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Abstract—Nowadays, big cities are suffering from severe traffic
congestion as a result of the continuing increase in vehicles.
Taxis equipped with GPS can be viewed as sensors of the traffic
situation in city. However, trajectory data generated by taxi’s
GPS traces are often high-dimensional and contain large spatial
and temporal attributes, which pose challenges for analysts.
In this paper, based on taxi trajectory data, we present an
interactive visual analytics system, T-Watcher, for monitoring
and analyzing complex traffic situations in big cities. Users are
able to use a carefully designed interface to monitor and inspect
data interactively from three levels (region, road and vehicle
views). We develop visualization method to monitor and analyze
traffic patterns for abnormal behaviors detection. In the region
view of our system, global temporal changes in spatial evolution
will be presented to users and can be interactively explored.
Road view shows temporal changes to the traffic situations
of significant segments of roads. Vehicle view uses a novel
visualization method to track individual vehicles. Furthermore,
the three views integrate important statistical and historical
information related to traffic, which illustrate temporal changes
of the traffic. We find the fact that this design can help users
explore past data while monitoring traffic. We test our system
on a real-life vehicle dataset collected from thousands of taxis
and obtained some interesting findings. The experimental results
confirm the effectiveness and efficiency of the proposed visual
detection method. The analysis of the results also shows that our
system is capable of effectively monitoring traffic and detecting
abnormal traffic patterns.

I. INTRODUCTION

Nowadays vehicle movement patterns can be captured by
trajectory data. Movement patterns are important for traffic
analysts to understand the behaviors of moving objects espe-
cially in transportation management. Monitoring and analyzing
trajectory data could be used to reason about mobility and to
support experts in traffic analysis with reliable information.
For example experts in transportation department can figure
out why congestions happen more frequently nowadays and
find an effective way to ease the traffic load in the modern
cities. One effective way to understand traffic situation and
vehicle status on road networks is monitoring and analyzing
the trajectory data generated from taxis equipped with GPS.
Taxis can be utilized as mobile sensors to constantly probe
the city’s traffic flows and assess the citywide traffic situation
[17], [16]. We can assume the knowledge about taxi diaspora
and behavior extracted from these GPS data is also valuable
for traffic analysts, so as to analyze congestions, make route
suggestions in the rush hour, and detect changes in the
movement behavior as they occur.
However, trajectory data analysis now faces some techni-

cal challenges. As trajectory data contains both spatial and
temporal attributes and are often huge in size and high in
dimensionality. Thus large-scale trajectory data analysis is a
very challenging task. For example daytime behaviors may
differ from nighttime behaviors, while working days differ
from weekends and holidays. Therefore a human analyst’s
sense of space and place is required, which is hard for a
machine to achieve. It is important to keep humans in the
analysis loop to utilize their sense of space and place, their
tacit knowledge of inherent properties and relationships, and
space-related experiences. Visual analysis of trajectory data
shows great potential as they can intuitively present trajectory
data and provides rich interactions, allowing users to explore
the data. Historical data are also very helpful to analysts since
humans need hints such as visual clues or visual displays of
past information. We should provide the traffic analysts a new
visual analysis system to not only intuitively visualize large-
scale data, but also show the complex features and hidden
patterns.
To tackle the challenges and assist in the understanding of
trajectory data to improve traffic analysis we develop an
interactive visual analytics system, T-Watcher, for monitoring
and analyzing complex traffic situations in big cities via taxi
trajectory data for Regions, Roads, and Vehicles, as illustrated
in Fig.1. The developed visualization system enables a user
to investigate trajectories at three different levels including
in a region, on a road, or individual vehicles. The sophis-
ticated fingerprinting method can well explore the spatial,
temporal and multi-dimensional perspectives of the trajectory.
It can provide more statistical information and transform the
numerical knowledge to visual cues like shape, color, and
size and so on. So users can easily analyze any changes in
the spatial situation (inside the road network) over time, or
to analyze the temporal changes in traffic situations over a
road segment, or to track individual vehicles’ instant status
with historical data. In our system, users can perceive the
correlations among different attributes and filter out noise and
irrelevant trajectories for further investigation of interesting
cases. Analysts can interactively and progressively refine the
settings to improve the results.
We use three case studies to evaluate our system and demon-
strate our fingerprint design on real-world taxi GPS data sets
from 15, 000 taxis running for 92 days over a non-continuous
eight months in a Chinese city with a population of over 10
million. Experiments show that our system is capable of effec-
tively finding regular patterns and anomalies in traffic flows. In



Fig. 1: The system architecture. The T-Watcher architecture
consists of three primary components: (1) a data preprocessing
module, (2) a visualization rendering module, and (3) a user
interaction module.

summary, we have made the following contributions. (1) We
have developed a system to study large-scale transportation
data, integrating visualization and data analytics methods, and
propose techniques to improve efficiency and scalability. (2)
We report our experience and observations in building T-
Watcher. (3) We demonstrate and test our system using real-
life data sets for real-world applications.

