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a b s t r a c t

High quality test collections have been becoming more and more important for the
technological advancement in geo-referenced image retrieval and analytics. In this
paper, we present a large scale test collection to support robust performance evalua-
tion of landmark image search and corresponding construction methodology. Using
the approach, we develop a very large scale test collection consisting of three key
components: (1) 355,141 images of 128 landmarks in five cities across three continents
crawled from Flickr; (2) different kinds of textual features for each image, including
surrounding text (e.g. tags), contextual data (e.g. geo-location and upload time), and
metadata (e.g. uploader and EXIF); and (3) six types of low-level visual features.
In order to support robust and effective performance assessment, a series of baseline
experimental studies have been conducted on the search performance over both
textual and visual queries. The results demonstrate importance and effectiveness of
the test collection.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In general, landmark refers to notable buildings (i.e.
Statue of Liberty), architecture with special structure or
meaning or purpose (i.e. Beijing National Stadium – “Bird's
Nest”) and famous scenic spots (e.g. Marina Bay in Singa-
pore). Fig. 1 illustrates a few examples. Due to the attractive
physical features or/and historical significance, landmarks
frequently attract a lot of visitors, who are keen on taking
the photos and share them with friends or/and family
members via online social communities. Consequently,
volume of landmark images increases tremendously in
recent years and has accounted for a significant portion of
online social images. In recent years, many different algo-
rithms or systems have been developed to support auto-
matic retrieval or visualization of landmark images [1–6]. In

particular, large scale landmark image search emerge as
important technical foundation for various real applications
[7]. Consequently, numerous efforts have been devoted to
improve the corresponding search systems' performance
from different perspectives (e.g. retrieval effectiveness
[8–12], visual classification [13], system performance eva-
luation [14], and result diversification [15,16]).

The technology advancement in landmark image search
is largely dependent on studying and analyzing system
performance. However, very limited work has been carried
out on benchmarking dataset development for the pur-
pose of comparing and evaluating relative algorithms and
systems comprehensively. While the importance of the
issue has been recognized in the multimedia retrieval and
other related communities (e.g. computer vision and signal
processing) and a few test collections have been published
recently, they generally suffer from one or multiple
weaknesses as follows: small scale, unclear definition
about search task, lack of diversified landmarks views and
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limited availability. The issues could be particularly severe
when the researchers try to do robust cross-method
comparisons. Due to the lack of quality collections, a
popular solution taken by scholars is to construct their
own datasets by leveraging online public resources, such
as Flick1 and Google image [8,15–20]. This can easily lead
to very expensive and tedious dataset development pro-
cess. More importantly, the use of self-constructed data-
sets makes it hard for other scholars to repeat the
experimental studies and compare different methods to
assess (1) the precise impacts of various systems and
(2) identify the state-of-the-art.

In principle, the standard procedure for the perfor-
mance evaluation of landmark image retrieval systems can
include five basic steps: (1) construct a test collection;
(2) define specific search tasks; (3) select search queries
(text or/and visual queries) and generate associated

ground truth; (4) run each test query through a particular
landmark search system; and (5) assess the performance
of the system via an empirical distribution of particular
measurement metric (e.g. precision, recall and MAP ratio).
All five steps are critical for the quality of performance
evaluation. In this paper, our main focus is on how to
develop very large scale of test collection. To achieve
reliable, robust and effective system performance assess-
ment, test collection construction needs to satisfy three
key guidelines:

� Given that the size of image collections in many real
photo sharing Websites have scaled to billions over the
last few years, test collection's scale is required to be
sufficiently big to generate statistical meaningful results.

� Real geographic locations in different countries and
regions might have very diverse visual appearance and
thus test collection should own comprehensive visual
coverage of different geographic locations.

Forbidden City Great Wall Old SummerPalace Temple of Heaven Tiananmen Square

Avenue of Stars Disneyland Resort Peninsular Hotel Tian Tan Budda Victoria Harbour

Big Ben Buckingham Palace London Eye Palace of Westminster Westminster Abbey

Times Square Brooklyn Bridge Lincoln Center Rockefeller Center WestminsterAbbey

Clarke Quay Marina Bay Merlion Park National Museum Universal Studios
Fig. 1. Examples of landmark images.

1 https://www.flickr.com/
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� When more partial views about the same landmark are
involved, evaluation process will be more reliable and
robust.

� Search task and corresponding image queries for evalua-
tion and associated ground-truth need be clearly defined.

In this research, we make two main contributions to
technical advancement of landmark image search:

� a methodology and procedure to construct very large
landmark search test collection, and;

� based on the methodology, a very large scale bench-
marking test collection is developed to support effec-
tive, reliable and robust comparison and assessment of
landmark image search system performance.

Totally, the test collection consists of 355,141 images
about 128 landmarks in five cities over three continents
from Flickr. Besides, six different visual features are
extracted as image visual signature. For each landmark, a
wide range of visual views have been considered to gain
comprehensive coverage. Moreover, a clear definition is
given to different search tasks and ground truth informa-
tion. Using them, a set of empirical studies have been
carried out to investigate the search and compare accuracy
and efficiency of content-based search methods and text-
based search methods. The test results show promising of
the test collection.

