
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2013

Understanding Sequential Decisions via Inverse
Reinforcement Learning
Siyuan LIU
Carnegie Mellon University

Miguel ARAUJO
Carnegie Mellon University

Emma BRUNSKILL
Carnegie Mellon University

Rosaldo ROSSETTI
Universidade do Porto

Joao BARROS
Universidade do Porto

See next page for additional authors

DOI: https://doi.org/10.1109/MDM.2013.28

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms

Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIU, Siyuan; ARAUJO, Miguel; BRUNSKILL, Emma; ROSSETTI, Rosaldo; BARROS, Joao; and KRISHNAN, Ramayya.
Understanding Sequential Decisions via Inverse Reinforcement Learning. (2013). Mobile Data Management (MDM), 2013 IEEE 14th
International Conference on. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3474

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111754351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MDM.2013.28
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Siyuan LIU, Miguel ARAUJO, Emma BRUNSKILL, Rosaldo ROSSETTI, Joao BARROS, and Ramayya
KRISHNAN

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/3474

https://ink.library.smu.edu.sg/sis_research/3474?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages

Understanding Sequential Decisions via Inverse
Reinforcement Learning

Siyuan Liu 1, Miguel Araujo 1, Emma Brunskill 1, Rosaldo Rossetti 2, Joao Barros 3, Ramayya Krishnan 1

1Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, 15213. PA, USA.
2LIACC, Departamento de Engenharia Informatica, Faculdade de Engenharia, Universidade do Porto,

Rua Dr. Roberto Frias, 4200-465. Porto, Portugal
3Instituto de Telecomunicacoes, Faculdade de Engenharia, Universidade do Porto,

Rua Dr Roberto Frias, 4200-465. Porto Portugal

Abstract—The execution of an agent’s complex activities, com-
prising sequences of simpler actions, sometimes leads to the clash
of conflicting functions that must be optimized. These functions
represent satisfaction, short-term as well as long-term objectives,
costs and individual preferences. The way that these functions are
weighted is usually unknown even to the decision maker. But if we
were able to understand the individual motivations and compare
such motivations among individuals, then we would be able to
actively change the environment so as to increase satisfaction
and/or improve performance.

In this work, we approach the problem of providing high-
level and intelligible descriptions of the motivations of an agent,
based on observations of such an agent during the fulfillment
of a series of complex activities (called sequential decisions in
our work). A novel algorithm for the analysis of observational
records is proposed. We also present a methodology that allows
researchers to converge towards a summary description of an
agent’s behaviors, through the minimization of an error measure
between the current description and the observed behaviors.

This work was validated using not only a synthetic dataset
representing the motivations of a passenger in a public trans-
portation network, but also real taxi drivers’ behaviors from their
trips in an urban network. Our results show that our method is
not only useful, but also performs much better than the previous
methods, in terms of accuracy, efficiency and scalability.

I. INTRODUCTION

How people make sequential decisions? And how can we
observe such decision behaviors and understand the undergo-
ing process? Based on such a model, we can even retrieve
people’s preference. Researchers have been exploring general
machine learning topics such as learning from demonstration
and supervised learning with a clear goal in mind: we want
to build systems that, based on real-world data, accomplish
tasks as efficiently and effectively as possible. We are building
systems that try to mimic human decisions in settings where
we do not fully understand what is important and guides our
own actions. Examples include tasks such as “driving well”
[1], controlling helicopters [2], manipulation of objects by
robots and other similar problems such as pole balancing and
equilibrium. These complex activities have in common the
need for constant awareness of the environment and the fact
that they are composed of smaller and simpler actions taken
consecutively. Even though we do not have a clear under-
standing of our decision process whereas performing these

tasks, we are building systems that can improve the decision
understanding by demonstrations. At the same time, some
fields of Computer Science (e.g. Data Mining and branches of
Artificial Intelligence) specialize on the knowledge discovery
process, whereas psychology draws from the knowledge of
other fields to help explain human behaviors. So the pertinent
question is, given the amount of available behavior data
regarding the fulfillment of activities, what if we could utilize
these observations to accurately describe and reason about the
decision-making process? Therefore, being able to describe
a reward function in use plays a vital role in understanding
what we observe. Discovering a description would allow us to
explain many complex animal and human decisions. We would
know how bees weigh different factors like nectar ingestion,
flight distance, time and risk from wind and predators [3]. It
would be much more interesting and challenging if we were
able to characterize urban passengers or taxi drivers based on
their mobility patterns, understanding how they weigh factors
such as travel time, travel cost or travel time variance, etc. [4],
[5], [6], [7], [8], [9], [10].

The challenges are as follows. First, human descriptions are
often at different granularities, whereas computers struggle
to ascertain the relevance of the relations that they identify.
Deciding on the correct granularity and on what constitutes
a piece of knowledge small enough to be understood by a
domain expert, is hard to be incorporated in practice. Second,
the fact is that the increased performance our systems are
achieving does not always translate into a better comprehen-
sion of the domain at hand. Although we are able to mimic
behavior and performance, we still lack understanding and
are unable to explain the decisions of animals and humans
when performing complex tasks, especially when there exist
sequential decisions.

In this paper, we provide a methodology for describing
the sequential decisions of individuals (illustrated in Figure
1). We present a new Linear Programming formulation for
the Inverse Reinforcement Learning problem which enables
domain experts to compare how different reward functions fit
the observed behaviors. Based on both synthetic and real world
datasets, our results show that it is possible to recover a linear
combination of the reward functions which indicates an agent’s
preference. The applicability of the presented algorithm to

Fig. 1: Overview of Understanding Sequential Decisions

large datasets is also demonstrated. Furthermore, we compare
our method with two latest related baseline methods via
real-life taxi drivers’ behavior logs. The results show that
our method outperforms the previous methods in terms of
accuracy, efficiency and scalability.