II. RELATED WORK

Geo-visualization provides interactive visual tools for ex-
ploration and analysis of data with geographical information.
This is a broad and extensively studied field. Due to lim-
ited space, we only summarize a few representative papers.
Geographic visualization involves the interactive exploration
of geographically-referenced information graphics to visualize
data involving geographic features. A number of techniques
and methods adapted from cartography and scientific visual-
ization are studied and applied in geographic visualization.
Mehler et al. [18] represented news sources as datamaps to
show the geographic popularity of an entity, and any possible
geographic bias. Wood et al. [20] discussed geo-visualization
mash-up techniques including tag clouds, tag maps, data dials,
and multi-scale density surfaces for exploratory visual analysis
of large spatial-temporal datasets. Fisher presented hotmap
[9] to represent aggregate activity and draw users’ attention
to the map. One geographic visualization challenge lies in
visual thinking and user interaction, such as how human
vision perceives maps and images and how it finds patterns.
Chang et al. [7] presented legible cities to display large
collections of data for urban context with different levels
of abstractions. Some key issues and typical visualization
approaches for geo-visualization of dynamics, movement and
change are summarized in [4]. The above approaches keep
the spatial layout as the indicating reference, whereas sev-
eral layout-independent methods are proposed for geographic
visualization. Growth Ring Maps [5] is proposed to represent
spatial-temporal data by plotting a number of non-overlapping
pixels. In comparison, our work is designed and proposed for
large-scale trajectory data in an urban size, including both
trajectory and road networks data. We proposed to provide
interactive geographic visualization for similarities exploration
and pattern extraction of interest in spatial temporal data.

Crnovrsanin et al. [8] introduced a proximity-based visualiza-
tion technique to discover the human behavior patterns from
movement data. This abstract space is obtained by considering
proximity data, which is computed as distances between
entities and some important locations. The raw position is
transformed into an abstract space such that the geographical
information is transformed into meaningful multivariate data.
Andrienko et al. [4] summarized the approaches in visualizing
movement data. Characteristics of movement data and methods
to present dynamics, movement, and change are discussed. In
[2] they also surveyed the existing approaches to aggregation
of movement data and visual exploration of the aggregates.
The data were aggregated by predefined areas. It also presented
specific methods and demonstrated the use of various visual-
ization and interaction techniques. These authors also defined
aggregation methods suitable for movement data and proposed
interaction techniques to represent results of aggregations, en-
abling comprehensive exploration of the data in [1]. GeoTime
[12] displays the 2D path in a 3D space to provide a detailed
view of the geographical and temporal changes in movement
data. Willems et al. [19] visualized vessel movements as well
as the vessel density along traces by convolving trajectories
with a kernel moving with the speed of the vessel along
the path. Guo et al. [10] presented a trajectory visualization
tool that focuses on visualizing traffic behavior at one road
intersection. The spatial and temporal views are separated and
the user can interactively explore the moving patterns of the
trajectories.Microsoft T-drive [21] makes recommendations of
the fastest paths taken by taxi drivers. The path is computed
based on historical trajectories data. To select a few interesting
trajectories from a large number, Hurter et al. [11] proposed a
brush-pick-drop interaction scheme to visualize aircraft trajec-
tories. The system supports the display of multiple trails and
the altitude of each aircraft. Their methods are focused on 2D
trajectory data exploration with limited perspectives provided.
We tried to provide more comprehensive perspectives for
trajectory data exploration in our system. In our work, we
not only visualize large-scale spatial temporal trajectory data
sets, but also embed traffic analysis results to digital maps. We
apply a multidisciplinary approach to develop a framework for
the analysis of massive movement data taking advantage of a
synergy of computational, database, and visual techniques. We
introduce our framework and demonstrate its effectiveness by
examples.