This paper is organized as follows: Section 2 presents
the details about test collection construction. We intro-
duce how to harvest raw dataset, key statistics about
dataset and its main structure. Section 3 presents detail
empirical study configuration, evaluation system frame-
work and key results on two main retrieval tasks: content-
based image retrieval and text-based image retrieval.
Finally, we conclude the paper in Section 4 with summary
of key research findings and future work.

The results have been partially published in The 19th
International Conference on MultiMedia Modeling [14].

2. Test collection construction

The construction of the landmark image dataset starts
from selecting a set of international cities with various
popular landmarks. At this stage, five cities from 3 con-
tinents are considered and they include Beijing, Hong Kong,
Singapore, London, and New York. Well-known landmarks
of each city are selected from the landmark lists published
in Wikipedia2 and Wikitravel3 (we also refer to other
online tour guide web pages). Altogether, 128 landmarks
are identified in the five cities. The number of landmarks
in each city can be found in Table 2. Tables A1–A3 in
Appendix A show the details of landmarks in the dataset.

2.1. Dataset downloaded

The images of each landmark are collected from Flickr.
For the landmark with an unique name, its name is used as
the keywords to search images. While for the landmark
whose name also corresponds to other landmarks in dif-
ferent cities, the name of corresponding city is also
included in the search keywords. For example, “city hall,
singapore” and “city hall, new york” are used to search the
images of City Hall in Singapore and New York, respec-
tively. The most relevant images are retrieved using the
tag-based method provided by Flickr's public API.4 This
method requires the returned images must contain the
query terms in their tags, and the returned images are
sorted in descending order based on relevance. The top
4000 images in the returned list are taken. Notice that not
all images in the list can be successfully downloaded.
Besides, some landmarks have less than 4000 images
tagged with their names in Flickr. Thus, the number of
downloaded images for each landmark is 3301 on average
before processing. Different kinds of related data asso-
ciated with each image are also collected. We categorize
the associated information into three types: surrounding
text, context information and metadata. Details can be
found in Table 1. The surrounding text includes title, tags,
description and comments, which directly represent the
semantic features of the image. We consider four different
kinds of context information: taken time is about when the
image was captured; upload time refers to the time when
the image was uploaded to Flickr; geo-location generally is
about the location where the image was taken; contextual
URLs contains the URLs of photostream, sets and pools to
which the image belongs. Each image in Flickr has an
unique photo ID; uploader ID refers the ID of the user who
contributed the image; EXIF/TIFF contains the image
metadata, such as the device used to capture the image
and parameter-setting of the device at the time of taking
the image. The source page of the image in Flickr is kept as
the backup reference.

It is worth mentioning that the created dataset will
contain some data noise because the tag-based search
method is used to collect images. Since social tags are
known to be noisy [21,22], there could be some images
which are labeled with a landmark but do not contain any
related visual contents about the landmark. Besides, some
landmark images are labeled with tags but are not about
the corresponding landmarks. Because we aim at devel-
oping a dataset to facilitate the development of landmark

Table 1
Related information crawled for each image.

Surrounding text Context information Metadata

Tag Taken time Photo ID
Title Upload time Uploader ID
Comment Geo-location Source page
Description Contextual URL EXIF/TIFF

2 http://www.wikipedia.org/
3 http://wikitravel.org/en/Main_Page 4 https://www.flickr.com/services/api/
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image retrieval systems for real applications, it is essential
that the dataset has similar content distributions with the
real environment that are faced by users in real image
search scenarios from various aspects, such as the dis-
tribution of diversified landmark visual contents and the
distributions of tag noise and ambiguities. Thus, we have
not cleaned the data noise. In the evaluation, we create the
ground truth set for the targeted search landmarks, in
which the positive images are guaranteed to be contain
related visual contents of the landmarks based on the
defined judgement criterion and procedures (refer to
Sections 3.1.1 and 3.2.2).

2.2. Dataset statistics

Using the method described above, totally 419,346
images are collected at Flickr's medium-scale image reso-
lution, which is 500�500 pixels maximum. In the col-
lected images, the most common sizes are “500�375”,
“500�333”, “375�500”, and “333�500”, accounting for
59.04% of the dataset. We remove the image whose length
or width is less than 300. Also, if any piece of the related
information listed in Table 1 fails to be downloaded, the
corresponding image would not be included to our test
collection. Finally, there are 355,141 images left for 128
landmarks.

The distribution of image number for landmarks in
each city is shown in Table 2. Meanwhile, Table 3 shows
the statistics information of surrounding text of images.
Note that more than half of the images do not have any
comment, and the minimal number of tags is 1 is because
of the used tag-based search method. Fig. 2 shows the
distribution of the number of tags per image. In this figure,
the number of images has been normalized. To assess the
quality of the downloaded images, 20,000 images are
randomly drawn from the whole dataset and manually
evaluated. 735 images are labeled as low-quality,

representing 3.675% of the subset. This ratio can be
regarded as an indicator of the proportion of low-quality
images in the whole dataset.