In summary, our contributions are:
1) We propose an interesting problem: identifying the pref-

erence from understanding sequential decisions and then
we formalize it as an Inverse Reinforcement Learning
problem.

2) We design a novel Linear Programming formulation
to solve the problem which can interpret the reward
functions describing the observed behaviors.

3) We illustrate applications of our method by well-
designed case studies and evaluate it with baseline
methods by large scale real-life taxi drivers’ behavior
logs. Interesting findings from our study are finally
provided.

The remainder of this paper is organized as follows. Section
II introduces related work in the area whereas Section III
describes the notation used in this paper and provides some
background in Markov Decision Processes and the Inverse
Reinforcement Learning problem. Section IV formalizes our
problem. Section V shows a new Linear Programming formu-
lation and Section VI shows how the strengths of the previous
formulation can be used to form a policy that practitioners
should follow. Sections VII and VIII describe two experiments
that illustrate how our proposals can be applied to the real
world. Section IX discusses our results and points out some
ideas for future work.

II. RELATED WORK

Understanding user decisions is a problem gaining increased
interest in today’s research. A big part of human-computer
interaction involves studying user satisfaction, human factors

and psychology and, more generally, the behavior of users
when using a computer. Similarly, understanding user deci-
sions browsing the Internet is essential to improve targeted
advertising and PageRank algorithms. Mining behavior pat-
terns has been used to discover users that share similar habits
[11] and using sequential patterns to learn models of human
behavior has been employed in lifestyle assistants to increase
the life quality of elderly people [12].

Modeling decisions as Markovian processes1 is a commonly
used tool to simplify the representation of the knowledge of
the decision maker (recent studies have statistically shown that
Web users do not follow this property [13]). Section 3 provides
more details on Markov Decision Processes (MDP) and their
role in identifying the optimal decision in environments known
to the decision maker that provide reinforcements.

On the other hand, understanding human behavior requires
finding the reward function motivating the decisions. Inverse
Reinforcement Learning (IRL), as first described by Russel
[14], deals with the problem of identifying the reward function
being optimized by an agent, given observations of its activity.
The original algorithms of Ng and Russel [3] are detailed in
the next section, but other algorithms have been proposed to
tackle this task. Ratliff, Bagnell and Zinkevich approached
this issue as a maximum margin structured prediction problem
over a space of policies [15]. They argue that the Maximum
Margin Planning approach allows the demonstration of poli-
cies from more than a single MDP, demonstrating examples
over multiple feature maps (their translation of MDP) and
different start and goal states. Deepak Ramachandran and Eyal
Amir combine prior knowledge and evidence from the expert’s
actions to derive a probability distribution over the space of
reward functions [16]. They use the actions of the expert to
update a prior on reward functions using a Markov Chain
Monte Carlo [17] algorithm. In some recent publications,
Brian Ziebart presented a maximum entropy approach [18]
which has been successfully applied to different problems,
such as route prediction given a driver’s past information,
destination prediction given incomplete journeys [19] and
mouse movement prediction [20]. Rothkopf et al. stated the
problem of inverse reinforcement learning in terms of prefer-
ence elicitation, resulting in a principled (Bayesian) statistical
formulation [21]. More details in this category can be found
in reviews in the literature [22].

III. PRELIMINARIES

A. Markov Decision Processes

Markov Decision Processes (MDPs) [23] provide a math-
ematical framework for modeling the decision-making pro-
cess in an environment known to the decision maker. The
environment is represented as a state space S and, on each
state, the decision maker may choose an action a from a
set of actions available in the current state. Upon selection
of an action, the process responds with a transition into a

1In a Markovian process decisions are assumed to be made based on the
current state, not on the sequence of events that preceded it.

new state s′, according to a state transition function Pa(s, s′).
Therefore, the next state s′ depends on the current state s and
on the chosen action a, respecting the Markov Property. The
agent also gets a corresponding reward Ra(s, s′). This reward
function might also be characterized simply as R(s, s′) or even
R(s), depending on exactly how the problem is modeled. The
main problem in a MDP is finding an optimum policy for
the agent: a function π : S → A that maximizes a cumulative
function of the rewards, typically the expected discounted sum
over a potentially infinite horizon,

∞∑
t=0

γtRat(st, st+1), (1)

where γ is the discount factor and usually satisfies 0 ≤ γ <
1.

In this paper, we use the following notation:
• S is a set of states.
• A represents the set of actions applicable to the different

states.
• Pa(s, s

′) represents the transition probability from state
s to state s′, when action a is applied.

• γ ∈ [0, 1[is the discount factor.
• R(s, s′) represents the reward associated with the transi-

tion from s to s’.
• π is defined as any map π : S → A.
Pπ(s) will be used to represent the transition probability

matrix corresponding to the application of policy π.
The value function for a policy π at any state s represents

the expected cumulative reward from state s and is given by

V π(s1) = E[R(s1) + γR(s2) + γ2R(s3) + ...|π], (2)

or alternatively, V π(s1) =

∞∑
t=1

γt−1R(st), where {s1, s2,

s3, ...} is the state sequence when we execute policy π starting
from state s1. The goal is thus finding a policy π so that V π(s)
is maximized. It can be shown that there exists at least one
optimal policy such that V is simultaneously maximized for
all s ∈ S [3], [24], [25].

The optimum policy can be expressed in terms of the value
function as follows:

π(s) ∈ argmax
a∈A

∑
s′∈S

Pa(s, s
′)(R(s, s′) + γV π(s′)), (3)

In each state, we apply the action with the biggest expected
reward, taking into consideration the probability distribution
of states to which it might lead us. Similarly, the action-value
function for policy π, Qπ(s, a), is defined as the value of
taking action a in state s.

