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Unsupervised Topic Hypergraph Hashing
for Efficient Mobile Image Retrieval

Lei Zhu, Jialie Shen, Liang Xie, and Zhiyong Cheng

Abstract—Hashing compresses high-dimensional features into
compact binary codes. It is one of the promising techniques
to support efficient mobile image retrieval, due to its low
data transmission cost and fast retrieval response. However,
most of existing hashing strategies simply rely on low-level
features. Thus, they may generate hashing codes with lim-
ited discriminative capability. Moreover, many of them fail to
exploit complex and high-order semantic correlations that inher-
ently exist among images. Motivated by these observations,
we propose a novel unsupervised hashing scheme, called topic
hypergraph hashing (THH), to address the limitations. THH
effectively mitigates the semantic shortage of hashing codes
by exploiting auxiliary texts around images. In our method,
relations between images and semantic topics are first dis-
covered via robust collective non-negative matrix factorization.
Afterwards, a unified topic hypergraph, where images and
topics are represented with independent vertices and hyper-
edges, respectively, is constructed to model inherent high-order
semantic correlations of images. Finally, hashing codes and
functions are learned by simultaneously enforcing semantic
consistence and preserving the discovered semantic relations.
Experiments on publicly available datasets demonstrate that
THH can achieve superior performance compared with several
state-of-the-art methods, and it is more suitable for mobile image
retrieval.

Index Terms—High-order semantic correlations, mobile image
retrieval, topic hypergraph hashing (THH).

I. INTRODUCTION

THE RECENT decades have witnessed rapid growth of
social image websites (e.g., Flickr1 and Instagram).2 As

a result, huge amount of images have been recorded and
shared on the Web. On the other hand, with fast popularity
of smart mobile devices, mobile image retrieval [1] is gain-
ing in importance due to many potential applications, such
as landmark retrieval [2], document image retrieval [3], prod-
uct retrieval [4], etc. The most popular and naive approach to
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support mobile image retrieval is text-based retrieval, where
users are required to type text keywords as query. However, it
is very time-consuming and inconvenient on mobile devices.
Thus, content-based mobile image retrieval (CBMIR) [5],
where only visual images are uploaded as queries, becomes a
popular and convenient retrieval paradigm.

Different from other computing platforms, mobile devices
generally have limited computational power, memory, and bat-
tery capacity. Hence, most practical CBMIR systems apply
a client-server architecture: visual queries are uploaded from
mobile end and sent to powerful server. Time-consuming
retrieval process can be efficiently completed with rich
computing resources. However, mobile devices are usually
located in a context with limited wireless network bandwidth.
Therefore, to support efficient and effective CBMIR, the trans-
mitted query data should be both compact and semantically
discriminative.

Hashing [6]–[18] can be applied as an effective technique
for CBMIR. The core idea is to transform high-dimensional
data into compact binary codes, based on which similarities
of images are measured with Hamming distance. With hash-
ing as underlying indexing, the storage occupation of query
in mobile memory can be greatly reduced and the query data
can be efficiently transmitted. More importantly, hashing can
binarize the visual data for both query and database images.
Retrieval process can be completed with simple but efficient
bit operations. Unfortunately, existing hashing techniques gen-
erally suffer from two major limitations when being directly
applied to CBMIR [19].

1) CBMIR is only based on visual queries. Therefore, most
hashing schemes employ only low-level visual features.
Due to the well-known semantic gap, they cannot rep-
resent high-level semantics of images effectively. On
the other hand, it is common that real world database
images (e.g., those from Flickr or Wiki)3 for CBMIR are
accompanied with informative tags or textual descrip-
tions. Cross-modal/media hashing (CMH) [20]–[22]
can potentially exploit these resources by project-
ing visual contents and texts into common subspace.
However, the main aim of CMH is to support effi-
cient retrieval across image and text. Therefore, CMH
generally treats the involved visual and textual infor-
mation equally. Consequently, the semantics of images
shared in the common Hamming space are very
limited.

3https://www.wikipedia.org/
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Fig. 1. Semantic correlations of images are inherently high-order. This paper
describes them with a unified THG and preserves them in hashing codes. The
above figure presents a typical THG and its corresponding incidence matrix.

2) Most existing hashing strategies perform learning on
pairwise visual or textual similarities of images. Thus,
they cannot capture high-order semantic correlations that
inherently exist among real Web images (as shown in
Fig. 1). It is common that a single image represents
more than one semantic topic, and images may jointly
share several common semantic topics. Besides, even in
Hamming space, we can find that correlations of images
are high-order, by assuming that each hashing bit repre-
sents a latent relation (hyperedge). Hence, it is essential
to discover high-order semantic correlations of images,
and more importantly, preserve them in hashing codes.

While jointly modeling auxiliary media types can enhance
semantic understanding, promising results are achieved in
image retrieval [23]–[25]. For example, [23] treats all of
the affiliated media objects of an image as a whole.
Hierarchical manifolds for multimedia contents are lever-
aged for content-based cross-modal image retrieval. Similarly,
Rasiwasia et al. [24] investigated the effects of explic-
itly modeling relations of images and the associated texts.
Their experiments validate that modality correlation can ben-
efit image retrieval. Other examples include [26] and [27].
Yang et al. [26] harvested informative relevance feedbacks
regrading images to mitigate the semantic gap of low-level fea-
tures using a semi-supervised rank framework. Yan et al. [27]
explored surrounding texts to improve Web image cluster-
ing by mining semantic correlations between text words and
images. Based on the clustering results, diverse images are
retrieved with conditional Markov random walk. The suc-
cess of these works motivates us to develop image hashing
technique by exploiting the assistance of auxiliary texts.

In this paper, we propose a novel unsupervised hashing
scheme, called topic hypergraph hashing (THH), to support
effective and efficient CBMIR. The key idea is to extract valu-
able semantics from auxiliary texts to assist image hashing.
THH first discovers image-topic relations via robust collec-
tive non-negative matrix factorization. Then, it constructs a
unified topic hypergraph (THG) to model high-order semantic
correlations of images. Unlike existing hypergraphs built on
low-level features [28], THG is constructed with informative
semantics by modeling images as vertices and latent topics
shared among images and texts as hyperedges. Finally, hash-
ing learning is carried out to preserve semantics into binary

hashing codes and enhance the discriminative representation
capability. THH has several desirable advantages which can
effectively facilitate mobile image retrieval.

1) THH exploits visual and textual contents in offline learn-
ing but requires only visual image as online query.
This design undoubtedly provides great convenience for
mobile users, since typing text keywords on mobile ends
is harder compared with a simple photo snapping.