2.3. Visual features

For the convenience of utilizing the dataset on the
performance evaluations of various applications, we
extract and provide a set of effective and widely used
visual features for each image. They include,

Color histogram (64D) [23]: The HSV color space is
divided into 64 partitions, and the number of pixels within
each partition is then counted for computing the histo-
gram bin of the corresponding color.

Color auto-correlogram (144D) [24]: The color auto-
correlogram describes the global distribution and the
spatial correlation of pairs of colors together. We consider
the HSV color space with color quantized into 36 bins, and
use 4 distance metrics as [24] to compute the auto-
correlogram.

Gabor texture (72D) [25]: Wavelet features are extracted
at multiple scales and directions from the images using a
Gabor wavelet decomposition. The mean and standard
deviation of the filter responses are calculated. We extract
Gabor features in six different orientations and six differ-
ent scales.

Block-wise color moments (225D): Each image is divided
into 5�5 grid partitions. For each grid, the first three color
moments (mean, variance, skewness) are calculated for
each color channel in HSV color space. Each grid region is
then characterized by 9 moments, resulting in a 225-
dimensional vector for an image.

Edge histogram (80D) [26]: The edge histogram repre-
sents the spatial distribution of five types of directional
edges, namely four directional edges and one non-
directional edge. Each image is partitioned into 4�4 grid,
and each grid is further divided into small square blocks.
Five directional edges are extracted from the small blocks.
Then the number of five edge types in each grid is counted
to define five histogram bins for the corresponding grid.

Table 2
The number of landmarks and the distribution of image number across
landmarks in each city.

City Number of Distribution of number of images

landmarks Average Max Min

Beijing 25 2874.64 3680 728
London 25 2994.56 3252 1386
Singapore 28 2562.11 3401 589
New York 28 2898.68 3692 741
Hong Kong 22 2523.14 3882 556

Table 3
Statistics of surrounding text in the dataset.

Length of Surrounding Text Average Max Min

Number of tags 11.24 160 1
Number of keywords in title 4.07 41 0
Number of keywords in description 65.34 14,303 0
Number of comments 13.74 2055 0
Number of keywords in comment 4.95 593 1
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Fig. 2. The number of tags per image.
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Bag-of-visual-words [27]: 500-D bag-of-visual-words
(BoVW) is generated for each landmark. For each image,
key-points are detected using difference of Gaussian. Then
each key-point is described by a 128 dimensional SIFT
descriptor [27]. Finally, the descriptors of each image are
vector quantized into a vocabulary of visual words, which
are generated by k-means clustering method.

2.4. Dataset structure

In order to support fast browsing and exploration of the
collection, the dataset is organized in hierarchical struc-
ture based on geo-location and landmark categories.
Under two general categories – Natural Attractions and
Man-made Attractions, 13 subcategories are further defined
and the details are as below:

� A. Natural attractions: (A1) beach, (A2) island, (A3)
mountain, (A4) nature reserve, (A5) wildlife attractions
and (A6) park and garden;

� B. Man-made attractions: (B1) buildings and monu-
ments, (B2) distinct small town, (B3) harbor and bay,
(B4) historic resort, (B5) museum and gallery, (B6)
religious architecture, (B7) shopping and commercial
center.

Particularly, the landmarks are first divided based on cities
and spatial districts; then landmarks in the same district are
classified into different subcategories. As an example, Fig. 3
illustrates the hierarchical structure using several landmarks
in Singapore. The structure of landmarks in the whole dataset
is shown in Appendix A Tables A1–A3.

3. Experimental study

In this section, we report two empirical studies on the
dataset. The two sets of studies aim to investigate the land-
mark image search accuracy with the use of basic Content-
based Image Retrieval (CBIR) and Text-based Image Retrieval
(TBIR) methods. Specifically, in Section 3.1, we study the
search accuracy and efficiency of CBIR methods on landmark
image search by using different types of landmark views and
different visual features. A landmark can have many different
representative views (e.g. exterior and interior views, or
views of different parts), and users may be interesting in
search different aspects of a landmark in real applications.
However, different views could have different search diffi-
culties, due to the distinct visual appearances, it is necessary
to develop the best search strategies for different types of

landmark views. In this experiments, we provide the baseline
performance on five types of landmark views. In Section 3.2,
the landmark image search accuracy based on social tags
with two popular TBIR methods are studied. Besides, we also
explore the performance improvement with the combination
of textual and visual features. Besides, by simply categorizing
landmarks into two types, we demonstrate that for different
types of landmarks, better search performance can be
achieved by using different search methods, which implies
the necessity of developing different search strategies for
different types of landmarks. All the experiments are con-
ducted on a desktop computer with Intel Core i5 2.80 GHz
CPU and 4GB memory. In the following, we detail the
experimental configuration and report the experimental
results for the two set of experiments.

