kinds of audio information related with our daily life.
In particular, ambient audio (environmental sound) contains rich information
(semantic concepts) about activity, event, emotion and venue. As a consequence,
smart techniques for ambient sound understanding have become more and more
important due to potential applications such as home care, health monitoring,
intelligent personal assistant and security protection. Essentially, ambient audio
understanding can be modelled as an S-class categorization. The performance
of technical solutions is largely dependent on their capabilities to model and
capture discriminative features to identify one category of sound from others.
Although traditional audio analysis schemes or algorithms designed for speech
or music recognition could be applied to solve the problem, it is difficult for them
to achieve promising performance in terms of accuracy and robustness. This is
because most of ambient sounds contain rich sets of basic audio components



coming from different sources (e.g., human voice, animal sound, music, back-
ground events or activities). The acoustic structure and interplay between the
elements could be highly complex and dynamic. For example, from the sound
track recorded in open market or restaurant, we can easily find that voice or
music is often intertwined with the non-stationary background signals from dif-
ferent events or activities (e.g., car engine start or music from shop or party).
To develop robust and effective modelling of ambient sounds, it is essential to
identify those basic audio elements and design advanced approach to model the
highly unstructured information.

In recent years, several approaches have been proposed to apply statistical
models or machine learning techniques for ambient sound analysis [4,6,13]. These
methods commonly consist of two main steps: audio modelling and label iden-
tification via machine learning algorithms. In audio modelling, low level feature
is extracted and used as content representation of raw ambient sound. Based on
the features extracted, specific statistical models or machine learning algorithms
(e.g., SVM, KNN or artificial neural network) can be constructed to identify
label of the ambient sound. However, the schemes based on this paradigm suffer
from low accuracy and poor robustness. The main reasons are:

— many of them only use single type of acoustic feature, which is not able to
characterize complex ambient audio comprehensively.

— as mentioned before, ambient sound’s structure and content could be very
complex and this requires combination multiple types of acoustic features as
effective content signature. However, existing studies simply ignore the effects
of multiple acoustic features.

— they are mainly based on simple machine learning algorithms instead of
advanced scheme, which could lead to more accurate and robust performance.

Motivated by the above discussion, a novel system called SASA (Smart Ambi-
ent Sound Analyser) is proposed to facilitate ambient sound characterization
and analysis. Distinguished from the previous approaches only considering very
limited amount of features and directly applying classic machine learning algo-
rithms, our main research contributions include:

— In order to achieve effective audio modelling, we propose a novel structural
analysis framework using the multiple features extracted from various kind of
components to improve the system’s performance. To the best of our knowl-
edge, this is the first attempt to characterize unstructured ambient sound
using a structured way.

— A probabilistic sound characteristic modelling method is designed based on mix-
ture models and aPEGASOS (adaptive PEGASOS) SVM classifier to bridge the
“semantic gap” between low level features and high level audio concept.

2 Multilayer Based Ambient Sound Understanding

SASA applies multilayered architecture consisting of three major functionality
modules: sound preprocessing, structured sound modelling and effective under-
standing with advanced SVMs. Figure 1 illustrates detail architecture of SASA.
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Fig. 1. Multilayer based ambient sound understanding framework

Audio preprocessing module aims to separate an incoming environmental sound
into voice, music and background segments, and to extract related audio fea-
tures from those segments. In the second layer of SASA, there are a collection
of statistical models based on GMMs, one for each frame category. To analyse
input environmental sound, different feature vectors are firstly extracted from
the various segments. The feature vectors are then fed into the statistical models,
generating a set of GMM supervectors, which serves as the input to the third
module - effective understanding with advanced SVMs. The main functionality
of the third module is to estimate which is the most relevant concept for input
audio. The core of the third module is a set of SVM classifiers trained using
aPEGASOS algorithm. Based on GMM supervectors, overall likelihood score
for each concept is computed and the query audio is assigned to the k concepts
(labels) with the top k likelihood scores. In the following subsections, we give a
comprehensive introduction of the various modules and core algorithms used in
the system.

2.1 Awudio Preprocessing

In the first stage of the understanding process, our system classifies and labels
the music, voice and background segments via the preprocessing module. We use
the approach similar to the one presented in [9]. This process can be modelled
as a problem of audio frame classification. A learning framework based on SVM
can be applied and inputs are acoustic feature vectors combining MFCC and
Wavelet. The algorithm demonstrates a promising performance because audio



segments containing human voices, music and other background events have very
significant differences inside the spectral features.