2) THH captures the characteristic of mobile image
retrieval that database images are usually associated with
noisy but informative texts. It effectively extracts valu-
able semantics and compresses them into hashing codes.
With this design, the discriminative capability of hash-
ing codes can be enhanced. As revealed in experiments
(in Section VI), THH can achieve better performance
with even less hashing codes. This promising property
of THH can facilitate effective mobile image retrieval
even when wireless bandwidth is limited. Further, THH
is a linear method. The online hashing process can
be efficiently implemented with linear operations. This
desirable property can facilitate practical application of
mobile image retrieval where computational resources
are limited.

The key contributions of this paper are summarized as
follows.

1) Different from existing hypergraphs based on pure low-
level features, a novel THG is constructed with the
semantic assistance of auxiliary texts around images.
THG effectively models the high-order semantic corre-
lations that inherently exist among real Web images.

2) Hashing learning is performed by effectively preserving
the high-order semantic relations of images into binary
codes. The whole process is integrated into an unsuper-
vised learning framework which enriches semantics of
hashing codes without any manual labels.

3) Experiments on publicly available datasets highlight
various advantages of THH and demonstrate that it sig-
nificantly outperforms several state-of-the-art hashing
methods from various perspectives.

The rest of this paper is structured as follows. Section II
introduces related work. System overview of THH-based
CBMIR system is illustrated in Section III. Details about THH
are introduced in Section IV. Experimental configuration is
presented in Section V. In Section VI, we give experimental
results and analysis. Section VII concludes this paper with a
detailed summary and future work.

II. RELATED WORK

Due to the limited space here, only the work highly related
to this paper is introduced. In particular, we present a short
literature review on mobile image retrieval, unsupervised
hashing, and hypergraph learning for image retrieval.

A. Mobile Image Retrieval

Since transmitting an entire query photo via wireless net-
work is time-consuming, many existing techniques on mobile
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TABLE I
COMPARISONS OF REPRESENTATIVE HASHING SCHEMES AND THE PROPOSED THH

image retrieval focus on creating compact feature descrip-
tors for raw query. Various feature compression strategies are
developed. For example, transform coding and location his-
togram coding are proposed in [29] and [30], respectively,
to compress local features. Besides, there are also meth-
ods which are designed to compress features of particular
image types. Ji et al. [2] presented a location discrimi-
native vocabulary coding by exploiting the pervasive loca-
tion context to obtain compact visual landmark descriptor.
He et al. [3] designed bag-of-hashing-bits (BoHB) for mobile
product retrieval. BoHB encodes the local feature into binary
bits by leveraging techniques such as multitable indexing,
multibucket probing, and bit reuse. Duan et al. [4] developed
memory-light document indexing with codebook-free scalable
cascaded hashing.

Although existing techniques for mobile image retrieval can
achieve promising results, they are specifically designed for
compressing visual-words-based features or particular image
types. Hence, they cannot be directly applied to general feature
or image types. Moreover, they are designed based on low-
level features with limited semantic discriminative capability.
This disadvantage further limits the hashing performance.

B. Unsupervised Hashing

Distinguished from supervised [31] and semi-supervised
hashing methods [32], unsupervised hashing transforms the
original feature into binary codes without any semantic labels.
This desirable advantage can effectively cope with the prac-
tical CBMIR, where semantic labels are quite scarce and
expensive to obtain. Generally, existing unsupervised hash-
ing techniques can be categorized into three major families:
1) uni-modal hashing (UMH); 2) cross-modal hashing (CMH);
and 3) multimodal hashing (MMH).

State-of-the-art UMH methods include: locality-sensitive
hashing (LSH) [15], spectral hashing (SPH) [8], PCA hash-
ing (PCAH) [33], binarised-LSI (LSI) [34], spline regression
hashing (SRH) [35], self-taught hashing (STH) [36], anchor
graph hashing (AGH) [37], iterative quantization (ITQ) [16],
supervised hashing with pseudo labels [38], etc. Although
UMH demonstrates promising performance, it suffers from
several limitations. The most significant one is that UMH only
takes the features from visual modality into account. Due to
the well-known semantic gap, image similarity characterized
by only low-level visual feature may not be comprehensively
enough to describe the semantics of images. Consequently,
UMH learns the hashing codes with limited discriminative
capability.

CMH discovers latent modality correlations and transforms
heterogeneous modalities into the common Hamming space,
where similarities are quickly computed to return retrieval
results. Typical CMH methods include: cross-view hash-
ing (CVH) [20], intermedia hashing (IMH) [22], and collective
matrix factorization hashing (CMFH) [39]. It has been reported
in [22] that, due to textual modality embedding, the shared
space can possess more semantics than original low-level
visual space. Therefore, CMH may improve the CBMIR per-
formance. However, the main aim of various CMH approaches
is to enable fast multimedia retrieval across heterogeneous
modalities. Principally, it requires that each involved modality
contributes equally to image retrieval. This mandatory cor-
relation limits the semantics involved in the shared common
Hamming space.

MMH compresses multimodal features into a unified
binary codes. Composite hashing with multiple information
sources (CHMIS) [21] is one of the pioneering works. It
learns hashing codes by incorporating the features from differ-
ent information sources. However, CHMIS just postintegrates
linear output of features and fails to fully exploit the cor-
relations of them. Kim et al. [40] presented multiview SPH
using sequential projection learning [33] to extend SPH [8] to
handle multiple image representations. Song et al. [41] devel-
oped multiple feature hashing (MFH). By using the learned
hashing hyper plane, MFH concatenates all features into a
single vector and then maps it into binary hashing codes.
Zou et al. [42] designed kernelized MFH to learn compact fin-
gerprint by integrating advantages of nonlinear kernel mapping
and the complements of multiple features. Liu et al. [43] pro-
posed a multiview alignment hashing by aligning multimodal
features into a joint hashing space. Due to multifeature fusion,
MMH can achieve better performance than UMH and CMH.
However, it requires all modalities at both stages of offline
learning and online hashing. Due to this constraint, MMH can-
not meet the requirement of CBMIR in practical applications,
where only visual image is uploaded as query.

Table I summarizes key characteristics of several represen-
tative hashing schemes. From this table, we can easily find
that, THH not only can support effective CBMIR, but also
can leverage the associated texts to enrich the semantics of
projected hashing codes. Moreover, it is independent on basis
features and thus has desirable generalization capability.