III. DATA AND SYSTEM OVERVIEW

Dataset The data used in this study is the taxi trajectory
data collected from GPS in Shanghai, China. Our data record
the trace of around 7,700 taxis and the sampling rate of our
trace data is various from 20 seconds to several minutes.
Each GPS record contains car ID, the latitude and longitude
of the taxi, the date, the time of the day in seconds, the
taxi’s status (loaded / vacant) and the speed and the direction
of the taxi. In this work, we adopted a Weighting-based
map matching algorithm and an Interpolation algorithm to
calibrate the erroneous and low-sampling-rate vehicle GPS



Fig. 2: The system’s work flow. The system uses preprocessed vehicle GPS data as input and has three major components: region
fingerprint, road fingerprint, and vehicle fingerprint. The region fingerprint displays the whole spatial temporal distribution and
uses the ring-map-based radial layout design to discover historical data. The road fingerprint can further analyze interesting
locations selected from the region fingerprint. The vehicle fingerprint can help explore historical statistical information while
monitoring the real-time situation.

trajectory data set. The details are available in our previous
work [14] and [15]. In our proposed algorithms, we first
integrated the vehicle GPS sampling data and digital road
networks data, to identify the road where a vehicle traveled
and vehicle locations on that road. The statistical information
for each road segment is computed as a preprocessing.
System Our system is implemented by using the ”DaVincci”
code package [6], an icon-based cluster visualization. The
system has three major components: the region fingerprint,
the road fingerprint, and the vehicle fingerprint.The whole
system is designed to show the spatial temporal changes by
presenting the instant values and historical data showing the
evolution over a long time period. Fig.2 shows the flowchart
of our system. Users first start from the region fingerprint.
After the traffic data are loaded to our system to be analyzed,
an overview of the traffic flow and the statistical information
are displayed. Users are free to explore any interesting area
and check any generated fingerprints for details. After that,
users can select some interesting road segments for further
investigation. When an interesting region is selected, road
fingerprints represent associated information such as the
speed, time, and number of passing taxis. If a road segment
in the region is interesting, users can choose to visualize
the vehicle fingerprints for instant values in order to analyze
any passing taxis’ spatial and temporal attributes. All views
support user interactions for interactive exploration.
Fingerprint Method We propose a novel trajectory
fingerprinting method to discover essential characteristics,
”fingerprints”, by visually exploiting the multidimensional
features in spatial temporal means. Our fingerprinting
method has the following benefits: (a) it leads to spatial

temporal data feature extraction; (b) it provides a novel visual
structure to answer queries by flexible and dynamic attributes
combination; and (c) it is fast and scalable, easy to compare.
The sophisticate visual form is designed to extract spatial
temporal features with multi-dimensions. And it can well
explore the temporal related patterns including periodical
patterns and frequent patterns. The ”fingerprints” concept
used here is tried to extract properties of good features
by visually/visual analytics to compare trajectories. Good
”fingerprints” also can help with anomalies detection and
answering similarities queries.

IV. DESIGN AND IMPLEMENTATION

A. Region Fingerprint

The most natural way to represent the correlation for each
region is to use a geographical map with visual items display-
ing the statistical information of each region. We consequently
introduce a visual structure called region fingerprint based on
a ring-map design for interesting region exploration, which
provides different attribute distribution using heat map layers
as a background display.We want to fingerprint the hot spots
of a city with a radial layout design to explore the related
traffic data. The aggregation of taxis’ spatial, temporal, or
multidimensional information can be used to compute the
hotness of each region and then a heat map is used to present
the hotness of different regions. Then we need to display
the data distribution of passing taxis over a selected 24 hour
time period (week/month). The hourly distribution will be
colored according to the defined color map and can reveal
selected attributer’s correlation with the traffic. Hence we can



Fig. 3: The Region Fingerprint View Design. It uses a ring-
map-based radial layout design to help explore historical
statistical information. It shows the encoding scheme, which
uses the typical heat map color, set represent density and the
ring sectors around the fingerprint show the value of different
time periods of the day.

analyze the local temporal attributes’ changes and discover the
evolution throughout each spatial region by comparing differ-
ent fingerprints. In order to provide information at different
levels of detail, we design a visualization of a fingerprint
that adopts the radial layout design to display the 24-hour
overview distribution for different regions of the city over a
selected time period. The circle is to encode a day or monthly
distribution which starts from the top and numbers represented
as time increase as clockwise direction. The time is shown on a
circular axis with each big sector around the circle representing
a day, which has 24 cells encoding 24 hours.
Ring Each ring on the fingerprint represents one day.