A fundamental property of value functions used throughout
reinforcement learning and dynamic programming is that they
satisfy particular recursive relationships. For any policy π and
any state s, the following consistency condition holds between
the value of s and the value of its possible successor states.

First identified by Bellman [23], these are called the Bellman
Equations:

V π(s) =
∑
s′∈S

Pπ(s)(s, s
′)[R(s, s′) + γV π(s′)] (4)

Qπ(s, a) =
∑
s′∈S

Pa(s, s
′)(R(s, s′) + γV φ(s′)) (5)

The Bellman Equations average over all the possibilities,
stating that the value of the start state must equal the (dis-
counted) value of the expected next state, plus the reward
expected along the way [25].

B. Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL), as first described by
Russel [14], deals with the problem of identifying the reward
function being optimized by an agent, given observations of
its activity. The goal of IRL is then to determine the reward
function that an agent is optimizing, given observational
records of an agent’s decisions over time (behavior), a model
of the physical environment (which might need to include
the agent’s body) and a measurement of the sensory inputs
available to the agent.

In general, we can see IRL as the dual problem of un-
supervised reinforcement learning, whose task is to ascertain
the optimum policy. However, this connection is certainly
not bijective as a given policy can be optimal under several
different reward functions (e.g. R = 0 is a trivial solution which
makes any policy optimal).

More formally, considering the notation used for describing
MDPs, we wish to find the set of possible reward functions
R such that π is an optimal policy in the MDP defined by
(S,A, Pa, γ, R).

The original algorithms for IRL: In 2000, Andrew Ng
& Russel proposed a series of algorithms for the inverse
reinforcement learning problem [3]. They translated the IRL
problem to a Linear Programming problem with constraints
leading to the optimal condition. Three cases were analyzed
in the original paper:

1) IRL in Finite State Spaces;
2) Linear Function Approximation in Large State Spaces;
3) IRL from Sampled Trajectories.
Under a finite state space, the reward matrix R can be

obtained 2. However, in the context of our problem of under-
standing behavior, we consider simply obtaining the reward
matrix to be unsatisfactory, because it is not intelligible. In
order to overcome this difficulty, one would need to analyze
the reward matrix in order to obtain higher level information,
understandable by humans. Given the possible size of the
reward matrix, we consider this to be a significant setback
of the approach as this problem is likely as difficult as the
original one.

2They considered the reward to be a function of each state (R(s)), and not
part of the transition between two different states (R(s1, s2)). The reward
function must then satisfy (Pπ(s) −Pa)(I − γPπ(s))

−1R � 0, where � is
defined as non-strict vector inequality.

Moreover, in practice, existing MDPs are often either infi-
nite (e.g. the state description contains a time component), or
our observations of the optimum policy do not fully encompass
all the possible states (i.e. given this policy, not all states are
accessible from the initial state and thus are not observable).
In order to solve these two problems, Ng & Russel proposed
a linear approximation of the reward function, expressing R
as

R(s, s′) = α1φ1(s, s
′) + α2φ2(s, s

′) + ...+ αnφn(s, s
′) (6)

Each function φi would represent a possible reward function
on the transition from s to s’. Due to the linearity of the reward
function, V π is also linear and given by

V π = α1V
φ1

1 + α2V
φ1

2 + ...+ αnV
φ1
n (7)

Both the infinite nature of the state space and the lineariza-
tion of the reward function might render this problem without
satisfiable solutions, leading to its relaxation. In Ng & Russel’s
algorithm, the idea is that we should both respect as many
constraints as we can and simultaneously look for the reward
function which would penalize the agent the most in case he
deviated from the observed policy. Please note that V π is now
linearized and the αs are the Linear Programming variables.

IV. UNDERSTANDING BEHAVIOR

Our actions can be portrayed as an optimization problem.
We are constantly trying to maximize our own reward function
which involves physiological concerns, satisfaction and short
and long-term goals and objectives. As a consequence, our
decisions define a policy and our focus is on the analysis of
such actions of the decision maker (also called agent).

However, more than learning the reward function used, we
want to be able to synthesize the information it carries. If
the complex and often stochastic reward function is simplified
to an understandable representation, then the IRL model
later proposed can be used to extract knowledge and justify
behavior, increasing the existing knowledge of the domain at
hand.

As an example, consider the bee foraging problem. We
are not interested in replicating the bee decisions, but rather
interested in creating models which might help us understand
their behavior so that beekeepers can modify the environment
in order to increase production.

Although not part of the original goal, the results obtained
from the linearization of the reward function are a step towards
a better comprehension of the underlying behavior. Through
the analysis of the resulting αs one can determine whether
a particularly simple reward function has either a positive or
negative impact on the agent’s decision process. Therefore, the
proposed formulations (see Ng & Russel, 2000) allow us to
have a rough idea on whether a given reward function might
be part of the agent’s decision function or not.

On the other hand, it would be interesting if we could
quantify the relative importance that the agent ascribes to

each individual reward function. In practice, we would like
the values of the αs to be meaningful when compared. For
two reward functions i and j, our objective is to guarantee that
the reward function i has a greater importance for the agent
than reward function j, whenever αi > αj . Unfortunately,
importance is often volatile and heavily dependent on the
circumstances. This requires reward functions to be even
more complex and the reward functions hypothesis space to
grow significantly. Furthermore, importance is often difficult
to measure analytically when using real data and the difficulty
to validate the proposed models rises accordingly.