C. Hypergraph Learning for Image Retrieval

Hypergraph is an extension of graph [44]–[47] which
models pairwise relations of samples. For its advantage on
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Fig. 2. Framework of the THH-based CBMIR system. This figure is best viewed with pdf magnification.

modeling complex data, hypergraph has attracted great atten-
tions in image retrieval. One of typical examples is the work
in [48]. In this paper, image retrieval is formulated in a prob-
abilistic hypergraph (PHG) framework. Images are taken as
vertices and a hyperedge is comprised of a centroid vertex and
its several nearest neighbors. A vertex is assigned to hyperedge
in a probabilistic way. Image retrieval process is transformed
as hypergraph ranking. Gao et al. [49] applied hypergraph to
social image retrieval by jointly learning visual-text relevance.
In their constructed social image hypergraph, vertices repre-
sent images and hyperedges represent visual or textual terms.
The weights of both visual elements and texts are learned
adaptively in an iterative process. In [50], hypergraph is lever-
aged to solve the problem of view-based 3-D object retrieval.
Each vertex is an object and a cluster of views constructs
a hyperedge. K-means [51] is adopted to generate multiple
overlapping hyperedges.

This paper proposes novel THG to solve large-scale
CBMIR. Different from existing methods, in THG, images
are determined as vertices and latent semantic topics are con-
sidered as hyperedges. With it, inherent high-order semantic
relations of images are effectively modeled. And they are pre-
served in the hashing codes by THH to enhance semantic
representation capability.

III. SYSTEM OVERVIEW

As shown in Fig. 2, the system mainly consists of two key
components: 1) offline learning and 2) online hashing.

1) Offline Learning: The aim of this process is to learn
hashing functions which can map high-dimensional
visual features of both query and database images into
binary hashing codes. More specifically, offline learning
can be further divided into four subsequent subpro-
cesses: a) feature extraction; b) image-topic relation
discovery; c) THG construction; and d) hashing learn-
ing. In the system, visual and textual features are first
extracted from visual contents and the associated texts to
represent images, respectively. Then, relations between
images and topics are discovered by comprehensively
considering visual and textual content distribution. Next,
THG is constructed and high-order semantic relations of
images are effectively modeled. Finally, hashing learning

is performed by simultaneously preserving semantic
relations into hashing codes and generating hashing
functions.

2) Online Hashing: Query image is first submitted by
user from mobile devices. Only visual feature of it is
obtained by the same feature extraction pipeline con-
ducted on database images. Then, it is projected into
binary codes with the hashing functions learned from
offline learning. Finally, the estimated similarity scores
are computed with simple bit operations and ranked
in descending order, and their corresponding database
images are returned.

IV. TOPIC HYPERGRAPH HASHING

This section provides the details of the proposed THH. First,
we introduce notations and problem setting. Second, we give
details of image-topic relation discovery. Third, we present
THG construction. Fourth, we formulate the hashing learning
and give an efficient solution. Finally, we summarize THH and
give a computation complexity analysis.

A. Notations and Problem Setting

The transpose of matrix X is denoted as XT. The inverse of
a matrix X is denoted as X−1. The trace operator on a matrix
X is denoted as Tr(X). || · ||F denotes Frobenius norm. sgn(·)
is Sign function. I denotes identity matrix and 1 denotes a
vector with all one elements. The corresponding dimensions
of them can be inferred from the context.

Let Xm = [xm
1 , . . . , xm

N] ∈ R
dm×N,m = 1, 2 denote features

of database images extracted from visual contents and texts,
respectively, xm

i = [xm
1i, . . . , xm

dmi]
T ∈ R

dm×1 denotes ith image
feature from modality m, dm denote the feature dimension, N
is the number of database images. Denote hashing codes of
database images to be learned as Z = [z1, . . . , zN] ∈ R

K×N ,
and a group of hashing functions as G = {g1, . . . , gK},
where zi = [z1i, . . . , zKi]T ∈ R

K×1 are the hashing codes
of the ith image, each hashing function gk is a mapping:
R

dm �→ {0, 1}, k = 1, . . . ,K, K is the length of the hash-
ing codes. The main notations used in the study are listed
in Table II.
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TABLE II
SUMMARY OF NOTATIONS

B. Image-Topic Relation Discovery

As shown in Fig. 1, real Web images are correlated
with latently embedded semantic topics. To model high-order
semantic relations of images, the first task is to detect semantic
topics and discover the relations between images and topics.
However, this task is challenging, because low-level visual fea-
tures suffer from limited semantic discriminative capability.
Fortunately, most database images for CBMIR are augmented
with informative texts, such as tags, descriptions, image cap-
tions, etc. They generally carry out informative semantics
and complementary discriminative information. Motivated by
these important observations, this paper exploits auxiliary
textual modality associated around the images to perform
semantic assistance and address the image-topic relation dis-
covery. The learning framework is based on non-negative
matrix factorization [52]. Via comprehensively considering
visual and textual distributions, the framework can simultane-
ously detect latent semantic topics and discover image-topic
relation.

Generally, feature matrix of images can be represented as
the product of two matrices. One is basis matrix and the other
is coefficient matrix. By imposing non-negative constraints,
basis matrix can be considered as latently embedded semantic
topics and each column corresponds to one topic. Coefficient
matrix can be accordingly considered as the relations between
images and topics. For presentation convenience, we also term
coefficient matrix as image-topic relation matrix. Formally, in
modality m, the non-negative matrix factorization process can
be formulated as

min
Bm,Tm
‖Xm − BmTm‖2,1 s.t. Bm,Tm

∣
∣2
m=1 ≥ 0 (1)

where Bm ∈ R
dm×K and Tm ∈ R

K×N are modality spe-
cific topic matrix and image-topic relation matrix, respectively,

||·||2,1 is l2,1 norm.4 As illustrated in [53] and [54], l2,1 norm is
capable of resisting outliers of both images and texts by ensur-
ing column-wise sparsity in the residual matrix Xm − BmTm.
Besides, large reconstruction errors from noisy samples are
not squared and do not dominate the objective value.

Since semantic topics are latently embedded in both visual
and textual modalities, we impose an additional constraint to
minimize the inconsistence between Tm and the shared image-
topic relation matrix T . That is

min
T

2∑

m=1

αm‖Tm − T‖2F s.t.
2∑

m=1

αm = 1, αm
∣
∣2
m=1,T ≥ 0 (2)

where αm|2m=1 are weights which measure modality contri-
butions. T actually reflects the relations between image and
semantic topics, it is the main learning objective of image-
topic discovery. By incorporating the above ideas, the overall
image-topic relation discovery can be formulated as

min
T

2∑

m=1

(
‖Xm − BmTm‖2,1 + αm‖Tm − T‖2F

)

s.t. Bm,Tm
∣
∣2
m=1,T, αm

∣
∣2
m=1 ≥ 0,

2∑

m=1

αm = 1. (3)

It is worth mentioning that the above equation is different
from [55] which is developed for multiple non-negative matrix
factorization.