Sector Each sector inside a ring represents one hour, with
time increasing by hours as the angle increases, and time
increasing by days as the radius increases. The time of the
region’s behavior is displayed on each fingerprint’s ring circle
like a clock to encode a 24-hour distribution.
Color The color of the bar chart is an intuitive design to show
the speed scale from green (high) to red (low), which is based
on the color coding of traffic light signaling.
Size The fingerprint’s size shows the total number of taxis
passing through the selected area. For each fingerprint, we
adopt a distortion method to allocate more display space to
the inner sectors in order to have a better presentation.
Interactions For effective traffic data exploration and histor-
ical knowledge discovery, the region fingerprint design aims
to provide users with, besides a good overview, zoom and
details-on-demand by implementing brushing, linked view and
focus+context view.
Brushing In the top-level fingerprinting display, the user
can simply click on one region fingerprint to select it for
further analysis. The user can also select the fingerprints in
an interesting area or region by brushing i.e. users can use a
mouse to draw a rectangle to select all the nodes inside that
rectangle. When a fingerprint is selected, a new display will
appear to display the selected region fingerprint as the center
with nearby area (generally be displayed as the heatmap but
user can specific this) and adjacent fingerprints. The user can
then further explore the region they are interested in by sending

the selected data to the road fingerprinting design.
Linked View Our region fingerprint can provide two spatial
levels of traffic fingerprinting details. Meanwhile in urban
scale we provide two kinds of display, heatmap-style fin-
gerprinting and trajectory-style fingerprinting, which can be
displayed simultaneously. In addition, the region scale traffic
fingerprinting display can be presented to users at the same
time by clicking a trip or a hot spot (grids) in the urban traffic-
fingerprinting map, and then the corresponding region scale
fingerprinting visualization will be shown on the map.
Focus and Context For the trips or locations that are of
interest to users, our design can adjust the layout to provide
a focus+context view, which gives more space to the trips or
locations of interest and suppresses the space of other trips or
locations as context.

B. Road Fingerprint

In this subsection we describe the road fingerprint design
that visualizes the selected road segment’s temporally related
attribute distribution and can simultaneously show the tempo-
ral changes and local temporal variables in spatial evolution.
From the region fingerprinting, one key observation is that
traffic data especially taxis data are inherently visual as they
are spatially temporal around road networks. Therefore we can
assume that the overall traffic situation is composed of each
road segment’s traffic data. If one place or region experiences
traffic congestion or other traffic phenomena we can also
assume this road segment to be very important for analysis.
Therefore, we want to visualize traffic data on specific road
segments to provide more details for analysts besides just
the region fingerprinting results. We need to further analyze
each road’s historical information. Therefore it is desirable
to show both geographical and statistical information in one
design. For each road segment, we would like to display
the distribution of taxis, the time, the average speed, the
pick-up/drop-off passengers behavior changing or evolution
and the geographical information of any road of interest.
We propose a similar visual approach with region fingerprint
design but using a different visual encoding scheme and a new
visual component called ”similarity lens” including a ”routine
indicator” and ”abnormal detector”, at outer glyphs.
Fig. 4 shows the road fingerprint. Our design displays the

routine pattern inferred from statistical representation in the
center with historical attribute information temporally dis-
tributed around different time granularities, either on a 24-
hour scale or a 31-day scale based on users’ choice. Here we
define the routine pattern as the average value. As most of the
statistical information is associated with time, we propose a
similar design as [13] and use a radial layout to show the
statistical information distributed over time. We use linked
views here to further explore the correlation among different
attributes of taxis that is speed and pick-up/drop-off behaviors.
We use color to intuitively identify attribute values. The time
of the taxis’ behavior is displayed on the node’s circle like a
radial calendar to encode time distribution. It is different from
region fingerprinting view and each big sector on the cycle



Fig. 4: Road Fingerprint View Design. Road fingerprint dis-
plays the routine pattern in the center, surrounded by tempo-
rally distributed historical attributes. A new visual component,
”similarity lens”, including a ”routine indicator” and ”abnor-
mal detector” is presented. A routine indicator is bar chart like
glyph structure and each bar represents a time period (hour or
day). The height encodes the value. An abnormal detector is
the outer glyph lying on the furthest ring. It has a routine line
which indicates the average value. Each big sector on the cycle
represents a day that has a related mapping part on the glyph.