The preprocessing phase consists of two sub-processes: acoustic feature
extraction and frame classification with SVMs. After raw environment sound
is received, it will be divided into multiple fixed length time-frames without
overlapping. In our implementation, length of frame is set to be 0.75 sec because
based on empirical study, it leads to the best performance in our experiments in
terms of identification accuracy. The acoustic features extracted from each frame
include: MFCC features and Wavelet. The acoustic features serve as input to a
set of SVMSs, which classify each frame into three possible categories: voices,
music or background. We select SVM as classifier because it has demonstrated
excellent performance on a range of categorization problems. In our framework,
the LIBSVM [3] library is used for implementation and the kernel type is linear
kernel. After the process, environment sound input au is segmented into three
major components: voice frames au,, music frames au, and background frames
aup.

2.2 Structured Environmental Sound Modelling

Given that environmental sound can include multiple concepts and come from
multiple sources, The second layer of SASA system consists of multiple modal-
ity models, one for each basic audio element (e.g., voice, music or background).
Each model is made up of two parts: feature extractors and modelling via Gaus-
sianization. In below, we will provide details about each component.

Acoustic Feature Extraction. To effectively represent and model the complex
contents of ambient audio, our system extracts various features from different
types of segments. In total, four different features are extracted to model ambi-
ent sound from various perspectives: timbre feature (TF), pitch feature (PF),
instrument-based feature (IF) and wavelet-based feature (WF) 1. In particular,
the TF and PF capture information from the voice segments generated by human
in ambient audio. The wavelet-based feature (WF) characterizes the music style
and background acoustic events. The instrument feature (IF) is used to model
the characteristics of typical instrument(s) in music frames. The details of the
features used by the our framework:

— Timbre Feature (TF): Voice is a special instrument for human being and
each person’s timbre texture is unique due to the physical structure of voice
fold. In SASA, LPCCs (Linear Prediction-based Cepstral Coefficients) from
vocal segments are extracted to characterize this information (LPCCs are
Linear Prediction Coefficients (LPCs) represented in the cepstrum domain).

— Pitch Feature (PF): To gain comprehensive modelling on human voice, it is
crucial to take the harmonic and structural information about each person’s
voice into account. Since the algorithm proposed by Tolonen and Karjalainen

! Note that our method can be easily extended to consider more acoustic features.



is computational efficient and has superior capability in capturing human
auditory perception, we apply it to extract pitch feature from human voice
segments.

— Instrument Based Feature (IF): Instrument appearing in music segments
can provide a lot of details about ambience. The main goal of IF is to char-
acterize instrument configuration information of music frames. Our frame-
work applies MFCC features as signature of instrument configuration. This
is because MFCCs have been widely used to model timbre for purpose of
instrument identification.

— Wavelet based Feature (WF): In SASA, WF is used as content represen-
tation to capture local and global dynamics of ambient sounds [1]. Wavelet
analysis has been widely applied to model and characterize a wide range of
audio information (e.g., background events [5] and music genre [7]). In our sys-
tem, WF feature is based on the Daubechies Wavelet Coeflicient Histograms
(DWCHs) and mainly characterizes music genre and background events.

Multi-modality Based Modeling. The second layer of SASA system is a
multi-modality based environmental sound characterization model. We apply
the Gaussian Mixture Models (GMMs) for statistically modelling from different
audio component perspectives since it has strong flexibility and effectiveness to
represent complex data distribution. In SASA, one frame category corresponds
to one GMMs and thus there are three GMMSs. However, construction of GMMs
based scheme on highly diverse distribution associated with environmental sound
is not easy task. Since the number of sound frames for robust training is limited,
parameter estimation of a GMMs robustly and accurately becomes very time-
consuming. To solve this problem, a two-step adaptation approach is applied
to develop GMMs including generative adaptation and sound segment based
adaptation [2]. The key advantage of the approach include: (1) efficiency - a
complex model can be developed using a small set of data and (2) simplicity -
the model’s output space is the Euclidean space, which can support fast search.

In generative adaptation, the GMMs is constructed with all training audio
and then generate Universal Background Model (UBM). The UBM can be
denoted as,

G= P(Xl@) = kil wkN(X;,uk, Ek)7 (1)

where wy, pr and X} are the weight, mean and covariance matrix of the kth
Gaussian component, respectively. X = {1, 22, ...... ,xr} is a set of input fea-
ture vectors extracted from audio segments. K is the total number of Gaussian
components and the probabilistic density can be calculated using a weighted
combination of K Gaussian densities,

N(X; g, ) = ——L o= 3G—m) "5 ()
(i 5 = L @)

The covariance matrix X is set to a diagonal matrix for reducing compu-
tational cost. To estimate the optimal values of key parameters {wy, i, X} of



UBM, we apply expectationmaximization (EM) algorithm, which is an iterative
scheme to identify maximum a posteriori (MAP) estimates of model parameters.