Finally, dependency between reward functions is difficult
to ascertain. Two reward functions, although significantly
different in nature and objective, might share similar optimum
policies. This leads this and other models to believe the agent
is valuing a specific reward function when, in fact, it is valuing
a completely different one that shares the same actions. A clear
and overly exaggerated example: in a MDP representing a city,
the movements of a railfan3 are certainly very similar to those
of many passengers on their way to work. Their reasoning to
take that path is very different but these differences cannot
be captured by our observation and their motivation might
be wrongly identified. Further research on metrics to identify
similarities between reward functions is necessary, maybe
indirectly through the analysis of their equivalent optimum
policies.

Problem Statement

We define the agent’s movements as a set of transitions in
a Markov Decision Process (MDP). We would like to find the
reward function (R) that forces the resulting optimum policy
to more closely match the observed behavior (O), whereas
being described as a linear combination of different vectors.
Therefore, the problem is finding the set of αs that best fit the
agent’s process, where each φi is a simple reward function
which the domain expert considers relevant for this particular
problem, i.e.

R = α1φ1 + α2φ2 + ...+ αdφd (8)

Let πO be the observed policy and πR the optimal policy
corresponding to the reward function R, then R shall be such
that minimizes the number of states in which both policies
differ, i.e.

minimize
∑
s∈S

[πR(s) 6= πO(s)]. (9)

The formalization that follows is specified in [26], where
the interested reader can find more details.

V. A NEW LINEAR PROGRAMMING
FORMULATION

From our problem statement, we want to find R that is a
linear combination of simpler functions and we want R to

3Also called rail buff, railway enthusiast or railway buff, is a person
interested in the recreational capacity in rail transport.

be as close as possible to the observed behavior (minimizing
the number of differences). πO is the observed policy (e.g.
decisions in each state) and πR is the policy corresponding to
the reward function we are describing.

Remembering the definition of πR(s) in (3), a simple
substitution in (9) leads to

minimize
∑
s∈S

[

argmax
a∈A

∑
s′∈S

Pa(s, s
′)(R(s, s′) + γV π

R

(s′))

6=
πO(s)]

(10)

Given that the optimal action πR(s) is a maximum (as given
by (3)), for πO and πR to have the same value, πO must be
such maximum. Therefore, ∀s ∈ S, a ∈ A:∑

s′∈S
PπO (s, s′)(R(s, s′) + γV π

R

(s′))

≥∑
s′∈S

Pa(s, s
′)(R(s, s′) + γV π

R

(s′))

(11)

We want this constraint to hold for the maximum number
of states as possible; this is equivalent to solving the following
mixed-integer Linear Programming problem:

minimize
∑
s

Cs

such that:
0 ≤ αi ≤ 1∑
s′

PπO (s, s′)(R(s, s′) + γV π
R

(s′))−

−
∑
s′

Pa(s, s
′)(R(s, s′) + γV π

R

(s′)) +M ∗ Cs ≥ 0

where Cs ∈ {0, 1} is a binary variable and M is an arbi-
trarily large number.

∑
s

Cs denotes the number of constraints

which could not be respected. In our terminology, the number
of states which cannot be explained with our solution.

In this Linear Programming formulation, the linear variables
are the αs because we can substitute:

R(s, s′) + γV π
R

(s′)

=

(α1(φ1(s, s
′) + γV φ1(s′)) + ...+ αn(φn(s, s

′) + γV φn(s′)))

A. Limiting the values of the αs

Even though this formulation is able to identify whether a
specific reward function might play a part on the observed
behavior, the ability to properly relate the proposed reward
functions(φi) is missing. This can be achieved with the ad-
dition of a new constraint which also forces the existence of
non-null rewards. ∑

αi = 1 (12)

This new constraint drives the solution space away from
binary solutions (αi either 0 or 1), yet might make the model
disregard reward components whose contribution to the real
reward function is very small.

B. Normalization to allow relative comparison

Given that we are trying to ascertain the relative importance
attributed to each reward function, relative values of the αs
are important. As such, normalization of the reward function’s
output is necessary in order to maintain correct equivalence.
We opted for a simple z-score normalization over the φ
functions, each one being transformed according to:

φ′(s) =
φ(s)− φ(s)

σφ
(13)

VI. UNDERSTANDING SEQUENTIAL DECISIONS

The advantage of the MILP formulation over the original
Linear Programming formulation is that more feedback is
produced. Given a set of reward functions, not only is the
number of violated restrictions asserted, but the user is also
able to find out exactly what state-action pairs are being
violated in the MILP solution. Thus the user is then able
to use the domain knowledge to add a new reward function
to the reward functions set. Hence we are able to extract a
methodology for behavior understanding.

First, the environment and the agent’s decisions must be
translated as a Markov Decision Process. This implies defining
the state space, possible actions on each state and correspond-
ing transition probabilities between states.

A correct definition of the MDP is independent of the
particular agent to be analyzed and should be as complete
as possible. Simplifying (reducing) the state space is essential
to increase performance, but the state space chosen impacts
the reward functions that can be implemented.

Second, using the observational records, the agent’s deci-
sions are obtained from the activity log, an observation of the
agent’s movements. These are translated as movements in the
MDP and define a set (Si, Ai), denoting that the agent applies
action Ai when on state Si. Ambiguities might arise whereas
parsing the raw data from the logs. In that case, one must
consider whether the state space needs to be redefined or if
these can be attributed to observational error.

Third, an initial reward set of simple reward functions is
created. These are functions which the domain expert believes
might be part of the agent’s reward function. A MDP solver
is then applied to each function in the reward set, obtaining
the corresponding Value Functions.

The MILP algorithm is applied, using all the previously
obtained information (the defined MDP, agent decisions and
Value Functions) and outputting the set of αs, the global error
ε and a set of violating states. The global error represents the
percentage of states that can be explained with the currently
defined reward functions. It is compared to the pre-defined
threshold (representing a percentage of the states that we
wish to cover) and either a new reward function is defined
or computation may end.