represents a day. The cells inside each sector plot one-hour
value.
Sector Cells Each cell inside the big sector represents an hour.
The color of the cell is intuitively designed to show the value.
Outer Glyph The part extruding from the fingerprint repre-
sents a related value larger than average. In contrast, the part
extruding to the center of the cycle represents a value below
average. Each big sector on the cycle represents a day that has
a related mapping area on the glyph.
Inner Glyph A bar chart like structure is used to form a
glyph to encode the routine data. Here we define ”routine”
as the average value. Each bar height represents the average
value of that time (hour or a day) and the color scheme is the
same as with the fingerprint.
A new visual component called ”similarity lens” including a
”routine indicator” and ”abnormal detector” is designed to
encode routine pattern information. The routine indicator is
a bar chart like glyph structure. It takes a series bar chart in
different granularities of time, either on a 24-hour scale or a 31
day scale based on users’ choice. In addition, the height and
color both encode the attribute values. The abnormal detector
is the outer glyph located at the furthest ring of the road
fingerprint. It has a routine line that indicates the average value
and each big sector with one day’s 24 cell data plotted on it
has a related part on the glyph. This part has 24 points on it.
If the related time data recorded at 4amm is over the average,
this part of the glyph will extrude outside the fingerprint at
the 4th point. If it is below average, it will extrude inside the
fingerprint at the 4th point.
Interactions Some user interactions are supported in our road
fingerprint design to allow users to select interesting time
periods for historical information to compare with real-time
traffic data. There are two ways to explore the historical
information of an interesting time period. Users can use a
mouse to draw a rectangle on the time circle to brush the time

Fig. 5: Vehicle Fingerprint Design. Time stamp is encoded by
the arc’s horizontal position. The time starts near the tail and
ends at the head. The arc color indicates taxi status. The tail
encodes the taxi’s speed changes in the historical data. One
straight line indicates the average speed. The body shape and
board color are used to encode instant speed values. Inside
the body an inner coordinate system is designed to use the
core’s position in a vertical direction to identify whether the
instant speed is above average, near maximum, or reaching
the bottom.

periods. Then the related hour or day in the inner glyph and
outer glyph will be highlighted.
Linked View Road fingerprint with different data attributes
like speed, or vehicle density can be presented to users at
the same time by clicking a road fingerprint in the map, then
new views will appear with another fingerprinting visualization
representing different attributes.
Union Selecting The two brushing interactions also support
union operations Users can add new time periods to previous
selections.

C. Vehicle Fingerprint

In this subsection we present our novel cell-shaped-based
layout that visualizes each taxi’s historical information with its
real-time traffic situation. To assist in understanding or future
improvement of traffic situation, we developed Cell-glyph,
a visual fingerprint for instant vehicle values and historical
data discovery, specifically GPS data from taxis. In previous
sections, we demonstrate how our fingerprinting method can
reveal historical information and discover related knowledge
with historical data at different levels of detail. However, we
still find that we need another visual structure to present each
taxi’s historical information with its instant data. We develop
a novel visual structure, cell-shape-based layout, which comes
from the biological concept of a cell shape. We use this
new visual structure to encode the real-time traffic situation
together with historical knowledge in one structure. We display
the time, the instantaneous speed, the direction, and statistical
information. Our novel visual structure takes the concept of



Fig. 6: Automatic Vehicle Fingerprint Grouping Approach.
Users can brush vehicle fingerprints to get some aggregate
fingerprints. The aggregate fingerprint is proportionate in size
to the number it is grouped in, and the color of the board,
the tail will be changed to display the average values of the
group.