2.3 Segment Based Adaptation

The goal of segment based adaptation is to modify the parameters of UBM to
fit into the data distribution of audio segments. In SASA, each audio segment
is represented as an collection of feature vectors, extracted from 30 ms window
with step size of 5 ms. For different types of audio segments, we calculate different
acoustics features and their details can be found in Sect. 2.2. The adaptation is
carried out using maximum a posteriori (MAP). For Gaussian component & in
the mixture model, we firstly compute,

N wy, P (2;]0k)
prik, i) = S s Byl 3)
T
M = tgpr(km) (4)
.z
Ep(X) = 5; t;l”’(kb?i)ﬂ?i, (5)

The statistical values shown above can be then applied to adapt mean vector
i of each Gaussian component via the iteration process, in which iy value at
iteration [ - 4’ can be estimated by using:

' = anEp(X) + (1 — ag )i~ (6)
where o = ni/(nk +7), L = 1,..., L is iteration number. r is smoothing factor,
which can be fine-tuned empirically based on the total number of feature vec-
tors extracted from each audio segment. It ranges from 5 to 20. We follow the

approach introduced in [2] to gain an approximation of KL divergence of two
models by:

K
-1
A1) = 5 20w = ) i (5 = w) (7)
where p® and p” denote supervector for model a and 3. After audio segment
based adaptation, the audio segment can be represented by super-vector,
SV = [v1,v2,...,0K] (8)

_1
where vy = /"X, *ux. The supuervector serves as input to audio concept
estimation module in the third layer of SASA.

2.4 Audio Concept Estimation Using SVM

The third layer of SASA system consists of a set of Support Vector Machines
(SVMs) for the purpose of probabilistic estimation over different audio concepts.
In order to support fast and effective SVM training, we develop an advanced



extension of PEGASOS [12] algorithm called aPEGASOS (adaptive PEGASOS),
which enhances SVM based classification from two perspectives: (1) probabilistic
based audio concept estimation and (2) adaptive sampling to effectively select
discriminative audio segments as training examples instead of random projection.

With a given training set & = {(x;,v;)}",, where x; € R™ and y; €
{+1, -1}, the PEGASOS algorithm is an efficient scheme aiming to effectively
solve primal form of SVM w in an iterative fashion. At each iteration of the
training algorithm, there are two key substeps: a stochastic gradient descent
step and a projection step. The optimization goal of PEGASOS is to minimize
the training error defined as:

A 1
fowiSA) =T w|?+ Y max{0,1-ylw,x)} 9)
(x,y)eS A

The process requires T iterations and k the training samples for computing
sub-gradients at each iteration. SA; C S consists of k samples selected using
adaptive sampling scheme introduced late in the section from S at each iteration
t. In the initial, we set the values of w to be zero. With learning rate n, = 1/(\t)
and a set of training samples S.A;", parameter updating process at each iteration
t has two steps,

Wi = (L= w0 Y yx (10)
(e A
: 1/VA
Wis1 = min{l, vsfln}wtﬁ (11)
t+1

w has non-zero training error when using SA;". Similar to the approach intro-
duced in [15], once SVM training is completed, the learning method proposed
in [10] is used to infer posterior probability p*(c = 1|z) of a given input belonging
to certain class ¢ =1 as:

1

pre=1e) =7 exp(A(w, x) + B)

(12)

where scalar A and B can be estimated via seeking minimization of the error
function by using the training data.

The quality of learning examples plays an important role in SVM training.
Our system is trained using the acoustic features extracted from audio segments
and thus notion of discriminative frame is very important because some of the
segments enjoy more informative or distinctive cues about basic audio events
or concepts (e.g., gun shot, party, dance and happy). However, how to select
high quality training example is very challenging task because they generally
need to satisfy two main requirements: (1) excellent representativeness and (2)
high distinctiveness. To achieve this goal, we proposed a simple but effective
algorithm based on semi-supervised principle. It involves two main steps:



— Seed selection: In our approach, human subjects are invited to provide a few
good quality samples as seeds - a set of representative examples for three
frame categories. In our current implementation, totally 5 human subjects
are invited to select examples.

— Propagation: Based on seeds, we apply a common and robust neighborhood
learning method proposed in [16] to construct n nearest neighborhood graph
G;; and identify training examples from unselected samples.