Finally, in order to define a new reward function, the expert
uses the feedback provided by the MILP algorithm. Is the
global error acceptable? Can it be attributed to artifacts in the
data? Why are functions in the reward set not able to describe
the behavior in some of the states? After it has been defined,
the value function is obtained from the MDP solver and a new
iteration of the process is performed.

A. Complexity analysis

We consider the definition of the Markov Decision Process
and the definition of the agent’s decisions to be a process
external to the algorithm, as it involves parsing environment
description files and activity logs, which may be defined in
many different formats.

MDPs can be solved through Linear Programming or Dy-
namic Programming, with the later formulation being the most
common. Common value and policy iteration methods rely
on the existence of a discount factor to converge to optimal
solutions. On the other hand, if the activity is clearly limited
and we do not wish to apply a discount factor to our MDP
(i.e., we want to set γ = 1 for the duration of the activity), we
can still find optimum solutions by guaranteeing that the MDP
is acyclic. In most scenarios, this can be easily done through
the introduction of a time component and the MDP is easily
solvable using dynamic programming. If each action leads to
a state transition in which the time component is higher in the
destination state than in the source state, then we are dealing
with an acyclic graph and the dynamic programming approach
runs in polynomial time. In this case, the time complexity is
O(|S| ∗ |A|).

On the other hand, 0-1 integer programming is one of Karp’s
21 NP-Complete problems [27]. However, integer programs
with a constant number of variables may be solved in linear
time as a LP-type problem 4 [28] [29]. This may be solved by
a combination of randomized algorithms in an amount of time
that is linear in the number of elements defining the problem,
and subexponential in the dimension of the problem.

Finally, the number of iterations necessary to reach a global
error below our pre-defined threshold depends on the reward
functions proposed and, therefore, cannot be estimated.

B. Automatically finding better reward functions

The problem of understanding behavior is that we are not
simply interested in replicating it, we rather need the reward
functions to be meaningful and applicable to the particular
domain. This implies that having a computer program dictate
an error-free reward function is not useful at all, even though
it is possible. On the other hand, computers are able to tune
the reward functions given. More specifically, they are able
to test whether slight variations of the reward functions might
better explain the observed behavior (i.e. reduce the error).
Each reward function R in the reward set can be adapted
through a function similar to the following:
αi ∗Ri = αi0 ∗R+ αi1 ∗R2 + αi2 ∗ ln(R) + αi3 ∗ eR

4A.k.a. generalized linear program.

This new reward function can be tested in place of the
original and feedback regarding these αs can be given to the
user whenever they are different from 0.

VII. CASE STUDY I - SYNTHETIC DATA
In order to correctly assess the ability of the algorithm

to determine the original reward function, a small test was
conducted on a synthetic data setup. We considered the
problem of understanding passenger choices in their individual
travels. Several different means of transportation are available
in today’s urban environment from buses, metros and taxis
to individual transportation such as cars and walking. In this
study, we restricted the study to buses, taxis and walking.

Passengers are driven by distinct desires: they might want
to minimize monetary cost, minimize time, maximize comfort,
minimize outdoor exposure, minimize travel time variance,
minimize distance traveled, maximize the number of touristic
landmarks they see, etc. By understanding how passengers
value each individual function, city planners would be able to
make more informed decisions and route navigation software
would be able to provide travelers with better recommenda-
tions.

A B

E F

C D

G H

I J K L

M N O P

Fig. 2: Network layout used

A. Experimental setup

A small but densely connected synthetic network was
modeled as a Markov Decision Process. The network layout
allowed different possibilities between the chosen origin - des-
tination pair, maximizing the number of decisions individual
travelers may face. In order to reduce the state space, each state
S is characterized by the passenger’s current location. Other
state descriptions are possible and a more comprehensive one
would allow for different reward functions to be created (e.g.
a state which included the total money spent would allow the
creation of a reward function establishing the fastest route
up to 2 monetary units). Both location and rewards were
considered to be discrete. Figure 2 shows the structure of the
network used. Nodes A and P are the origin and destination,
respectively.

On each state, the passenger must select an action a,
corresponding to a particular mode of transportation. The
effect of the selection is determined by a function Pa(s, s

′)
which indicates the probability of transitioning from state s
to state s’. In this specific setup, we consider transitions to
be deterministic and thus always leading to the same state.
Nevertheless, more than one action corresponding to a given
mode of transportation might be possible in a given state (e.g.
two different walking directions). Figure 3 shows the possible

movements when using the Taxi, Bus or Walking. These
connections were selected so that different reward functions
generate different policies.

A B

E

C

F

D

G H

I J K L

M N O P

(a) Taxi

A B

E

C

F

D

G H

I J K L

M N O P

(b) Bus

A

E F

B C D

I J

G H

M

K

N O P

L

(c) Walking

Fig. 3: Available connections per mode of transportation

A

F

B DC

K

P

E

J

G H

I L

M N O

Fig. 4: Observed behavior

It was considered that every connection (edge) has a travel
distance of 1. Walking takes 10 time units per transition, taxis
take 1 time unit and buses take 2 time units. Additionally, taxis
charge 3 monetary units per transition, whereas buses charge
2 monetary units regardless of the distance transversed.

B. Observed behavior

The observed behavior synthetically created can be de-
scribed by Figure 4. The observed behavior also includes the
action selected in each state, but it was not included in the
picture for simplification purposes.