a biological cell to encode instant changes with historical
knowledge. Each cell unit is used to encode instant changes of
one passing taxi in a selected region or road segment. The cell-
glyph design promotes the exploration of the knowledge of an
activity or behaviors of monitored taxis based on historical
information. Here, our vehicle fingerprint has chosen the
metaphor of biological cells, to graphically and dynamically
convey historical information and speed changes that have
happened in the past. As a result, its graphical style is unique,
to say the least. In terms of visual representation, each ”cell” in
our system represents a particular taxi. Bigger cells represent
taxis, which have recently recorded more information. Each
glowing ”particle” inside a cell/fingerprint represents a recent
update from that respective taxi. The more a particle moves
around, the more active or mobile it is.
Inner arc We use an arc to replace the cell core to encode the
taxi’s instant direction. And the time of the taxi’s information
is encoded by the inner arc’s position. The time starts at
the point near to the tail and ends at the head. The color
of the arc represents status of the taxi, which green means
available, yellow means loading on/off passengers, and red
means passengers loaded.
Tail It encodes the taxi’s speed changes in the history data.
And the straight line indicates the average speed.
Cell Shape The width and the height are both used to encode
the instant speed value and the color of the cell board is an
intuitive design to show the speed. As stated before, red means
low speed and green means high speed.
Inside Cell An inner coordinate system is designed to use the
core’s position in a vertical direction to identify whether the
instant speed is above average, near maximum, or reaching the
bottom. Also we use a curve inside the cell body to indicate
the average value and we color any area that represents values
larger than average. So if the arc lies in the colored area we
intuitively know this taxi’s current speed is higher than its
average speed.

V. SYSTEM EVALUATION

Experiment Setup The experiments are conducted on an
Intel(R) Core(TM) 2 2.13GHz PC with 1GB RAM and an
NVIDIA Geforce 7900 GS GPU with 256MB RAM. We
employed JDBC to connect to the database server and Java

swing to develop visualization modules. The digital map is
a developed based on an open source map (OpenStreetMap,
including bit maps and vectors to describe the objects in the
digital map).
After the map-matching algorithm sanitizes the data, we
are able to get the valid taxi trajectory data. The statistical
information for each road segment is then computed as prepro-
cessing. The preprocessing dealing with the data of thousands
of taxis in one month took about six hours. After that, the
system supports interactive query. After the preprocessing, our
system supports interactive real-time visual displays and user
interactions. In this section, we report our findings using our
system to analyze the taxi trajectory data collected from a
non-continuous eight-month period of 92 days in total.

A. Region Fingerprint Results

Validation For testing our design, we used a dataset where
certain spatial and temporal patterns were previously expected.
The typical temporal patterns of traffic situations in a big
city are well known. Thus, there are particular intervals in
the mornings of working days, called ”rush hour”, when the
major arterial roads are crowded with vehicles and movement
is obstructed. Similar situations occur in the spatial locations.
We can always expect some regions in the city to have more
passengers looking for taxis and experienced taxi drivers prefer
to adopt pathways to satisfy passenger requirements such as
the trip time to the airport. We tried to detect these expected
temporal patterns by comparing similar spatial situations with
the help of our region fingerprint. We can easily figure out
hot spots in which higher percentages of customers are picked
up/dropped off by taxis traveling around the urban area (Fig.
7). We first use a density-based partitioning algorithm K-mean
for hot spot computing by rasterizing the background map into
pixels with GPS values. We labeled each pixel in the map
by assigning the vehicle values to them then the generated
clusters naturally formed as regions. Clusters are colored as
different hues to identify them. Then we compute the total
number of customers being picked up/dropped off by taxis for
each region. Then we use our region fingerprinting results to
reveal the hotness of regions over the 2D map of the city.
Fig. 7 proved the hot spots identified by region fingerprints.
We used filtering to display only top 5 hot regions in the
week (See (a)(b)(c)(d)(e) in Fig. 7). It is obviously each
generated fingerprints on the map colored by a dense hue
which means this spot had contributed more values to the
traffic. And the detail situation like the daily or weekly display
data distribution can be observed from the visual cues (color)
on the fingerprints. For example we can find out the region
(b) is at the airport so we can expect many travelers taking
taxis there. Region (d) is at the main roads where a crossing
bridge over river located nearby. So we can observer from the
fingerprint that most pick-up/dop-off behaviors happened in
the day time. Users can use the partitioned map to choose some
interesting regions to explore their details or change to the
road fingerprint view for further analysis. The results clearly
show that our region fingerprint design can predict spatial and