1) Our formulation is specially designed for image-topic
relation discovery. To the best of our knowledge, there
is no similar work.

2) We impose l2,1 norm instead of Frobenius norm on non-
negative matrix factorization term. This design can well
accommodate the noises and outliers involved in both
visual contents and auxiliary texts.

3) The weights of non-negative matrix factorization terms
can be automatically learned without any manual
adjustment.

By solving (3), image-topic relation can be discovered.
However, the overall framework involves l2,1 norm which
is nonsmooth and cannot be directly solved using a closed
form. To bypass this problem, we transform it as the following
alternative form:

min
T

2∑

m=1

(
Tr
(
(Xm − BmTm)�m(Xm − BmTm)

T)

+ αmTr
(
(Tm − T)(Tm − T)T

))

s.t. Bm,Tm
∣
∣2
m=1,T, αm

∣
∣2
m=1 ≥ 0,

2∑

m=1

αm = 1 (4)

where �m ∈ R
N×N is diagonal matrix, whose ith diagonal

element is (�m)ii = 1/2||yi||2, yi is the ith column of matrix
Xm − BmTm. We adopt an iterative optimization to solve the
problem (as shown in Algorithm 1). The following three steps
are iterated until convergence.

4In this paper, for an example matrix A = [a1, . . . , aN ], its l2,1 norm
||A||2,1 is calculated as

∑N
i=1 ||ai||2.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 1 Image-Topic Relation Discovery
Input:

Feature matrices, Xm|2m=1. Number of semantic topics K.
Output:

Image-topic relation matrix T .
1: Initialize Bm, Tm|2m=1, T , αm|2m=1.
2: while Eq.(4) Not Convergency do
3: for m = 1, 2 do
4: Compute [y1, . . . , yn] = Xm − BmTm and �m.
5: while Eq.(5) Not Convergency do
6: Fixing T , Tm, and αm, calculate Bm via Eq.(6).
7: Fixing T , Bm, and αm, calculate Tm via Eq.(7).
8: end while
9: end for

10: Fixing other variables, calculate T via Eq.(9).
11: Fixing other variables, calculate αm|2m=1 via Eq.(13).
12: end while

Fig. 3. THG construction. Images and semantic topics are vertices and
hyperedges, respectively.

Step 1: Fixing T , αm|2m=1, minimize the objective function
in (4) with respect to Bm|2m=1 and Tm|2m=1

min
Bm,Tm|2m=1

2∑

m=1

(
Tr
(
(Xm − BmTm)�m(Xm − BmTm)

T)

+ αmTr
(
(Tm − T)(Tm − T)T

))

s.t. Bm,Tm
∣
∣2
m=1 ≥ 0. (5)

Theorem 1: Let Bm,Tm|2m=1 be defined as before.
Then the updating rules for them can be
expressed as

(Bm)dk ←
(
Xm�mTTm

)
dk(

BmTm�mTTm
)

dk

(Bm)dk (6)

(Tm)ki ←
(
BTmXm�m + αmT

)
ki(

BTmBmTm�m + αmTm
)
ki
(Tm)ki. (7)

Proof: See Appendix A.
Step 2: Fixing Bm,Tm|2m=1, αm|2m=1, minimize the objective

function in (4) with respect to T

min
T

2∑

m=1

αm‖Tm − T‖2F s.t. T ≥ 0. (8)

By setting the derivative of (8) with respect to T
to 0, we get

2∑

m=1

αm(−2Tm + 2T) = 0⇒ T =
2∑

m=1

αmTm.

(9)

Step 3: Fixing Bm,Tm|2m=1,T , minimize the objective func-
tion in (4) with respect to αm|2m=1

min
αm|2m=1

2∑

m=1

αm‖Tm − T‖2F

s.t.
2∑

m=1

αm = 1, αm
∣
∣2
m=1 ≥ 0. (10)

The above equation may lead to a trivial solution. To avoid it,
we adopt similar trick used in [56] and [57]. We introduce a
smooth factor ξ > 1 and set αm to αξm, so that each modality
can offer particular contribution to image-topic relation dis-
covery. Meanwhile, with Lagrange multiplier μ, (10) can be
transformed into the following equivalent optimization form
to take into account the constraint of αm|2m=1:

min
αm|2m=1

2∑

m=1

αξm‖Tm − T‖2F − μ
(

2∑

m=1

αm − 1

)

. (11)

By setting the derivative of (11) with respect to αm and μ to 0,
we get

∂ (11)

αm
= ξαξ−1

m ‖Tm − T‖2F − μ = 0,m = 1, 2

∂ (11)

μ
=

2∑

m=1

αm − 1 = 0. (12)

Therefore, the solution of αm|2m=1 can be obtained

αm =
(
1/‖Tm − T‖2F

) 1
ξ−1

∑2
m=1

(
1/‖Tm − T‖2F

) 1
ξ−1

. (13)

Since ||Tm − T||2F ≥ 0, we can naturally guarantee αm ≥ 0.

C. Topic Hypergraph Construction

Semantic correlations of real images are complex and high-
order. This paper is inspired to model them with a unified
THG, where images and the semantic topics are considered as
vertices and hyperedges, respectively. An illustration example
is shown in Fig. 1 and a typical THG construction process is
presented in Fig. 3. In this way, an image can represent several
semantic topics, and several images jointly describe the same
semantic topic. Besides, several images may be included in
more than one topic. Hence, high-order semantic correlations
are effectively modeled.

In this paper, THG = (V,E,W) denotes THG, V = {vi}Ni=1
denotes the vertex set, E = {ek}Kk=1 denotes the hyperedge set,
W = {w(ek)}Kk=1 denotes the weight set for hyperedges, w(ek)

is the weight of hyperedge ek. THG can be represented with
a N × K incidence matrix H. For example, the element at ith
row and kth column (the incidence value between vertex vi

and hyperedge ek) is given as

H(vi, ek) =
{

1 Tki ∈ �(vi)

0 otherwise
(14)

where Tki denotes the element at kth row and ith column of T .
It characterizes the probability that an image describes the
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semantic topic. �(vi) is comprised of S largest elements in ith
row of T . The degree of hyperedge is calculated as the number
of images included. For ek, its degree δ(ek) is

δ(ek) =
N∑

i=1

H(vi, ek). (15)

Weights of all hyperedges are set to 1, w(ek) = 1, assuming
that semantic topics are evenly distributed in the database. The
degree of each vertex is defined as the sum of the weights of
hyperedges that the vertex belongs to

d(vi) =
K∑

k=1

w(ek)H(vi, ek) =
K∑

k=1

H(vi, ek). (16)

