
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2015

Managing technical debt: Insights from recent
empirical evidence
Narayan RAMASUBBU
University of Pittsburgh

Chris F. KEMERER
University of Pittsburgh

C. Jason WOODARD
Singapore Management University, jason.woodard@olin.edu

DOI: https://doi.org/10.1109/MS.2015.45

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer Sciences Commons, and the Management Information Systems Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
RAMASUBBU, Narayan; KEMERER, Chris F.; and WOODARD, C. Jason. Managing technical debt: Insights from recent empirical
evidence. (2015). IEEE Software. 32, (2), 22-25. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3257

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111754702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MS.2015.45
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

22 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Editor: Jane Cleland-Huang
DePaul University,
jhuang@cs.depaul.edu

Editor: Tore Dybå
SINTEF
tore.dyba@sintef.no

TECHNICAL DEBT refers to mainte-
nance obligations that software teams
accumulate as a result of their actions.
For example, when programmers take a
design shortcut to more quickly roll out
functionality critical to business stake-
holders, they start accumulating mainte-
nance obligations related to the shortcut.
Like � nancial debt, technical debt incurs
interest in the form of additional main-
tenance costs until the debt is fully paid.
Ward Cunningham � rst used the debt
analogy as he re� ected on his product
development experience using object-
oriented programming:

Shipping � rst time code is like going into
debt. A little debt speeds development
so long as it is paid back promptly with
a rewrite. Objects make this transaction
tolerable. The danger occurs when the
debt is not repaid. … Entire engineer-
ing organizations can be brought to a
stand-still under the debt load.1

Cunningham’s re� ections portray
managing technical debt as an optimi-
zation problem. This inspired us to un-
dertake research projects to rigorously
model technical debt and understand its
impact on both software product perfor-
mance and business strategies. Here, we
synthesize the empirical � ndings of our
projects to develop practical insights for
managing technical debt.

Recognizing Trade-Offs
An important � rst step is to recognize
the trade-offs involved in managing
technical debt. Software teams need to
clearly understand both the bene� ts and
costs of technical debt in their speci� c
business environment. For example, a
� rm pursuing an early-to-market busi-
ness strategy might choose to incur
technical debt to speed up product de-
velopment and accelerate customer ac-
quisition. But, if this debt isn’t repaid
in a timely way, its bene� ts might be
eroded by the long-term costs associ-
ated with poor product reliability and
with the dif� culty in meeting customer
demands.

Our research shows that software
teams willing to accumulate technical
debt could speed up functionality de-
ployment in their products by as much
as three times.2 However, they had to
contend with a threefold increase in the
backlog of unresolved errors and a drop
of more than 50 percent in long-term
customer satisfaction scores.

Three Dimensions
to Optimize Technical Debt
Once software teams recognize the spe-
ci� c trade-offs they face, they can move
toward optimizing their debt load by
tracking appropriate metrics and insti-
tuting policies to manage the level of
technical debt within the range they’re

Managing
Technical Debt
Insights from Recent Empirical Evidence

Narayan Ramasubbu, Chris F. Kemerer, and C. Jason Woodard

VOICE OF EVIDENCE

s2voe.indd 22 2/4/15 6:36 PM

Published in IEEE Software, Volume 32, Issue 2, 1 March 2015, Pages 22-25
http://doi.org/10.1109/MS.2015.45

VOICE OF EVIDENCE

	 MARCH/APRIL 2015 | IEEE SOFTWARE � 23

willing to tolerate. Recent research
has outlined how to identify and
measure technical debt for a variety
of programming languages.3,4 To
translate this data into actionable de-
cisions, software teams should map
their technical-debt metrics to three
important dimensions (see Figure 1).