temporal patterns.
Application In this part, we used region fingerprint to explore
a hot spot identified from region fingerprinting results (Fig.
7). We wanted to figure out whether hot spots in a similar
density have similar data distributions or not. In this case, we
designed the fingerprint within one week for all 65,836 roads
with all 3 attributes (vehicle id, average speed, and picking-
up / dropping-off id). In order to explore these hot spots that
are identified we draw the related region fingerprinting results
(see Fig. 7). Taxi pick-up / drop-off fingerprinting results are a
surprise since they prove the clusters in a similar dense varying
in distribution. As shown in Fig.7, the advantages of our
method are clearly revealed and show the results of hot spot
exploration. We find the results are out of our expectations,
especially when comparing the fingerprints in region (d) and
(e). Even thought they are of similar density (this can be
observed from the size of the fingerprints) the fingerprinting
results revealed different behaviors. According to the colors of
the rings, we find taxi pick-up / drop-off distribution varies in
different regions over different time periods if the colors are
not even, while in the center of the city they were almost the
same when the colors are smooth. Another interesting finding
is that our top 1 hot spot in region (a) which had most taxi
pick-up / drop-off values than other regions in a rather small
place which was far away from city center (almost reaching
rural area). And from the Fig.7, we found the top spot in the
map only occupied a small area only consisting two roads. It
is clear that this hot spot must have some interesting patterns
hidden behind the raw data. We can further check this spot in
a more detail level by our road fingerprinting view.
An integrative approach was employed in [3] by combining
self-organizing map (SOM) with a set of interactive visualiza-
tion tools. They put both feature and index images separately
into SOM matrix cells to give a combined representation of the
spatial, temporal, and attributive (thematic) components of the
data. Another data aggregation approach used the predefined
areas in [2]. It applied pixel-based visualization to show the
aggregated temporal changes to each grid in the Milan map
and the spatial evolution of local temporal variables is clearly
visible. In our system we can choose the attributes to be
presented in a more flexible way and utilize the spiral layout
to better explore temporal patterns like periodic events.

B. Road Fingerprint Results

Validation An obvious spatial pattern that can be expected
in the distribution of the local temporal variations is that the
traffic on the major roads differs from that in the city center
(revealed in Fig. 7). One can also expect a frequent or periodic
pattern in the traffic data in some areas e.g. resident areas. To
detect such patterns, we compared the temporal variations in
each selected road segment with the help of a road fingerprint
by using the same parameters in the previous experiment. As
shown in Fig. 8 (c), we visualized the pick-up/drop-off hot
spots from the heat map exploration result (right bottom, dark
red color spot). We have observed that each of the two regions
in this spot was occupied by one road, the road fingerprint

Fig. 7: Hot Spot Exploration by region fingerprint. We applied
region fingerprinting view on taxi pick-up/drop-off density to
explore hot spots in the city. Fingerprints for top 5 hot spots
are displayed.

located on the right-side showed a clear periodic pattern where
the dense color formed a strip around noon. This pattern means
that in this road the pick-up/drop-off behavior usually reaches
its peak around the middle of the day and can be stable during
the week.
Application We want to detect any possible anomaly patterns
from the traffic data by using our fingerprint design to identify
the details. Here we define anomaly patterns as anonymous
errors, unusual phenomenons from normal distribution data.
We started with our region fingerprint with density map
(Fig. 7). Here we use speed as the variable visualized as a
density style map to explore the patterns. Speed, viewed as
a dynamic vehicle indicator is very unique, which gives us a
multitude of other information, such as spatial information,
temporal information or the behaviors of the vehicles. We
checked abnormal spots discovered from the speed density
map by using the road fingerprint for further investigation.
Our road fingerprint design can help analysts to distinguish
the details of abnormal patterns from routine behaviors. In this
case, we found some interesting abnormal patterns inside road
segments. We believe it is good for our road fingerprinting to
reveal such knowledge since we can compare them with the
history data on a rather large scale say of a whole month
to check whether it is an event or not. Fig. 8 shows the
details of these findings, which formed a really strange pattern.
We can clearly see in Fig.8 that no matter how the vehicle
density changes, if the average speed is greater than zero, they
appear the same hue and saturation of color, for example, the
green in the figure. We look at the vehicle fingerprinting of
this case and observed that the abnormal detector formed a
smooth cirque (see fig. 8 (a)) without any roughness. Our
abnormal detector provides an intuitive view on the data’s
Euclidean distance to average value, meaning that the average
speed per hour that week on these two road segments is
nearly the same. This may not be possible so we recheck
the original data, but then found the records were mostly



Fig. 8: Abnormal Data Detection and Identification. (a) Aver-
age speed distribution of two roads in one week. (b) Vehicle
density distribution. (c) Pick-up/Drop-off distribution. We have
identified an abnormal pattern where density changes did not
affect the average speed on the road. It is rather stable when we
check the abnormal detector forming a smooth cirque without
any roughness. This means the speed per hour aligns very well
with the average and it does not change greatly in the week.