3 Experimental Configuration

In this section, we present the experimental settings for the performance evalua-
tion, including competitive systems, testing datasets, evaluation task and perfor-
mance metrics. All methods evaluated in this study have been fully implemented
and tested on a server with 2.2 GHz Intel Xeon processor and 8 GB RAM.

3.1 Data Collections

Test collections play very important role in empirical study. The size of data sets
used in existing study is quite small. To ensure accuracy, robustness and fairness
of our empirical results, three large benchmark datasets are selected as testbeds
in our evaluation. For three datasets, the sound files were converted to 16 kHz,
16 bit, mono audio files. More details about the three datasets can be found as
below,

— Dataset I (DSI) is UrbanSound8K [11], which consists of 8,732 audio clips
up to 4sec in duration. The sound files are extracted from field recording
crawled from the Freesound online archive 2. Each clip contains one of 10 pos-
sible sound sources including: air conditioning, car horn, children playing, dog
bark, drilling, idling engines, gun shot, jackhammer, siren, street music. Those
sources are carefully selected from the Urban Sound Taxonomy [11] based on
the frequency with which they appear in noise complaints provided by New
York City’s 311 service. All the sound clips have been manually annotated
with human subject and a subjective judgment about whether the sound is
in the foreground or background has been given.

— Dataset IT (DSII): It consists of 1,873 audio clips and covers 25 concepts (e.g.,
dancing, singing, beach, playground, graduation,group of 3+,...... ) belonging
to 6 main categories including: activities, locations, occasions, objects, scenes
and sounds [6]. The 25 concepts was defined by starting from a full ontology
of over 100 concepts generated via user study done by the Eastman Kodak
company [8]. To develop this dataset, totally 4,539 video was downloaded
from YouTube by using most related keywords associated with the definition
of these 25 concepts. To remove irrelevant commercial contents, raw dataset
was manually checked before used for extracting accompanying sound tracks.

2 http://www.freesound.org.



— Dataset IIT (DSIII) consists of 10,000 sound clip and covers 10 different record-
ing locations including: Library, Office, Bathroom, Cafe, Restaurant, Kitchen,
Living-room, Classroom, Subway, and Open mark. All of sound clips in the col-
lection were recorded using Sony PCM-D100 high resolution audio-recorder.
The duration of the audio files ranges from 5 sec to 30sec. It covers 35 differ-
ent concepts including high music, walking, chatting, cheering, typing, phone
tone, door opening, door closing, crying, baby, male’s voice, female’s voice, TV
sound, engine starting, crowd and others. Total duration of the whole collec-
tion is 20 h. All the concepts have been manually verified by human subjects
and each sound in test collection could be associated with 1 - 5 concepts.

3.2 Methodology and Evaluation Metrics

Environmental sound analysis is one of the most fundamental components in
various kinds of ambient intelligence applications. In order to conduct a compre-
hensive performance comparison of different schemes, our proposed system and
the competitors are tested on the following two application driven tasks. They
are,

— Task I - Sound understanding: The goal of the test is to evaluate and compare
what are the accuracies achieved by different approaches in classifying the
input environmental sounds. The datasets used for this task include DSI and
DSII.

— Task IT - Location estimation: Based on the input environmental sounds, we
would like to test and compare how accurate different approaches can infer
the venue. The dataset used for this test is DSIII.

As discussed above, the main goal of the system is to identify the suitable
concepts related to input sound. Thus, our evaluation method focuses on how
accurate the identification process is with different approaches for a particular
database. We use the accuracy as the metric for evaluation: Accuracy = %,
where N A is the number of sound correctly identified and NT is the total number
of sounds used in the evaluation.

3.3 Competitors for Performance Comparison

We introduce several state-of-the-art methods on environmental sound recogni-
tion and location estimation based environmental sound analysis for comparison.
For Task I (sound classification), we compare the performance of our system
SASA against three state-of-the-art approaches including LEE [6], MP [4] and
ESCLH [13]. For our, we consider three modality configurations (voice modality
denoted by VM, music modality denoted by MM, background modality denoted
by BM). SASA(VM), SASA(MM), SASA(BM), SASA(ALL) denote our pro-
posed model built based on voice modality, music modality, background modal-
ity and the combination of all three modalities. To demonstrate advantages of
our approach in location detection (Task IT), we examine a wide range of possible



methods, including ABS [14], LEE [6], and MP [4]. For both Task I and Task II,
mixture component number k£ for GMM in LEE and SASA is set to be 4, which
is optimal value.