3.1. Content-based landmark search

This section reports the study on the performance of CBIR
methods on landmark image search. In particular, we study
(1) the search performance of different visual queries which
represent different views of a landmark, and (2) the search
effectiveness and efficiency of different visual features.
insights into the content-based landmark search.

3.1.1. Experimental setup
Query set: We select eight landmarks5 in Singapore and

take pictures of various views of each landmark. From the
taken photos, images which represent the following types of
views are selected as queries, including (1) views from dif-
ferent angles (i.e. front views and side views), (2) partial
views (i.e. different parts of the landmark), (3) interior views,
(4) close-up exterior views, and (5) far-away exterior views.
Fig. 4 shows the examples of different views. For each land-
mark, we select four queries for each type of view. Finally,
total 156 queries are selected.6

Test collection: The targeted landmarks belong to the
subcategories of park and garden, buildings and monu-
ments, harbor and bay and museum and gallery. We select
images of landmarks in those subcategories to construct a
challenging distractor subset, as images of landmarks in
the same subcategory are more likely to be similar. Images
of landmarks in Singapore, New York and London are used.
Altogether, 59 landmarks with 164,690 images are inclu-
ded in the subset.

Visual features: We use color histogram (CH), color
moments (CM), bag-of-visual-words (VW), and two com-
binations of them (CH þ CM and CH þ CM þ VW) as
visual features in the experiments. A vocabulary with 1000
visual words is generated for the subset using the method
described in Section 2.3. Euclidean distance is used for
calculating the similarity score. In the combination of dif-
ferent features, the similarity scores are separately com-
puted and normalized, and then uniformly summed
together to obtain the final score.

Boat Quay

Harbor & Bay Park & Garden          Beach

Marina Bay Merlion Park           Santosa

Mountain

Mount Faber

Subcategory

Landmark

KeppelMarina  Area District

Singapore City

Fig. 3. Hierarchical Structure of the Dataset.

5 The selected landmarks include Armenian Church, Cathedral of the
Good Shepherd, Church of Our Lady of Lourdes, Church of Saints Peter and
Paul, Marina Bay, Merlion Park, National Museum and Raffles City.

6 Because Merlion Park is an open area, it does not have queries
representing the interior views.
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Ground truth and evaluation: The task of landmark
image retrieval is to search visual views of the desired
landmark, which means that positive results must be or at
least contain visual views of the targeted landmark.
According to this, the judgement criterion is defined as: if
an image contains views of the targeted landmark that are
recognizable to viewers, then the image is regarded as
positive; otherwise, the image is marked as negative. The
top 10 results of each query are assessed by human eva-
luators. As the search results may contain partial or
interior views of landmarks, evaluators are required to be
familiar with the selected landmarks. Five evaluators in
Singapore are recruited for evaluating the search results.
There are 3 females and 2 males aged from 20 to 30 years
old. They have been to the selected landmarks multiple
times, and thus are considered to be familiar with these
landmarks. The final judgment on relevance are made
based on majority voting. The precision (P@10) is used as

the evaluation metric. same landmark are pooled together,
and then assessed by human evaluators.

3.1.2. Experimental results and analysis
In the following, we present the core results and pro-

vide detail analysis on system performance in terms of
effectiveness and efficiency.

On effectiveness: Table 4 shows the search accuracy of
different visual queries in each view type. The values in
the table are the average P@10 (7 standard deviation)
over all queries in the same type. From the table, we can
see that the performances of color histogram and color
moments are comparable, and the feature of visual words
performs slightly better. Although the combination of
global and local features improves the search accuracy, it is
still pretty low. Content-based landmark search is more
challenging than general content-based image retrieval
tasks. The mechanism of content-based retrieval method
decides it can only return visually similar images (with

Partial Views

Interior views

Views from
Different Angles

Close-up Views

Far-away Views

Fig. 4. Different types of views using images of the Cathedral of the Good Shepherd as examples.

Table 4
Average precision of visual queries in different view types. The representations of the acronyms in the table: AV – views from different angles; PV – partial
views; IV – interior views; CUV – close-up exterior views; FAV – far-away exterior views; CH – color histogram; CM – color moments; VW – bag-of-visual-
words. The values in the table are the average P@107std.

Visual Feature AV PV IV CUV FAV

CH 0:06870:136 0:05270:079 0:01770:038 0:04270:088 0:02970:076
CM 0:09670:179 0:03970:047 0:01370:045 0:03170:072 0:03270:061
VW 0:10570:182 0:06870:125 0:04670:081 0:07170:139 0:11770:186
CHþCM 0:11170:211 0:07670:148 0:03470:073 0:04670:069 0:03470:075
CHþCMþVW 0:24270:235 0:13170:216 0:08770:165 0:16570:236 0:12170:132

Z. Cheng, J. Shen / Signal Processing 124 (2016) 13–2618



respect to the query image) in machine's view. While in
landmark image retrieval, the positive results should
represent or contain visual appearance of the targeted
landmark, which implies that a result could be negative
even it has similar visual content with the query image.