C. Reward functions

The proposed methodology was applied to this problem and
the original reward function was identified after four simple
reward functions were proposed. Due to space restrictions, the
iterations and a complete description of the reward functions
could not be included. Nevertheless, the four reward functions
considered included minimizing travel time, minimizing travel
distance, minimizing travel cost and a forth reward function
that applied a bias based on the distance to a node in the
network. In this example, the reward function represents a
safer region in the network.

D. Results and Analysis

The reward function of the presented example was created
based on a linear combination of two simple reward functions.
Given that two of the proposed reward functions matched the
two functions in the observed behavior, the MILP formulation
was able to completely obtain the original reward function.

However, it might not always be the case, as a linear com-
bination of the reward functions is not equivalent to a linear
combination of the expected values, which is what the MILP
formulation uses. We were able to observe that the feedback
from the methodology iterations contributed to discovering the
original function.

As a further test to this formulation, we wanted to test if the
formulation was able to recover the original (single) reward
function when presented with several possibilities. Table I
shows the results of these tests. The numbers represent the
output of the MILP formulation (i.e. the importance of the
MILP formulation considering each function to be). In the
first column we can see which function is in fact used, and
also the the formulation is usually able to recover the original
function when a good guess is provided.

Function αtime αcost αdistance αsafety
Time 1 0 0 0
Cost 0 1 0 0
Distance 1/3 0 16/27 2/27
Safety 0 0 0 1
Cost + Safety 0 1/2 0 1/2

TABLE I: Inverse Reinforcement Learning on the simple
reward functions

Note that the IRL is often able to determine the original
reward function. Possible variations are due to the fact that
slightly different reward functions might also explain the ob-
served behavior; it shall be noted that all the answers represent
an error of 0 when compared with the original function. The
second (least important) term of the minimization function
tries to penalize deviations from the observed behavior, but that
does not imply that we are closer to the real reward function.

VIII. CASE STUDY II - REAL DATA

This case study was developed using GPS positioning
records obtained from 500 taxicabs in a big city of China,
between 01-09-2009 and 30-09-2009. We wish to assert what
reward functions better characterize the taxi driver’s move-
ments inside the city [4], [30], [31].

In a situation without passengers, taxi drivers need to decide
between several alternatives regarding their next destination.
In general, two actions are available - either waiting for
passengers at the current location or driving along a nearby
road.

In similar situations, individual driver’s options are distinct.
As an example, individual preference for a region of the city or
knowledge of long-course-train schedules impact their choices.
It shall also be noted that taxi drivers are not simply maxi-
mizing profit, as some of their actions indicate otherwise: they
usually finish their shift earlier when they already earned above
average, their average working time varies, some penalize late
working hours higher than others, etc. The reward function
they use is not simple [32].

We consider taxi drivers are in equilibrium, which means
that their actions are already optimum considering the reward

function they use. In MDP terms, they follow the optimum
policy and are not exploring different possibilities but rather
are always selecting what they believe is best.

The MDP states and transitions were created according to
the data available and 12 taxi drivers (with plenty of data
points) were chosen for this study. The movement of these
taxi drivers were analyzed and their paths were considered as
12 different policies in our MDP.

Three different reward functions were implemented: mini-
mize travel distance, minimize idle time and maximize number
of passengers. These are vectors along which we intend
to classify individual behavior when taxi drivers have no
passengers to transport. Therefore, we wish to express the
behavior R by Equation 14 below.

R = α1(travel distance) + α2(idle time)

+ α3(number of passengers) (14)

A. Experimental setup
Different sources of information were merged to produce

this work. A shapefile5 of the whole city region was provided
along with sequences of road segments tagged with taxi identi-
fiers and timestamps representing taxi movements. The whole
city’s shapefile was composed of 264 425 road segments; this
analysis was restricted to a cropped region containing 114 755
segments.

Finally, pre-processed data such as pick-up rate per road
segment and income distribution per road segment were also
part of the raw data available.

Taxi drivers’ GPS positioning records had to be transformed
into positions along edges of the underlying graph of the
network. Distances were measured using an implementation
of the commonly used haversine formula.

5A popular geospatial vector data format. It describes the geometry of the
network as points and polylines representing roads

Given the objective of this work, we are only concerned
with decisions made by taxi drivers at intersections, which we
consider decision points. The existing shapefile’s layout had
to be minimized and intermediate nodes were removed; the
resulting network can be seen in Figure 5. Figure 5a shows
a specific region of the original network, whereas Figure 5b
illustrates the same region without the removed nodes. A node
was removed whenever its indegree and outdegree is 2 and
to the same nodes, so that one-way roads could be preserved.
The graph of the resulting network contained 24 752 nodes and
69 450 edges; the effect of turning sinuous roads into straight
lines is evidenced in the Figure.

In order to build the MDP, travel time between adjacent
nodes had to be obtained. Even though shapefiles provide a
very accurate measure of distance, travel time is likely to be a
more important feature for taxi drivers. The network was fur-
ther restricted to those segments with travel time information,
further reducing the number of edges to be incorporated in the
MDP.

Finally, travel time extraction from GPS records is a re-
search problem deserving considerable attention from the
research community [33], [4]. In this work, a simple approach
was chosen:

1) The shortest path between consecutive records was ob-
tained using Dijkstra’s algorithm [34].

2) Using the time stamp label attached to records, velocity
between two consecutive records was calculated. A
threshold was specified and velocities below it were
discarded.

3) The calculated velocity was aggregated per road segment
and averaged.

The MDP was built by considering a period between 9
am and 10 am and discretizing it in 30-second’s intervals.
Each state represented a (location, time interval) pair and

(a) Zoom from downtown region (b) Minimized network

Fig. 5: Comparison between the original shapefiles and the minimized network. Two roads in which this difference is particularly
notorious have been marked in red.

were connected along the roads obtained in the previous steps.
Unlike the previous case study, this time the model was not
deterministic. For each connection, there was a probability of
reaching a special state (representing a passenger pick-up) that
later randomly placed the taxi driver back in the network. Pick-
up probabilities for each edge were part of the data available
in this study.