4 Experiment Results

This section presents a set of empirical studies to test and compare the perfor-
mance of different systems on two tasks including environmental sound classifi-
cation and location estimation.

On Environmental Sound Classification Table 1 shows the results of our exper-
iments to test the accuracy of environmental sound classification using different
schemes. The test was carried out on two different data sets - DSI and DSII. For
each of the classifiers, fivefold cross validation is applied to ensure robustness of
classification results.

Table 1. Environmental Sound Classification Accuracy Comparison.

Model DSI | DSII
SASA(ALL) | 84.3% | 89.3%
SASA(BM) |73.5% | 77.5%
(
(

SASA(MM) |50.2% | 56.9%
SASA(VM) |50.6% | 55.1%

ESCLH 73.2%  80.2%
LEE 74.2% 81.2%
MP 69.6 % | 77.3%

The first four rows of Table 1 indicate how the proposed SASA system per-
formed using DSI and DSII. We find that the accuracies achieved by SASA (VM)
and SASA(MM) (between 50 % and 60 % for all two datasets) are quite low. By
taking background modality into consideration, SASA(BM) improves classifi-
cation accuracy around 20%. This result verifies the claim that background
contains rich information about sound category and plays very crucial role in
effective ambient audio classification and modelling. Further, SASA(ALL), which
considers all three different sound elements, achieve a significant performance
gain in classification accuracy, 84.3 % for DSI and 89.3 % for DSII. The results
demonstrate that combining various acoustic cues from different sources can
enhance classification effectiveness greatly. Meanwhile, the results provide strong
empirical evidence that accurate classification cannot be achieved by considering
only a single sound components.

In comparison with ESCLH, LEE and MP, sound classification with
SASA(ALL) results in a great improvement in accuracy for all of the different
datasets. For example, in case of DSI, SASA(ALL) improves accuracy by 16.1 %
against MP. For DSI, the improvement is 15.5% . Among all classification meth-
ods, SVMs give the best results, whatever kind of music descriptor is used. On



the other hand, good scalability is particularly important for large audio infor-
mation systems, because the size of modern sound collection can be huge and
changed frequently. Thus, it is important for analysis schemes to maintain stable
accuracy against dataset size change. Based on Table 1, all the methods suffer
from accuracy loss at some level when size of testbed becomes larger. However,
SASA yields the lowest accuracy drop rates than do all other approaches. For
example, when tested on DSI; SASA(ALL)’s accuracy is decreased by only 5%
comparing to SASA(ALL) on DSII. However, under same testing configuration,
performance drops of other methods range from 8.6 % to 10 % , which is signifi-
cantly higher.

On Location Estimation, Table 2 summaries location estimation effectiveness of
the SASA, ESCLH, LEE and MP techniques. It is shown in the first four columns
that comparing to other SASA variants, SASA(MM) built based on music com-
ponents is the worst in terms of estimation accuracy rates. Furthermore, although
the SASA(VM) demonstrates better performance than SASA(VM), gain is very
marginal. This is because music and voice segments only capture very limited
amount information about one location. In fact, the results clearly demonstrate
that SASA(BM) outperforms the SASA(VM) and SASA(BM) greatly. Once
again, this results provide strong support on the claim that background elements
contains more information about one location than other two basic elements.
More importantly, SASA(ALL) achieves the best estimation accuracy compar-
ing to six other methods. In addition, it is worth noticing that integrating effects
of additional sound elements bring SASA nice lift in accuracy improvement. For
example, by considering two additional sound elements, accuracy improvement
over SASA(VM), SASA(MM), and SASA(BM) is 54.3%, 60.1 %, and 12.0 %,
respectively.

Table 2. Location Estimation Accuracy Comparison.

Schemes DSIIIT
SASA(ALL) | 81.2%
SASA(BM) 72.5%
SASA(MM) | 50.7%
SASA(VM) 52.6%

ABS 70.2%
LEE 71.2%
MP 56.6 %

5 Conclusions

In this paper, we present an intelligent framework, called SASA, to facilitate
effective environmental sound analysis. The system has been fully implemented



and tested using different datasets. As shown in our experimental evaluation,
the SASA system not only demonstrates significantly better effectiveness on
audio classification and location estimation over the state-of-the-art systems, but
also achieves good robustness against acoustic distortion. The research opens
up several promising directions for future study. Firstly, we plan to test the
framework over larger dataset with higher complexity. Further, it is interesting
to investigate how to develop advanced acoustic modelling scheme to support
accuracy and robustness improvement.
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