Queries with the whole view of a landmark are expected
to get better results than partial views (PV) and interior
views (IV). Queries of three types (views of different angles
(AV), close-up views (CUV) and far-away views (FV) contain
the whole exterior view of a landmark. In general, CUV
contains more details and FV contains foreground and
background objects (e.g. pedestrians and vehicles). These
extra details and objects increase the difficulty of retrieval
based on visual features. As a result, AV obtains the best
results among them. Surprisingly, PV gets similar perfor-
mance as CUV. We find that it is because that the captured
partial views are usually representative scenes or objects
which tend to attract more attentions, resulting in more
images about them. The search performance of IV is the
worst, which is in our expectation. Because interior views
typically contain more objects and complicate structures,
and the lighting conditions vary greatly at different time or
from different angles. In comparison to the performance of
different landmarks, we found that the queries of Marina
Bay and Merlion Park obtain much better results than
queries of other landmarks, which are all buildings. It
implies that buildings are more difficult to search based on
visual features. And it can be explained by the viewpoint in
[28]: “buildings tend to have few discriminative visual features
and many repetitive structures”.

On efficiency: As a baseline study, we have not used any
indexing method in the experiments. For single visual fea-
ture, the computation time is spent on computing and sorting
the similarity scores of all images in the subset; for the
combination of different features, there are two additional
time-consuming steps – the normalization and summation of
computed scores of individual features. Obviously, higher
dimensionality of visual features needs longer processing
time. The results are shown in Fig. 5. From the results, we can
see that the slight improvement on search performance by
combining visual features pays high time cost. With the
1289-dimensional combined features, each query takes 4.14 s,
which is much longer than the computation time of 1000-
dimensional visual words (1.19 s).

3.2. Text-based landmark search

In this section, we investigate the search performance
of using tags as textual information sources for landmark
search, and also study the effects of combining textual and
visual features on search accuracy. In experiments, we use
two popular text-based retrieval methods and a basic
linearly combination of textual feature and visual features
to study the retrieval performance. The results can provide
some evidences about the search performance of land-
mark image search with social tags.

3.2.1. Retrieval methods
Social images are usually accompanied with user-

contributed annotations, such as title, tags, descriptions and
comments. Although social tags are considered to be noisy,
they are the most commonly used textual information for
social media retrieval [29–31]. To study the landmark image
search performance based on social tags, we use two basic
text-based retrieval methods OKAPI-BM25 model [32] and
Vector space model (VSM) with standard TF-IDF term
weighted method [33], which are widely used as baselines in
information retrieval. Besides, we also study the performance
of the popular late fusion method of text-based retrieval
methods (TBIR) and content-based retrieval methods (CBIR)
in landmark image search [29,34]. In our implementation, for
each image, tags are first tokenized with a standard stop-list,
and then concatenated to form the document-term matrix
for the image. Terms with occurrence times less than 10 in
the corpus are filtered. In the next, we introduce the details of
each retrieval method.

OKAPI-BM25 model: In this method, the relevant score
of an image I with respect to a query q is computed as:

Sbm25 q; Ið Þ ¼
X
tAq

qtf tð Þidf tð Þ tf ðtÞ � ðk1þ1Þ
tf tð Þþk1 � 1�bþb � lI

lavg

� � ð1Þ

where qtf(t) is the frequency of term t in the query q and tf(t) is
the frequency of term t in the tag set of image I. idf(t) is the
inverse document frequency of t calculated as logððjDj�jnt j
þ0:5Þ=ðjnt jþ0:5ÞÞ, where jnt j is the number of images whose
tags contain t. lI is the number of terms in the image I, and lavg
is the average number of terms of all images in D. In our study,
k1 is set to 0.2 [32] and b is set to 0.75 [35].

Vector space model (VSM): The classical TF-IDF weight-
ing scheme is used in this study. In this model, the relevant
score is computed as:

Svsm q; Ið Þ ¼
P

tAqwt;I�wt;qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
tA Iw

2
t;I

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
tAqw

2
t;q

q ð2Þ

where wt;I is the term weight of term t in the image I,
computed as wt;I ¼ tf ðtÞ � logððjDj�jnt jþ0:5Þ=ðjnt jþ0:5ÞÞ.
The computation of wt;q is analogous to wt;I .
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Fig. 5. Computation time per query using different visual features.
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Weighted linear combination (WLC): WLC combines the
search results of CBIR and TBIR methods using a late fusion
method. Specifically, in CBIR, each image is represented by
the concatenation of the six types of visual features (descri-
bed in Section 2.3), and the Euclidean distance is used as
similarity measurement. Both text-based retrieval methods
are used in WLC: (1) WLC_BM25 denotes the combination of
Okapi-BM25 with the CBIR method, and (2) WLC_VSM
denotes the combination of VSM with the CBIR method. The
similarity scores of an image computed by the CBIR method
and TBIR method are separately normalized using MinMax
[36], and then linearly combined using CombSUM [36,29]
with pre-defined weights to compute the final similarity
score for the image. The similarity score of CBIR method is
converted from distance by s¼ 1�d, where s and d denote
the similarity score and the corresponding distance, respec-
tively. Formally, for an image I, its final similarity score with
respect to the query q is

Sðq; IÞ ¼w� � Stþð1�wÞ � Sv ð3Þ
Sv and St are the similarity scores returned by the CBIR
method and TBIR method, respectively. w is empirically
tuned in experiments.