The first dimension is customer
satisfaction needs, which refer to the
extent of demands placed on soft-
ware teams to keep end users satis-
fied. A variety of factors could af-
fect this satisfaction, including the
end users’ intrinsic motivation, the
perceived ease of use, and the per-
ceived benefits of use. When those
three metrics’ values are low, soft-
ware teams must deploy strong trig-
gers for initiating customer adoption
and continued product use. Such
triggers could be faster rollout of the
demanded functionality or enhanced
usability. However, these might
sometimes come at the expense of
not being able to follow recom-
mended standards focused on long-
term design stability. Our research
shows that, all other things being
equal, advancement by a month of
the rollout of an end-user-demanded
functionality could increase cus-
tomer satisfaction by up to 55 per-
cent in the short term.2

The second dimension is the ex-
tent of software reliability demanded
by the business. Our research indi-
cates that technical debt accumu-
lated in enterprise software systems
tends to increase the chance of sys-
tem failures. In examining failures of
enterprise systems at 48 Fortune 500
firms, we found that technical debt
arising from business logic and data
schema customizations that violated
vendor-prescribed design standards
increased the chance of system fail-
ures by as much as 62 percent.4 The
extent to which businesses can tol-

erate such risk can vary; software
teams must carefully consider this
when deciding to accept or avoid
technical debt.

The third dimension is the prob-
ability of technology disruption in
a firm’s environment. We observed
a few cases in which technical-debt-
laden teams successfully wrote off
their debt by substituting newer
technology platforms for older ones
for product development.5 However,
adopting new technologies shouldn’t
be seen as a panacea for technical-
debt problems. Such technologies of-
ten take time to stabilize and might
not immediately be conducive to
the high-reliability operations some
businesses desire.

Eight Scenarios
Figure 2 summarizes our recommen-
dations for the eight scenarios span-
ning the high and low levels of cus-
tomer satisfaction needs, reliability
needs, and the probability of tech-
nology disruption.

When both the reliability needs
and the customer satisfaction needs
are low (the lower-left box in Figure
2), technical debt isn’t a significant
concern. Software teams can con-
tinue their established product devel-
opment processes without any spe-
cial attention toward technical debt.
These teams must invest in debt-
reducing activities only when prod-
uct functionality growth becomes
saturated and no new technology is
available to switch to. Otherwise,
the teams can continue to accumu-
late technical debt without signifi-
cant worry about long-term impacts.
They can simply write off the accu-
mulated technical debt by switching
to any new technological platform as
soon as it’s available.

When the reliability needs are
high and the customer satisfaction

needs are low (the upper-left box
in Figure 2), software teams should
avoid technical debt. These teams
must shun functionality develop-
ment based on newly released fea-
tures of a technological platform un-
til the typical initial wrinkles of the
new technology are ironed out. Our
investigation of the 10-year evolu-
tion of an enterprise software prod-
uct at 69 large client firms showed
that teams that avoided technical
debt by choosing to be late adopt-
ers of functionality had, on average,
about 13 times fewer unresolved er-
rors and about seven times lower
bug-fixing effort expenditures than
teams who incurred technical debt.2
However, if the probability of tech-
nological disruption is high, soft-
ware teams can relax the policy of
being highly selective late adopters
and be open to incurring technical
debt, especially if it helps to solve
tricky performance bottlenecks.
Those teams will still need to invest
in debt-reduction activities until the
new technology matures and is ready
for wider deployment.

Software teams in the remaining
scenarios in Figure 2 can be more

Customer
satisfaction needs

Pr
ob

ab
ilit

y o
f te

ch
no

log
y

dis
rup

tio
n

Re
lia

bi
lit

y
de

m
an

de
d

by
 th

e
bu

si
ne

ss

FIGURE 1. Software teams should map

their technical-debt metrics to these three

dimensions.

s2voe.indd 23 2/4/15 6:36 PM

VOICE OF EVIDENCE

24	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

open to accepting technical debt.
What vary between these scenarios
are the timing and extent of debt-
reduction investments.