D. Hashing Learning

Hashing learning is performed on the constructed THG.
Principally, images are more semantically similar if they are
included to more identical hyperedges. They should be mapped
into hashing codes with shorter Hamming distances. Moreover,
we enforce the high-order semantic correlations of images to
be preserved in the binary hashing codes. To achieve this goal,
we explicitly minimize the distance between the incidence
matrix and hashing codes. By considering these two parts,
the objective function can be formulated as5

min
Z

1

2

K∑

k=1

N∑

i,j=1

H′(vi, ek)

K∑

k′=1

⎛

⎝ zk′i√
d(vi)

− zk′j√
d
(
vj
)

⎞

⎠

2

+ μ
(

K∑

k=1

N∑

i=1

(zki − H(vi, ek))
2

)

s.t. H′(ek, vi) = w(ek)H(vi, ek)H
(
vj, ek

)

δ(ek)
, zi ∈ {−1, 1}K

(17)

where μ, β, γ > 0 are factors that adjust the balance between
regularization terms. The first term is hypergraph Laplacian
constraint, while the second term explicitly preserves the
extracted high-order semantic relations.

The first term in (17) can be transformed as

1

2

K∑

k=1

N∑

i,j=1

w(ek)H(vi, ek)H
(
vj, ek

)

δ(ek)

K∑

k′=1

⎛

⎝ zk′i√
d(vi)

− zk′j√
d
(
vj
)

⎞

⎠

2

=
N∑

i=1

(
K∑

k=1

z2
k′i

)
K∑

k=1

w(ek)H(vi, ek)

d(vi)

N∑

j=1

H
(
vj, ek

)

δ(ek)

−
K∑

k=1

N∑

i,j=1

w(ek)H
(
vj, ek

)
H(vi, ek)

(∑K
k′=1 zk′izk′j

)

δ(ek)

√
d
(
vj
)
d(vi)

. (18)

From (15) and (16), we can obtain that

N∑

j=1

H
(
vj, ek

)

δ(ek)
= 1

K∑

k=1

w(ek)H(vi, ek)

d(vi)
= 1. (19)

5We substitute 0 in incidence H with −1 in objective function.

Then, the first term in (17) can be represented as

N∑

i=1

(
K∑

k′=1

z2
k′i

)

−
K∑

k=1

N∑

i,j=1

×
w(ek)H

(
vj, ek

)
H(vi, ek)

(∑K
k′=1 zk′izk′j

)

δ(ek)

√
d
(
vj
)
d(vi)

=
K∑

k′=1

⎛

⎝
N∑

i=1

z2
k′i −

1

2

K∑

k=1

N∑

i,j=1

w(ek)H
(
vj, ek

)
H(vi, ek)zk′izk′j

δ(ek)

√
d
(
vj
)
d(vi)

⎞

⎠

=
K∑

k′=1

(
zk′·
zTk′·

) = Tr
(
Z
ZT

)
(20)

where zk′· denotes k′th row of matrix Z, 
 ∈ R
N×N is

Laplacian matrix of THG, it is calculated as


 = I − D−1/2
v HDwD−1

e HTD−1/2
v (21)

where Dv, De, and Dw are the diagonal matrices of the vertex
degrees, edge degrees, and hyperedge weights, respectively.
Equation (17) can be represented as a compact form

min
Z

Tr
(
Z
ZT

)+ μ∥∥Z − HT
∥
∥2

F s.t. Z ∈ {−1, 1}K×N . (22)

Considering the limited computational resources of mobile
ends, we leverage linear regression to learn hashing function

min
P

∥
∥Z − PTX1

∥
∥2

F + γ ||P||2F (23)

where P is the projection matrix which maps raw visual fea-
ture into hashing codes. With this design, the online hashing
process can be efficiently completed with linear projection
operations.

We integrate hashing code and function learning into a
unified framework. The objective function becomes

min
Z,P

Tr
(
Z
ZT

)+ μ∥∥Z − HT
∥
∥2

F

+ β
(∥
∥Z − PTX1

∥
∥2

F + γ ||P||2F
)

s.t. Z ∈ {−1, 1}K×N . (24)

Solving the above problem is NP-hard due to discrete con-
straint Z ∈ {−1, 1}K×N . To make it computationally tractable,
we relax this constraint and obtain continuous solution. The
final discrete solution can be effectively calculated by mean
thresholding. As indicated by [9] and [36], mean thresholding
can balance the partition of database and provide maximum
information. It should be noted that, to guarantee the explicit
semantic correlation at the same scale, we also relax incidence
matrix HT to T accordingly. Therefore, the relaxed objective
function is transformed as

min
Z,P

Tr
(
Z
ZT

)+ μ||Z − T||2F
+ β

(∥
∥Z − PTX1

∥
∥2

F + γ ||P||2F
)
. (25)

Note that the above equation differs from the semi-
supervised setting of prior work flexible manifold embedding
in [58] on different intrinsic structure and meaning.
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Algorithm 2 Iterative Computation for Z
Input:

Image-topic relation matrix T .
Output:

Hashing codes of images Z = Zt .
1: Initialize Z1 = T, t = 1;
2: repeat
3: t = t + 1;
4: Update Z via: Zt = 1

1+λZt−1(I −
′)+ T λ
1+λ ;

5: until Convergency
6: return Zt .

1) The Laplacian matrix 
 in (25) is calculated from THG
which is specially designed in this paper to model high-
order semantic correlations of images.

2) The above equation is built within unsupervised learning
framework. T is obtained in image-topic relation discov-
ery by jointly modeling images and auxiliary texts. The
whole process requires no manual semantic labels.

We set the derivative (25) with respect to P to 0, and have

2X1XT
1 P− 2ZXT

1 + 2γP = 0

⇒ P = (X1XT
1 + γ IK

)−1
X1ZT. (26)

Let M = (X1XT
1 + γ IK)

−1, then P = MX1ZT. we obtain

∥
∥Z − PTX1

∥
∥2

F + γ ||P||2F
= Tr

(
Z − ZXT

1 MX1
)(

Z − ZXT
1 MX1

)T

+ γTr
(
ZXT

1 MTMX1ZT
)

= Tr
(
Z
(
IN − 2XT

1 MX1 + XT
1 M

(
X1XT

1 + γ IK
)
MX1

)
ZT
)

= Tr
(

Z
(

IN − 2XT
1 MX1 + XT

1 MM−1MX1

)
ZT
)

= Tr
(
Z
(
IN − XT

1 MX1
)
ZT
)
.

The optimization formula in (25) is derived as

min
Z

Tr
(
Z
ZT

)+ μ||Z − T||2F + βTr
(
Z
(
IN − XT

1 MX1
)
ZT
)

⇔ min
Z

Tr
(
Z
′ZT

)+ μ||Z − T||2F (27)

where 
′ = 
+β(IN−XT
1 MX1). By calculating the derivative

of (27) with respect to Z and set it to 0, we derive

Z = T

(
IN + 1

μ

′
)−1

. (28)

Similar to the method developed in [59], the above equa-
tion can be effectively calculated via an iterative process. The
detailed steps are illustrated in Algorithm 2. The convergency
proof is presented in Appendix B.