3.2.2. Experimental setup
This section introduces the construction of the query

set, test collection, the assessment of the ground truth and
the evaluation metrics.

Query set: For each city in the dataset, we select five
landmarks as targeted landmarks for retrieval, and for-
mulate three text queries for each landmark. Among the
three text queries of a landmark, one is the landmark
name with the city name (e.g. national museum, singapore
and disneyland resort, hong kong), which is the most direct
search method for a landmark. The other two text queries
are comprised by the landmark name, city name and
another popular term to describe the landmark in tags. The
term in each query is selected by counting the occurrence
times of all the terms in the social tags of the landmark
images, which are the landmark subset crawled from Flickr
(described in Section 2.1). For each text query, an image
query is selected for CBIR. The image query of an image
landmark are manually selected to contain the overview or
a representative view of the landmark. The selected query
landmarks for each city and some examples of the text
queries (with additional term) and image queries for each
landmark are shown in Table 5. In the figure, the text
query examples does not include the city name for sim-
plicity. In total, there are 75 text queries and 75 corre-
sponding textual and visual features (for WLC search
methods) in the query set. Notice that in the table, land-
marks are labeled with superscript “I” or “II”, which are
used to identify two types of landmarks: (1) Type I – this
type of landmarks is a single building or complex building,
such as “London Eye”, and “Statue of Liberty”, and (2) Type
II – this type of landmarks usually contain a large area and

Table 5
Query examples of targeted landmarks in experiments. Landmarks labeled with superscript “I” are Type I landmarks and landmarks with label “II” are Type
II landmarks.
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more points of interests, such as “Universal Studios, Sin-
gapore” and “Central Park, New York”. There are 13 Type I
landmarks and 12 Type II landmarks in the queries. The
underlying intuition of the classification is the big differ-
ence of the two types of landmarks. For the Type I, the
view of the landmark should always contain the building;
and for the Type II, the images of the landmarks could
contain different partial views or scenes of the landmark.
The difference may lead to different characteristics of the
search performance by TBIR and WLC methods.

Test collection: With the targeted landmarks, we use the
same methodology in Section 3.1 to construct a challen-
ging distractor subset. The targeted landmarks are in seven
subcategories: (1) beach, (2) park and garden, (3) buildings
and monuments, (4) harbor and bay, (5) historic resort,
(6) museum and gallery, and (7) religious architecture.
Thus, images of landmarks in these subcategories of the
five cities are used to construct the test collection. In total,
there are 266,398 images from 98 landmarks are used.

Ground truth: Similar to the experiments in Section 3.1,
for a targeted landmark, the positive images should con-
tain representative views of the landmark such that the
landmark can be easily identified. For images with partial
views (such as a scene of a landmark in Type II) which are
not discriminatively enough to identify the landmark, they
are labeled as negative. Based on the criterion, the positive
results are guaranteed to be correct, while some positive
results might be mistakenly labeled as negative. In the
assessment, the top 10 search results of each method for a
landmark are pooled together and assessed by human
subjects. As the landmarks are across several countries,
evaluators are recruited from China (8 subjects), Singapore
(5 subjects) and America (4 subjects).7 For a landmark, its
search results are assessed by three subjects who have
been to the landmarks.8 The majority voting is used to
obtain the final annotations, which are then used to
evaluate the search performance of each method.

Evaluation metrics: In evaluation, we focus on the
search accuracy on the top of the list, because it is the
most interesting part for users of information retrieval.

Precision at k (P@k): It evaluates the proportion of
relevant instances in the top k retrieved results. The values
of k used in experiments are 1, 5, and 10.

Mean reciprocal rank (MRR): It averages the inverse of
the rank of the first correct answer for each query. It

measures the level of the ranking list at which the infor-
mation need of the user is first fulfilled.

Mean average precision (MAP): It averages the precision
at each point of a relevant instance in the ranking list. In
experiments, we report the results of MAP@10.

3.3. Experimental results

Table 6 shows the average search accuracy over all the
queries by different methods. Similar to the results
reported in Section 3.1, the accuracy of CBIR method is
very low. In contrast, TBIR methods based on social tags
can obtain fairly good performance, especially for Okapi-
BM25, which can achieve 76.7% for the first search results
(P@1) and 74.5% precision in the top 10 results (P@10).
VSM does not work as good as Okapi-BM25, but it is still
acceptable on the top 10 results. Although the search
performance of CBIR is very poor (only 10.7% for P@10),
the weighted linear combination of the TBIR and CBIR can
improve the search performance in the top search results
in general, except that P@1 of Okapi-BM25 is slightly
better than WLC_BM25. The optimal weight of Okapi-
BM25 in WLC_BM25 is 0.3 (for P@10) and the optimal
weight of VSM in WLC_VSM is 0.2 (P@10). The best per-
formance is obtained by setting larger value to CBIR
method in the WLC methods, which is consistent with the
conclusion in [29].