Our research shows that when
both the reliability needs and the
customer satisfaction needs are high
(the upper-right box in Figure 2), it’s
optimal for software teams to accu-
mulate technical debt only until their
products have “taken off.” A take-
off indicates that the product has
achieved a critical mass of adopters
who will likely use it throughout its
lifetime. Because this installed base
of customers expect high reliabil-
ity, software teams should aggres-
sively pay off most of the accumu-
lated technical debt. Such a strategy
is particularly apt if the probability

of technology disruption is low, be-
cause it will enhance the product’s
longevity. Aggressively pursuing debt
reduction will help software teams
maintain higher software quality
and continue to add functionality to
keep end users happy. On the other
hand, if technological disruption is
more likely, software teams can re-
duce debt in a more targeted way.
This is because the opportunity ex-
ists to write off technical debt by
switching to the new technology as
soon as its performance stabilizes.

Finally, when the reliability needs
are low and the customer satisfaction
needs are high (the lower-right box
in Figure 2), software teams can be
open to incurring technical debt to
quickly deliver end-user-demanded

functionality. Because the reliability
needs are low, teams can postpone
technical-debt reduction until prod-
uct functionality growth becomes
saturated. Meanwhile, as in other
scenarios, if a new technology plat-
form emerges, software teams can
write off all the accumulated debt
by immediately switching to that
platform.

W e believe a technical-
debt policy must be
based both on the busi-

ness context of a firm and on the
technological environment in which
the firm operates. Completely avoid-
ing technical debt is prudent only
when the probability of technologi-
cal disruption is low, reliability needs
are high, and prolonging an existing
product’s life is a high priority. We
recommend that software teams opti-
mize the timing and extent of techni-
cal-debt accumulation and reduction
on the basis of the three dimensions
described in this article.

Our research also highlights three
main areas in which the empirical
evidence is suggestive, but significant
questions remain unanswered.

First, what other aspects of the
business environment should influ-
ence a software team’s technical-
debt policy? Our qualitative case
studies explored the role of resource
munificence, technical capability,
and the ability to transfer debt to
other members of a firm’s busi-
ness ecosystem.5 Unsurprisingly, we
found that firms with abundant re-
sources tended to take on less debt
and pay it off faster than firms with
scarce resources. But this finding is
hard to interpret normatively. Per-
haps firms with more resources
should take on more debt because
they can more easily pay it off later

Hi
gh

If the probability of technology disruption is low:
• Avoid technical debt.
• Focus product development on selectively
 choosing and con�guring modules of a
 technology platform or vendor’s package.
• Pay off most accumulated debt.
If the probability of technology disruption is high:
• Avoid technical debt, but you needn’t be
 highly selective in choosing vendor
 package con�gurations.
• Invest in targeted debt-reduction
 activities only if product growth
 saturates and new technology is
 immature.
• Switch to new technology once its
 performance stabilizes, and write off
 any remaining debt.

Lo
w

Re
lia

bi
lit

y
ne

ed
s

If the probability of technology disruption is low:
• Technical debt is a concern only when
 product functionality growth is saturated.
• To prolong product life, invest in targeted
 debt-reduction activities.
If the probability of technology disruption is high:
• Technical debt generally isn’t a concern.
• Switch to new technology as soon as it’s
 available, and write off any remaining debt.

If the probability of technology disruption is low:
• Cautiously incur technical debt until a
 critical mass of end users have adopted
 the product.
• Debt reduction is a high priority after
 takeoff; invest aggressively in debt-reducing
 efforts to prolong product life.
• Pay off most accumulated debt.
If the probability of technology disruption is high:
• Be open to incurring technical debt to
 quickly deliver end-user functionality.
• Debt reduction is a high priority after
 takeoff; invest in debt-reduction activities
 in a targeted way to improve quality.
• Switch to new technology once its
 performance stabilizes, and write off any
 remaining debt.

If the probability of technology disruption is low:
• Be open to accumulating technical debt to
 quickly deliver end-user functionality.
• When functionality growth is saturated,
 invest in debt-reduction activities in a
 targeted way to prolong product life.
If the probability of technology disruption
is high:
• Be open to accumulating technical debt to
 quickly deliver end-user functionality.
• Debt reduction isn’t a high priority.
• Switch to new technology as soon as it’s
 available, and write off any remaining debt.