By substituting (28) into (26), we obtain projection
matrix P. Following the rules of mean thresholding, we
first calculate the mean projected vector of database images
b = (PTX11N/N), and then construct hashing functions as

G(x) = sgn
(
PTx− b

)+ 1

2
. (29)

The behind meaning of the above equation is: the projected
feature dimension that is larger than the specified threshold is
remapped to 1 via hashing function, and 0 vice versa.

Algorithm 3 THH-Based CBMIR
Input:

Query image, q.
Database images, {Ii}Ni=1.
Non-negative hyper-parameters, μ, β, γ .
Number of topics that images describe, S.
Hashing code length, K.

Output:
Hashing codes of database images, Z.
Hashing functions, G.
Image retrieval results for image query q.
Offline Learning

1: Extract features Xm|2m=1 of database images;
2: Compute image-topic relation via Algorithm 1;
3: Construct THG as illustrated in Section IV-C;
4: Compute Laplacian matrix of THG via Eq.(21);
5: Compute M = (X1XT1 + γ IK)

−1;
6: Compute hashing codes of database images Z via Eq.(27) and

Algorithm 2;
7: Construct hashing functions G via Eq.(29);

Online Retrieval
8: Extract visual feature of query image;
9: Project query into hashing codes via Eq.(27);

10: Perform retrieval is Hamming space and return results.

E. Summary and Computation Complexity Analysis

The key steps of THH-based CBMIR are described in
Algorithm 3. The computation cost consists of two major
parts: 1) offline training and 2) online CBMIR. It can be eas-
ily derived that the computation cost of image-topic relation
discovery is O(Iter1 · Iter2 · (d1 + d2) · N · K), where Iter1
and Iter2 denote the number of iterations for steps 3–11 and
steps 7–8 in Algorithm 1, respectively. The process of THG
construction consumes O(N · S). The complexity of calculat-
ing the inverse of matrix in step 5 is O(K3). Solving (27)
has computation complexity of O(Iter3 · N · K), where Iter3
is the number of iterations for computing Z. The process of
hashing code generation for database images costs time com-
plexity O(N). In a sum, the whole offline training consumes
time complexity O(N), which is linear to database image size.
In online retrieval, generating hashing codes for a query can
be completed in O(d1 · K + K), which is quite efficient. The
search process can be efficiently completed with simple bit
operations.

V. EXPERIMENTAL CONFIGURATION

A. Experimental Datasets

In this paper, we empirically evaluate the performance of
THH on two publicly available multimodal image datasets:
Wiki [24] and NUS-WIDE [60]. To the best of our knowledge,
there is still no publicly available full-labeled multimodal
mobile image datasets. In experiments, we use both datasets to
model the real application scenario of CBMIR, where query is
only visual image and database images are usually associated
with noisy but informative texts.

1) Wiki6 consists of 2866 multimedia documents in ten
semantic categories. Visual and textual contents are rep-
resented by 1000 dimensional bag-of-visual-words and
2000 dimensional bag-of-words, respectively. Images are
considered to be relevant only if they belong to the same

6http://www.svcl.ucsd.edu/projects/crossmodal/

http://www.svcl.ucsd.edu/projects/crossmodal/
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category. Five percent images are used as query set and
the remaining images are used as training and database
set.

2) NUS-WIDE7 is comprised of 269 648 images which are
labeled into 81 concepts. We preserve ten most common
concepts and the corresponding 186 643 pairs. Images
are represented by 500 dimensional bag-of-visual-words.
Textual features are 1000 dimensional binary bag-of-
words. Images are considered to be relevant if they share
at least one concept. One percent images are used as
query set, 3% images are used as training set, and the
remaining images are used as database set.

On both datasets, the hashing codes learned on training set
are all discarded after hashing function learning. The con-
structed hashing functions are leveraged to generate hashing
codes for both query and database images.

B. Evaluation Metrics

In our experimental study, mean average precision (mAP)
is adopted as the evaluation metric for effectiveness. The met-
ric has been widely used in [22]. For a given query, average
precision (AP) is calculated as

AP = 1

NR

R∑

r=1

pre(r)rel(r) (30)

where R is the total number of retrieved images, NR is the
number of relevant images in retrieved set, pre(r) denotes
the precision of top r retrieval images, which is defined as
the ration between the number of the relevant images and the
number of retrieved images r, and rel(r) is indicator function
which equals to 1 if the rth image is relevant to query, and 0
vice versa. mAP is defined as the average of the AP of all
queries. Larger mAP means the retrieval performance is bet-
ter. In experiments, we set R as 100 to collect experimental
results. Furthermore, precision–scope curve is also reported to
reflect the retrieval performance variations with respect to the
number of retrieved images.

C. Compared Approaches

THH is unsupervised. Hence, we compare it with several
state-of-the-art unsupervised uni- and cross-modal approaches.
UMH approaches used for comparison include: shift-invariant
kernels LSH (SKLSH) [15], SPH [8], PCAH [33], LSI [34],
AGH [37], SRH [35], STH [36], and ITQ [16]. CMH
approaches used for evaluation include8 the following.

1) CVH [20]: It extends SPH to learn hashing functions
by jointly minimizing Hamming distances of similar
samples and maximizing that of dissimilar samples.

2) CHMIS [21]: It integrates discriminative information
from several heterogeneous modalities into the binary

7http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
8For SKLSH, SPH, PCAH, LSI, STH, AGH, and ITQ, implementation

codes of them are provided by [36]. For SRH, we carefully implement the
code according to the relevant literature. For CVH, we kindly use the imple-
mentation code provided by [61]. For CHMIS, IMH, and CMFH, we directly
download implementation codes from author website.

hashing codes with proper weights. For comparison fair-
ness, text input is removed and only visual query is
preserved in CHMIS. In this case, CHMIS can also be
considered as CMH.

3) IMH [22]: It formulates hashing learning in a framework
where intrasimilarity of each individual modality and
intercorrelations between different modalities are both
preserved in hashing codes.

4) CMFH [62]: It learns a latent semantic subspace shared
by multiple modalities by collective matrix factorization.
In CMFH, both visual and text features are mapped into
a unified hashing codes.