In the following, we present and analyze the search per-
formance differences of landmarks in Type I and Type II. As
Okapi-BM25 is the better TBIR searchmethod, we use its search
results and search performances with different weight settings
(w) in WLC_BM25 in the following discussion. The average
search performance of the two types of landmarks based on
Okapi-BM25 andWLC_BM25 (w¼0.5 for Type I and w¼0.1 for
Type II) are shown in Table 7. With Okapi-BM25 method, the
average search performance of landmarks in Type I are much
better than that of landmarks in Type II. It is interesting that, the
performance of Type I landmarks slightly decreases with the
combination of CBIR and TBIR method, while the performance
of Type II landmarks increases a lot after combination. Besides,
for Type I landmarks, there is no optimal weight w for all
evaluation metrics in WLC_BM25 method, while for Type II
landmarks, the performance with weight w¼0.1 is consistently
better than other weight settings over all metrics. A potential
reason of landmarks in Type I obtaining much better search
results than landmarks in Type II is that the visual appearances
of a landmark in Type I is much simpler than that of a landmark
in Type II. Accordingly, the tags of landmarks in Type I is gen-
erally less than that of landmarks in Type II, and thus contain
less confusing information and less noise, leading to better text-
based search results. For Type I landmarks, CBIR is to search

Table 6
Landmark search performance (mean7 std.) based on textual and visual features.

Method P@1 P@5 P@10 MAP@10 MRR

CBIR 0:00070:000 0:11870:166 0:10770:119 0:10770:135 0:20670:202
Okapi-BM25 0:76770:426 0:74370:255 0:74570:211 0:74670:250 0:85370:274
VSM 0:49370:503 0:63670:276 0:64770:217 0:61370:254 0:69570:313
WLC_BM25 0:75370:434 0:81670:228 0:78470:186 0:79870:217 0:86570:242
WLC_VSM 0:50770:503 0:60070:296 0:54170:186 0:58470:296 0:73270:281

7 The landmarks of London are evaluated by subjects from China and
Singapore, who have been to these landmarks.

8 In this experiments, the selected landmarks are the most famous
ones in each city, and most search results are exterior views. The judg-
ment is relative easier than the previous experiments.
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buildings with similar appearance; and for Type II landmarks,
CBIR is to search similar scenes. Although the visual appearance
of Type II landmarks is more complex, while in landmark
search, it is more difficult to search the same building by CBIR,
because different buildings usually have similar visual appear-
ance. For the landmark search task, it is more like a building
identification task for the Type I landmarks. Thus, inWLC_BM25
method, the incorporation of CBIR search results may introduce
noisy for Type I landmark search, resulting in performance
decrease. Fig. 6 shows the performance varying curves with
different weight settings in WLC_BM25 for two types of land-
marks. With the increasing of w, the performances display dif-
ferent trends for two types of landmarks. For Type I, the overall
better performance of WLC_BM25 are obtained when
wA ½0:5;0:8� for all evaluation metrics (whenw¼1, it is Okapi-
BM25 method), while for Type II, the better performance are
obtained when smaller weight is set to TBIR method.

From the analysis of the search performance differ-
ences of Type I and Type II landmarks, we can find that for
different landmarks, different search strategies should be
applied to obtain better search results. In the baseline
studies, we only analyze the search performance differ-
ence on accuracy with a simple categorization of the
landmarks. It should be more interesting to analyze the
search performance differences for finer landmark cate-
gories, which can provide fundamental knowledge for the
development of optimal search strategies of different

landmarks. Besides, in landmark search, the result diver-
sification is a very practical and interesting research
direction, as users usually want to see different aspects of a
landmark. In text-based landmark image search, the
search results may contain different views of a landmark.
However, with the use of image query (e.g. to improve the
search performance for the Type II landmarks in this
study) will lead to similar search results. How to generate
the most representative and diverse views in the top
results are worthy of more studies.

4. Conclusion and future work

In this paper, we introduced the construction of a large
scale landmark image dataset. The dataset contains various
kinds of textual features and provides six types of visual
features. Based on the dataset, we identified and discussed
several closely related research issues. We also conducted a
set of experimental studies on landmark search using visual
and textual features. The search accuracy of different visual
queries and the search efficiency of different visual features
were reported and comprehensively analyzed. The results
disclosed the weakness of content-based landmark search.
Both search accuracy and efficiency need to be improved.
Text-based retrieval methods for landmark image search
using social tags can achieve good search performance. And
the combination of CBIR and TBIR can improve the search
accuracy in general, however, it does not works for all types
of landmarks. From the comparisons between search per-
formances of two types of landmarks, we demonstrated that
better search performances can be obtained by using differ-
ent search strategies for different types of landmarks. The
results can be used as baselines to facilitate the future related
research. The test collection is designed to facilitate the
development of large scale landmark image retrieval systems.
It can be potentially applied in the study and comparisons of
mobile landmark search systems, which have been recently
attracting more and more attentions. The specific research

Table 7
Search performance of two types of landmarks.