B. Reward functions

Three simple reward functions describing taxi drivers’ de-
sires were implemented.

Function φ1 is a penalty function directly proportional to
the distance traveled, obtained directly from the shapefile.

Function φ2 rewarded the taxi driver for each passenger
he transported. This was achieved by rewarding transitions to
special drop-off states that sent the taxi driver back to a random
node in the network; the probability to go to this special drop-
off state from a given edge was equal to the probability of
picking up a passenger in such an edge.

Finally, function φ3 directly penalized the stoppage time of
taxi drivers, directly proportional to the time spent without
moving.

These three reward functions were chosen to represent 3
extremes in the function space. While functions φ1 and φ3
penalize drivers for moving and not moving (respectively),
function φ2 tries to replicate what we expect to be the taxi
driver’s objective. In order to guarantee that variations (e.g.
using kilometers or meters in function φ1) do not influence
the results, the reward functions were normalized.

(a) Accuracy (b) Efficiency

Fig. 6: Performance Evaluation

C. Results and Analysis

Table II shows the result of 12 different sets of taxi records,
each representing a different taxi driver. Violated constraints
indicates how many constraints are violated in the final solu-
tions (total number of constraints in the formulation). That
is used to measure the accuracy (i.e. the percentage of states
that the solution is able to explain). Time indicates how long
the MILP formulation had to run in order to find a solution.

The results show that our formulation is able to predict
with high accuracy what we empirically expected - taxi drivers
do try to maximize the number of passengers. These results
also show how sensitive the formulation is to the functions
proposed; whenever the search space was big (the number of
violated constraints was high), the algorithm was not able to
terminate in an acceptable time. As a case study, our results
show that this method can be used to validate conjectures
about explanations to decisions in sequential environments.
However, had we access to the relevant data, it is our belief
that this case study could be expanded to discover new
knowledge in this domain. As an example, one could test if
the schedule of long-course trains or proximity to the local
airport affect the taxis decisions. It is our opinion that this
topic can be prolific in future work directions. Enquiring the
city’s taxi drivers could provide more information regarding
their attitudes; cross-validating this information with results
obtained from models such as the one proposed in this paper
would be important for both traffic planers and for the domain
of behavior understanding. More details of our case studies can
be found in [26].

D. Comparison Study

Following last two studies, we compare our method with
two baseline methods, MH and G-MH, proposed in [21]
which are the latest and most related methods applying IRL in
preference study (in our experiment, we follow the parameter
training in [21]). We evaluate the efficiency and accuracy and
illustrate the results in Figure 6.

In Figure 6a, the accuracy is defined as the percentage of
states which can be explained by the resulting reward functions
- the percentage of states in which what the reward function
indicates is the optimal action, is in fact the action performed
by the taxi driver.

Taxi # αidle αpassengers αdistance Violated constraints Accuracy (%)
1 0 1 0 15/856 98.3%
2 0 0.9994 0.0004 13/771 98.4%
3 0 1 0 28/706 96.1%
4 0 0.9651 0.0349 192/1113 82.8%
5 0 0.9879 0.0121 61/743 91.8%
6 0 0.9993 0.0007 11/818 98.7%
7 0.0039 0.9961 0 14/607 97.7%
8 0.9953 0.0047 0 15/940 98.4%
9 0 1 0 13/845 98.5%

10 0 0.9994 0.0006 12/1020 98.8%
11 0 0.9993 0.0007 14/609 97.7%
12 0 0.9920 0.0080 62/605 89.8%

TABLE II: Results of applying the MILP formulation to the different taxi drivers.

In Figure 6b, the efficiency is evaluated by the time cost of
running MILP formulation to find a solution. From the results,
we can conclude that our method outperforms the previous
methods in terms of accuracy, efficiency and scalability. The
reason for such a performance is that 1) our reward function
design can automatically find better reward functions and is
able to allow relative comparison; 2) our MILP formulation is
able to conduct fast computation.

IX. CONCLUSIONS AND FUTURE WORK
This paper contributes to the domain of Inverse Reinforce-

ment Learning and explores a problem overlooked by the
research community: behavior analysis based on activity logs.
It provides a methodology for supporting behavior analysis
problems and an alternative algorithm for Inverse Reinforce-
ment Learning that provides more feedback than the alter-
natives. We utilize two case studies to illustrate our methods
and evaluate our method compared with two baseline methods
via real-life taxi drivers’ behavior logs. The results show that
our method outperforms the previous methods in terms of
accuracy, efficiency and scalability. It has broad applications
to human or animal’s mobility and behavior analysis.

In the future, we will try to design a system which is able to
automatically generate intelligible reward functions which are
understandable and adaptive to the observed behaviors. On the
other hand, we will try to retrieve the potential reasons behind
the observed behaviors based on our discovered decision-
making process.

Acknowledgment This research was supported by the T-
SET University Transportation Center sponsored by the US
Department of Transportation under Grant No. DTRT12-G-
UTC11 and the Singapore National Research Foundation
under its International Research Centre @ Singapore Funding
Initiative and administered by the IDM Programme Office.
Part of this work was funded by the Fundacao para a Ciencia
e Tecnologia under the Carnegie Mellon Portugal program.
The authors also thank Teresa Galvao for valuable discussions
regarding this work.

REFERENCES

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse
reinforcement learning. In Proc. of ICML, 2004.

[2] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. An
application of reinforcement learning to aerobatic helicopter flight. In
B. Schlkopf, J. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems, volume 19, Cambridge, MA, USA,
2007. MIT Press.