HighLow Customer satisfaction needs

FIGURE 2. Recommendations for managing technical debt.

s2voe.indd 24 2/4/15 6:36 PM

VOICE OF EVIDENCE

	 MARCH/APRIL 2015 | IEEE SOFTWARE � 25

(much as wealthy individuals take
on debt to �nance higher-yielding in-
vestments). We also found that more
technically capable software teams
tended to be more debt-averse. But
again, this doesn’t imply that good
developers shouldn’t take shortcuts
for sound business reasons.

The ability to transfer debt raises
even subtler issues, akin to the problem
of moral hazard in economics. If you
can shift your debt burden to some-
one else (for example, your customers
or partners), should you? The answer
might depend on the long-term conse-
quences (for example, to your reputa-
tion or to your platform’s growth).

Second, we distinguish between
modular and architectural mainte-
nance. The former results in code
changes localized in software mod-
ules; the latter results in changes dis-
tributed across module boundaries.
Our research on enterprise software
packages indicates that these two
types of maintenance undertaken
by client �rms to reduce technical
debt have different effects on sys-
tem failures, and cause unintended
side effects, such as con�icts with
future vendor releases.4 Further in-
vestigation is needed to understand
what debt-reduction strategies are
the most effective in different client-
speci�c environments.

Finally, how does adding or re-
ducing technical debt affect a soft-
ware product development project’s
evolution? We’ve observed that high-
debt projects tend to increase rap-
idly in functionality, but then reach
a plateau, whereas low-debt projects
start off more slowly but ultimately
achieve higher functionality.2 How-
ever, a software system isn’t a bal-
ance sheet; technical debt is an evoc-
ative metaphor for a more complex
underlying reality. Taking on tech-
nical debt means incurring future

maintenance obligations, but might
also mean taking a fundamentally
different path in exploring the sys-
tem’s design space. That path might
turn out to be a shortcut, as when
a technology disruption enables a
team to switch to a new platform
and effectively write off its debt. But
it might also be a dead end, where
efforts to restructure a debt-laden
platform never succeed.5

References
	 1.	 W. Cunningham, “The Wycash Portfolio

Management System,” Addendum to Proc.
Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA
92), 1992, pp. 29–30.

	 2.	 N. Ramasubbu and C.F. Kemerer, “Man
aging Technical Debt in Enterprise Soft
ware Packages,” IEEE Trans. Software
Eng., vol. 40, no. 8, 2014, pp. 758–772.

	 3.	 B. Curtis, J. Sappidi, and A. Szynkarski,
“Estimating the Principal of an Applica-
tion’s Technical Debt,” IEEE Software,
vol. 29, no. 6, 2012, pp. 34–42.

	 4.	 N. Ramasubbu and C.F. Kemerer, “Tech-
nical Debt and the Reliability of Enterprise

Software Systems: A Competing Risks
Analysis,” 2014; http://ssrn.com/abstract
=2523483.

	 5.	 C.J. Woodard et al., “Design Capital
and Design Moves: The Logic of Digital
Business Strategy,” MIS Q., vol. 37, no. 2,
2013, pp. 537–564.

NARAYAN RAMASUBBU is an assistant pro-
fessor of business administration at the University
of Pittsburgh. Contact him at narayanr@pitt.edu.

CHRIS F. KEMERER is the David M. Roderick
Professor of Information Systems at the Univer-
sity of Pittsburgh. Contact him at ckemerer@
katz.pitt.edu.

C. JASON WOODARD is an assistant professor
of information systems at Singapore Management
University. Contact him at jwoodard@smu.edu.sg.

stay connected.stay connected.

| IEEE Computer Society
| Computing Now

| youtube.com/ieeecomputersociety

| facebook.com/IEEE ComputerSociety
| facebook.com/ComputingNow

| @ComputerSociety
| @ComputingNow

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

s2voe.indd 25 2/4/15 6:36 PM

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2015

	Managing technical debt: Insights from recent empirical evidence
	Narayan RAMASUBBU
	Chris F. KEMERER
	C. Jason WOODARD
	Citation

	tmp.1490258691.pdf.mhd4z