Note that, CVH, CHMIS, IMH, and CMFH generate hash-
ing codes for both query image and text. Since we only test the
performance of CBMIR in experiments, the hashing codes of
text are removed. In this case, the retrieval process of CBMIR
in all compared approaches is performed in visual Hamming
space. Parameters of all compared approaches are adjusted to
maximize the performance according to the relevant literature.

D. Implementation Details

The hyperparameters of THH are tuned by standard paral-
lel grid-search on a subset of training data. S is used in (14)
to control the number of topics that images describe. The
best performance of THH is achieved when S = 4 on both
datasets. In (17), there are three parameters: μ, β, and γ , which
adjust balance between regularization terms. These parame-
ters are chosen from {10−4, 10−2, 1, 102, 104} in this paper.
In particular, the best performance of THH is achieved when
{μ = 104, β = 10−2, γ = 10−4}, {μ = 102, β = 102,
γ = 104} on Wiki and NUS-WIDE, respectively. In exper-
iments, hashing code length L on all datasets is varied in the
range of {16, 32, 64, 128} to observe the performance. The
retrieval scope on Wiki is set from 100 to 1000 with step
size 100, that on NUS-WIDE is set from 500 to 5000 with step
size 500.

In step 1 of Algorithm 1, the initial values of Bm|2m=1 and
Tm|2m=1 are obtained by non-negative matrix factorization on
feature matrix Xm|2m=1, T is calculated as the mean of T1 and
T2. All the experiments are conducted on a computer with
Intel(R) Xeon(R) CPU E5-2620 2.0 GHz and 32 GB RAM.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first present the performance comparison
results. Then, we give comprehensive analysis and discussion
about how various factors influence the performance of THH.
In particular, we investigate the effects of THG learning, text
assistance and l2,1 norm on the overall system performance.
Finally, we study the performance variations of THH with
involved parameters.

A. Performance Comparison

Tables III and IV present main mAP results of THH and all
compared approaches on Wiki and NUS-WIDE when different
code length is set. Their corresponding precision–scope curves
are demonstrated in Figs. 4 and 5, respectively. According to

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Fig. 4. Precision–scope curves on Wiki varying code length.

Fig. 5. Precision–scope curves on NUS-WIDE varying code length.

TABLE III
MAP OF ALL APPROACHES ON WIKI

TABLE IV
MAP OF ALL APPROACHES ON NUS-WIDE

the presented results, we can clearly find that THH can con-
sistently achieve superior retrieval performance compared with
competitors. The largest performance gap between THH and
the second best performance is more than 5% on NUS-WIDE.
It demonstrates that, with the assistance of text, THH can
enrich the semantics of hashing codes and improve retrieval

performance. Even with 16 bits, THH can obtain better per-
formance than the one obtained by the compared approach
on 128 bits. This desirable advantage shows that THH can
well support the CBMIR scenario, where network transmission
bandwidth is limited.

Besides, it is interesting to find that CMH approaches
even perform worse than UMH methods (for example, ITQ
and AGH) in several cases. This experimental phenomenon
is not consistent with the conclusion obtained in [22] that
CMH methods perform better than UMH methods on task
of uni-modal retrieval. We think the reason is that CMH
aims to achieve fast retrieval across heterogeneous modalities.
Therefore, seeking the shared space of heterogenous modal-
ities is the main aim. In this way, the discovered common
semantic space of heterogeneous modalities in CMH can prin-
cipally preserve semantic correlations of different modalities.
But, it may even lose the valuable semantics besides the com-
mon part in original visual features. CMH may not be the
best suited for CBMIR. This observation also motivates us to
design THH to effectively leverage the auxiliary text to assist
image hashing.

We also investigate the efficiency of online image retrieval.
As indicated in Algorithm 3, the online retrieval process is
comprised of three subsequent steps 8–10. Since steps 8 and 10
are identical for all compared approaches, we only test the
efficiency of step 9. In particular, we compare the hashing
code generation time of all query images. Table V presents
the main experimental results. From it, we can easily find
that THH consumes the least time on both datasets. This
is because THH is designed to generate the hashing codes
via linear projection, while most of the compared approach
require to include additional procedures to improve perfor-
mance. The results demonstrate that THH can achieve higher
retrieval accuracy with simple online computation opera-
tions. This desirable advantage of THH can well support
its application for efficient CBMIR, where computational
resources in mobile end are quite limited and scarce, and
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TABLE V
HASHING CODE GENERATION TIME (S) WHEN HASHING CODE LENGTH IS FIXED TO 128

Fig. 6. Hashing performance based on state-of-the-art hypergraphs.

online retrieval efficiency plays a great impact on the user’s
experience.

B. Effects of Topic Hypergraph Learning

THG learning is performed in this paper to model the high-
order semantic relations that actually exist among images. This
section conducts experiments to evaluate the effects of topic
hyeprgraph learning on hashing. To this end, we compare the
hashing performance achieved on state-of-the-art hypergraphs.
In particular, the following hypergraph variants are compared.

1) Multimodal Graph (MG) [63]: MG constructs simple
graph in each modality and then combines them into
a unified one to model the simple semantic relations
among images. The optimal combination weights are
calculated by brute force search from 0–1 with step-
size 0.1. The aim of comparing THH with MG is to
validate the effects of high-order relation modeling on
hashing performance.

2) Unified Hypergraph (UHG) [64]: UHG constructs
hypergraph by integrating hyperedges in multimodal
hypergraphs (MHGs) into a UHG.

3) PHG [48]: PHG assigns each vertex to hyperedge in
probabilistic way. Multimodal features are combined to
describe the affinity relations among vertices within each
hyperedge.

4) MHG [65]: MHG learns proper weights for multiple
hypergraphs, and combines them into a unified one. It
comprehensively considers high-order relations captured
multiple modalities. The optimal combination weights
are calculated with the same way as MG.

The optimal hashing codes based on the compared hyper-
grpah approaches are obtained by substituting the THG
Laplacian with the corresponding one. For illustration con-
venience, the above hypergraph-based hashing approaches are
denoted as MGH, UHGH, PHGH, and MHGH, respectively.
Fig. 6 presents the main compared results. We easily find
that THH can achieve superior performance than the com-
petitors. In addition, we can observe that MGH obtains the
worst performance. This significant performance gap clearly
validates the effects of high-order semantic relation discovery

Fig. 7. Effects of text assistance on hashing performance.

on enhancing the semantic representation capability of hashing
codes. Besides, among hypergraph-based hashing techniques,
THH can still achieve the best performance. The reason is
that THH can discover latent semantic topics. And in the pro-
cess of hashing learning, it can explicitly preserve the modeled
high-order semantic correlation in hashing codes. This advan-
tage of THH can effectively mitigate the semantic shortage of
hypergraph-based hashing techniques, which are directly built
on low-level features.