[3] Andrew Y. Ng and Stuart J. Russel. Algorithms for inverse reinforcement
learning. In Proc. of ICML. Morgan Kaufmann Publishers Inc., 2000.

[4] Siyuan Liu, Yunhuai Liu, Lionel Ni, Jianping Fan, and Minglu Li.
Towards mobility-based clustering. In Proc. of ACM SIGKDD, 2010.

[5] Siyuan Liu, Ramayya Krishnan, and Emma Brunskill. How the urban
taxi drivers collect decision knowledge. In Proc. of WIN, 2012.

[6] Xueying Li, Huanhuan Cao, Enhong Chen, Hui Xiong, and ilei Tian.
Bp-growth: Searching strategies for efficient behavior pattern mining.
2012.

[7] Po-Ruey Lei, Tsu-Jou Shen, Wen-Chih Peng, and Ing-Jiunn Su. Explor-
ing spatial-temporal trajectory model for location prediction. In Proc.
of the 12th IEEE MDM, 2011.

[8] Md Reaz Uddin, Chinya Ravishankar, and Vassilis J. Tsotras. Finding
regions of interest from trajectory data. In Proc. of the 12th IEEE
MDM, 2011.

[9] Yu Zheng and Xing Xie. Learning location correlation from gps
trajectories. In Proc. of the 11th IEEE MDM, 2010.

[10] Jing Yuan, Yu Zheng, Liuhang Zhang, XIng Xie, and Guangzhong Sun.
Where to find my next passenger. In Proc.of the 13th UbiComp, 2011.

[11] Haiping Ma, Huanhuan Cao, Qiang Yang, Enhong Chen, and Jilei Tian.
A habit mining approach for discovering similar mobile uses. In Proc.
of WWW, 2012.

[12] Valierie Guralnik and Karen Zita Haigh. Learning models of human
behavior with sequential patterns. In Proc. of the AAAIW, 2002.

[13] Flavio Chierichetti, Ravi Kumar, Prabhakar Raghavan, and Tams Sarls.
Are web users really markovian? In Proc. of WWW, 2012.

[14] Stuart Russell. Learning agents for uncertain environments (extended
abstract). In Proc. of COLT, 1998.

[15] Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maxi-
mum margin planning. In Proc. of ICML, 2006.

[16] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement
learning. In Proc. of IJCAI, 2007.

[17] W. K. Hastings. Monte carlo sampling methods using markov chains
and their applications. Biometrika, 57(1):97–109, April 1970.

[18] Brian Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey.
Maximum entropy inverse reinforcement learning. In Proc. of AAAI,
2008.

[19] Brian D. Ziebart, Anind K. Dey Andrew L. Maas, and J. Andrew
Bagnell. Navigate like a cabbie: Probabilistic reasoning from observed
context-aware behavior. In Proc. of Ubicomp, 2008.

[20] Brian D. Ziebart, Anind K. Dey, and J. Andrew Bagnell. Probabilistic
pointing target prediction via inverse optimal control. In Proc. of IUI,
2012.

[21] Constantin A. Rothkopf and Christos Dimitrakakis. Preference elicita-
tion and inverse reinforcement learning. In Proc. of the ECML PKDD,
2011.

[22] Shao Zhifei and Er Meng Joo. A review of inverse reinforcement
learning theory and recent advances. International Journal of Intelligent
Computing and Cybernetics, 5(3):293–311, June 2012.

[23] R. Bellman. A markovian decision process. Journal of Mathematics
and Mechanics, 6(4):679–684, April 1957.

[24] D. P. Bertsekas and J. Tsitsiklis. Neuro-dynamic programming. Athena
Scientific, September 1996.

[25] R. S. Sutton and A. G. Barto. Reinforcement Learning: an Introduction.
MIT Press, 1998.

[26] Miguel Araujo. Understanding behavior via inverse reinforcement
learning. M.Sc. Dissertation, Faculdade de Engenharia da Universidade
do Porto, 2012.

[27] Richard M. Karp. Reducibility among combinatorial problems. In
R. Miller and J. Thatcher, editors, Complexity of Computer Compu-
tations, pages 85–103. 1972.

[28] Jiri Matousek, Micha Sharir, and Emo Welzl. A subexponential bound
for linear programming. Algorithmica, 16(4-5):498–516, 1996.

[29] Karen Aardal and Friedrich Eisenbrand. Integer programming, lattices,
and results in fixed dimension. In G.L. Nemhauser K. Aardal and
R. Weismantel, editors, Discrete Optimization, volume 12 of Handbooks
in Operations Research and Management Science, pages 171–243.
Elsevier, Amsterdam, 2005.

[30] Siyuan Liu, Ce Liu, Qiong Luo, Lionel Ni, and Ramayya Krishnan.
Calibrating large scale vehicle trajectory data. In Proc. of the 13th

IEEE MDM, 2012.
[31] Siyuan Liu, Yunhuai Liu, Lionel Ni, Minglu Li, and Jianping Fan.

Detecting crowdedness spot in city transportation. IEEE Transactions
on Vehicular Technology, (99):1–1.

[32] Henry S. Farber. Reference-dependent preferences and labor supply:
The case of new york city taxi drivers. The American Economic Review,
98(3), 2008.

[33] Yanying Li and Mike McDonald. Link travel time estimation using
single gps equipped probe vehicle. In Proc. of IEEE ITS, 2002.

[34] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2013

	Understanding Sequential Decisions via Inverse Reinforcement Learning
	Siyuan LIU
	Miguel ARAUJO
	Emma BRUNSKILL
	Rosaldo ROSSETTI
	Joao BARROS
	See next page for additional authors
	Citation
	Author

	tmp.1488881135.pdf.XxRCl