Metric Okapi-BM25 WLC_BM25

Type I Type II Type I Type II

P@1 0.900 0.786 0.667 0.818
P@5 0.800 0.843 0.830 0.824
P@10 0.805 0.807 0.773 0.800
MAP 0.822 0.827 0.782 0.821
MRR 0.942 0.889 0.818 0.899
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Table A1
Hierarchy structure and all landmarks in the collection (Part I). Types of landmarks – A. Natural attractions: (A1) beach, (A2) island, (A3) mountain, (A4)
nature reserve, (A5) wildlife attractions and (A6) park and garden; B. Man-made attractions: (B1) buildings and monuments, (B2) distinct small town, (B3)
harbor and bay, (B4) historic resort, (B5) museum and gallery, (B6) religious architecture, (B7) shopping and commercial center.

City Districts Types Landmarks Image
number

Singapore Marina Area B3 Boat Quay 2887
Marina Bay 1108

A6 Merlion Park 3070
CBD B6 Armenian Church 3232
City Hall B1 City Hall 2805

Raffles City 3401
B5 National Museum 3128

Beach Road B6 Cathedral of the
Good Shepherd

677

Church of Our Lady
of Lourdes

2887

Church of Saints
Peter and Paul

3279

Tanglin A6 Singapore Botanic
Gardens

3116

Newton A4 Bukit Timah Nature
Reserve

2861

Orchard A6 Istana Park 728
B7 Orchard Road 2888

Changi B7 Changi Airport 2762
A2 Pulau Ubin 2363

Far North A5 Night Safari
Singapore

2834

Singapore Zoo 2755
Jurong A5 Jurong Bird Park 3333

A4 Sungei Buloh Wet-
land Reserve

2946

Hougang B6 Church of the
Nativity

589

of the Blessed
Virgin Mary

Keppel A5 Butterfly Park &
Insect Kingdom

2088

B7 Harbourfront center 2863
A2 Kusu Island 2986
A3 Mount Faber 2766
A1 Santosa 2137
B1 Universal Studios

Singapore
2740

Sourth West A6 Haw Par Villa 2510
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Table A2
Hierarchy structure and all landmarks in the collection (Part II).

City Districts Types Landmarks Image number

New York Manhattan and Brooklyn B1 Brooklyn Bridge 2846
Ellis Island B5 Ellis Island Immigration Museum 2722
Liberty Island B1 Statue of Liberty 2904
Manhattan B1 Carnegie Hall 3287

Chrysler Building 3158
City Hall 3259
Dakota Apartments 2259
Empire State Building 2637
Federal Hall National Memorial 1022
Flatiron Building 3140
Grand Central Terminal 3199
Lincoln Center 3369
Macy's Department Store 3198
New York Public Library 3692
New York Stock Exchange 3319
Plaza Hotel 3397
Radio City Music Hall 3214
Rockefeller Center 3195
National September 11 Memorial 2068

B5 American Museum of Natural History 3447
Metropolitan Museum of Art 3545
Solomon R. Guggenheim Museum 3519
The Morgan Library and Museum 741
The Museum of Modern Art (MoMA) 2218

A6 Central Park 2927
B6 Saint Patrick's Cathedral 2858
B7 Times Square 3086

Staten Island B1 Staten Island Ferry 2937

Beijing Changping B4 Ming Dynasty Tombs 1997
Chaoyang B7 Beijing CBD 2781

B1 Beijing National Stadium 2918
A6 Chaoyang Park 3435

Olympic Green 3202
B7 Silk Street 2935

Chongwen B6 Temple of Heaven 3231
Dongcheng B4 Bell Tower and Drum Tower 3528

B5 National Art Museum of China 3050
National Museum of China 2170

B1 Tiananmen Square 3179
B7 Wangfujing 3278

Xidan 2262
B4 Yonghegong 3680

Haidian A6 Botanical Garden 3312
Old Summer Palace 3485

A3 Fragrant Hills 3628
B7 Zhongguancun 1795

Shunyi A6 Olympic Water Park 3382
Xicheng A6 Beihai Park 3044

B7 Beijing Financial Street 728
B4 Forbidden City 2975
A6 Shichahai 1925

Yanqing Xian B4 Great Wall 2927
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issues include (1) how noise and low quality of mobile cap-
tured images can affect the search performance and (2) under
mobile environment, how to improve efficiency of landmark
image research algorithms. In the near future, we plan to
extend the test collection and related ground truth/perfor-
mance metric to facilitate effective evaluation of region based
or object based landmark image search systems.

Appendix A. Dataset structure

See Tables A1–A3.
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