C. Effects of Text Assistance

Auxiliary texts are exploited in this paper to detect semantic
topics and construct THG. The main aim of this experiment
is to investigate the effects of text assistance. To achieve this
goal, we compare the performance of THH with the compared
method which ignores semantics in texts and only consid-
ers visual information. For illustration convenience, we denote
this compared approach as THH-VisualOnly. In implementa-
tion, THH-VisualOnly constructs THG by considering only
visual information and learns the hashing codes as THH. Fig. 7
presents the detailed empirical experimental results. The key
observations we gain are twofold: first, THH can achieve bet-
ter retrieval performance of CBMIR with the assistance of
texts. The potential reason is that, with text assistance, more
valuable semantics can be involved into the detected seman-
tic topics, and the constructed THG can better characterize
the high-order semantic correlations of images. Hence, the
generated hashing codes have better discriminative capabil-
ity. Second, performance gap is varied on different datasets
and hashing code lengths. The variations of performance gap
are mainly caused by the different effectiveness of texts on
assisting hashing.

D. Effects of l2,1 Norm

We also evaluate the effectiveness of l2,1 norm on learning
hashing codes. We compare the performance of THH with the
competitor which adopts Frobenius norm to discover image-
topic relation [Frobenius norm is imposed on residual matrix
Xm − BmTm in (3) instead of l2,1 norm]. For presentation
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Fig. 8. THH performance variations with parameters. (a) μ is fixed to 102. (b) β is fixed to 102. (c) γ is fixed to 104. (d) Variations with S.

TABLE VI
EFFECTS OF l2,1 NORM ON LEARNING HASHING CODES

convenience, we denote the compared approach THH-F.
Table VI presents the main comparison results on two datasets.
From it, we clearly find that THH can consistently achieve bet-
ter performance than THH-F. The results demonstrate that l2,1
norm performs better than Frobenius norm on enhancing the
robustness of hashing codes.

E. Parameter Sensitivity

In this section, we conduct empirical experiments to
study the performance variations with involved parameters in
THH. More specifically, we observe the performance vari-
ations of THH with μ, β, γ , and S. μ, β, γ are used
in (17) to play tradeoff between regularization terms and
empirical loss, S is used in (14) to control the number
of topics that images describe. Due to the limited space,
we only report the results on NUS-WIDE when hashing
code length is 128. Similar results can be found on other
code lengths and Wiki. We test the results when μ, β, γ
are varied from [10−4, 10−2, 1, 102, 104], S is varied from
{1, 2, 4, 6, 8, 10, 12}. Since μ, β, γ are used in the same equa-
tion, we observe performance variations with two of them by
fixing the other parameter. Experimental results are presented
in Fig. 8. From this figure, we can clearly find that the perfor-
mance is relatively stable to a wide range of μ, β, γ variations.
Besides, we can observe that the performance first increases
with S and becomes stable after a certain point.

VII. CONCLUSION

CBMIR is a practical retrieval paradigm to support con-
venient mobile image retrieval. Hashing can be applied
as an effective technique to facilitate large-scale CBMIR,
due to its efficient transmission, low storage cost and fast
retrieval response. However, most existing hashing meth-
ods are designed based on pure visual statistical information
without considering the informative text, which is usually

associated with Web images. Although CMH can potentially
leverage texts, it still fails to fully make use of the texts.
This paper proposes a novel unsupervised hashing to specially
leverage auxiliary texts to imporve the effectiveness of hashing
in visual space. We learn hashing codes and functions within
a unified THH framework, which models high-order seman-
tic correlations of images and preserves them in the hashing
codes via unsupervised learning. This design has desirable
advantages of convenient query input and high quality feature
compression. Thus, it can well support practical applications
of mobile image retrieval. The results gained from experi-
ments on standard image datasets demonstrate the promising
effectiveness of the proposed approach.

In the future, we plan to construct large-scale multimodal
mobile image datasets and evaluate the performance of differ-
ent approaches. Besides, it would also be interesting to apply
the proposed method to other practical applications, which
have similar characteristics with mobile image retrieval.

APPENDIX A

PROOF OF THEOREM 1

With Lagrange multiplier, (5) can be transformed as the
following unconstraint optimization problem:

min
T

2∑

m=1

(
Tr
(
(Xm − BmTm)�m(Xm − BmTm)

T)

+ αmTr
(
(Tm − T)(Tm − T)T

))+ Tr
(
�mBTm

)

+ Tr
(
mTTm

))

where �m = [φdk], m = [ψki], d = 1, . . . , dm, k =
1, . . . ,K, i = 1, . . . ,N φdk > 0, ψki > 0 control the con-
straint of (Bm)dk > 0 and (Tm)ki > 0, respectively. By setting
the derivative of (5) with respect to Bm, Tm to 0, we get

−2Xm�mTTm + 2BmTm�mTTm +� = 0

−2BTmXm�m + 2BTmBmTm�m + 2αm(Tm − T)+ = 0.

Using the KKT conditions [66], φdkbdk = 0, ψkitki = 0, we
can derive the following equations:

(−Xm�mTTm + BmTm�mTTm
)

dkBdk = 0
(−BTmXm�m + 2BTmBmTm�m + αm(Tm − T)

)
kiTki = 0.

Hence, according to the standard procedure of non-negative
matrix factorization [52], we can obtain the updating
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rules for (Bm)dk and (Tm)ki

(Bm)dk ←
(
Xm�mTTm

)
dk(

BmTm�mTTm
)

dk

(Bm)dk

(Tm)ki ←
(
BTmXm�m + αmT

)
ki(

BTmBmTm�m + αmTm
)
ki
(Tm)ki.

APPENDIX B

PROOF OF THE CONVERGENCE OF ALGORITHM 2

Z at the tth iteration can be calculated as

Zt =
(

μ

1+ μ
) t−1∑

i=0

T

(
1

1+ μ
(
I −
′)

)i

+ T

(
1

1+ μ
(
I −
′)

)t

.

Since the eigenvalues of I −
′ are [1,−1], we obtain that

lim
t→∞

t−1∑

i=0

T

(
1

1+ μ
(
I −
′)

)i

=
(

I − 1

1+ μ
(
I −
′)

)−1

= 1+ μ
μ

(
I + 1

μ

′
)−1

, lim
t→∞T

(
1

1+ μ
(
I −
′)

)t

= 0.

Therefore, we can derive that

Z = lim
t→∞Zt =

(
μ

1+ μ
)

lim
t→∞

t−1∑

i=0

T

(
1

1+ μ
(
I −
′)

)i

+ lim
t→∞T

(
1

1+ μ
(
I −
′)

)t

= T

(
I + 1

μ

′
)−1

.
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