contributed by one single taxi. The records showed that the
driver shifted several times in one hour between the two roads,
therefore some peaks formed in the data since the records
were affected by the rather stable average speed (11km/h).
We also checked the driver’s history data. His taxi’s mobility
was high and we picked a specific hour to check whether it
appeared in two places simultaneously. Here we applied our
vehicle fingerprinting technique to better reveal the result. We
found he appeared in at least three different places, therefore
it turns out that these peaks are definitely hidden errors of the
data. The spiral layout can make data periodic trends easily
apparent when the correct period is chosen. In [22] the authors
emphasized activity and cyclic time as dominant issues in its
representation and it was designed to explore patterns from
the timeliness of movements, availability and events. Its visual
component structure is similar to our road fingerprint design.
However, our system view is focused on providing different
hierarchical levels of temporal attribute exploration over a
single road segment. It can also reveal a one-month pattern
of the selected segment, and simultaneously provide visual
analytics from multiple aspects of visualizations of spatial,
temporal and multi-dimensional perspectives that are linked
together.

C. Vehicle Fingerprint Results

Validation Nowadays the considerably increased number of
automobiles in cities has exponentially congested transporta-
tion pathways. Heavy traffic may give rise to a significant
safety risk and lead to the urgent requirement of advanced
technologies for us to monitor and model real-time traffic data
in today’s transportation management. We also want to set
up related experiments to show our approach can be helpful
in traffic monitoring. We are interested in unusual traffic
phenomena e.g. sudden high speed, exceeding the speed limit,
longer stops, and the like. We found some extreme cases for
our statistical info, like 89 pick-ups / drop-offs in one hour
located in one small region, taxis traveling at an average of
244km/h, and 202 taxis recorded on the same part of the same
road in one hour. However, we found when we analyzed these
specific situations we lost any real-time information to allow
to get the latest information. The converse of the monitoring
situation is different, in that we lack historical information
such as, average speed and past speed changes and so on.
We applied our vehicle fingerprint to monitor the traffic. We
have chosen three regions as shown in Fig. 9 to monitor: 1)
the blue road with id 5588, where historical data reveals the
number of vehicles as abnormal; 2) red road with id 7717,
where the speed is quite high from the historic distribution,
and 3) four roads 4693, 4694, 4695, and 4696, where the
density of vehicles is abnormal and needs further exploration.
For road 7717, we successfully detected the overdrive, and it
is a sudden change via the tail as shown in Fig. 10. For road
5588, we also detected the abnormal alternation of the number
of vehicles as shown in Fig. 11.
Application From taxi GPS records over the city, we can com-
pute a number of instant characteristics. Instant characteristics
include instant speed, direction, and the like. We believe the
combination of displayed instant values with historical data
can help further the knowledge in traffic analysis. From Fig.
10 and 11, we found that taxis with high mobility can be
considered as sensors traveling around the city, which visually
back up the assumptions in [21]. It is interesting and we can
see that it visually supports the assumptions in [16]. They
employed vehicles as sensors using their instant speed to sense
the vicinity of vehicle congestion. They assumed the reported
speeds are usually quite accurate because they are obtained
directly from the speedometers installed on taxis and sudden
changes in speed are rare. Our vehicle fingerprints can help to
detect the traffic status by taking history data advantages into
real-time monitoring. For roads 4693-4696 see Fig. 12 (a), we
have found many vacant taxis suddenly and rapidly emerge
compared with routine situations. Meanwhile their tails on the
fingerprint were curved indicating speed changes; hence we
can say that they came from other locations. Similarly, we
find that a lot of vacant taxis remain in the same location for
hours, while other taxis passed by or left, but the majority taxis
were static since their tails, where straight which indicates
these taxis did not change speed for several hours. Based on
this observation, we figured it to be a taxi terminal, which is



Fig. 9: The three regions we have chosen for traffic monitoring
using our vehicle fingerprint design.

Fig. 10: Monitoring Result of Road 7717. It clears detect an
over drive situation.

true according to the corresponding historical data. We also
checked the vehicle distributions of the selected week in the
same place (see Fig. 12 (b)). We found the same pattern
constantly appeared around the observed terminal spot. These
results showed the benefits of our design.

VI. DISCUSSIONS

Scale is the grand challenge of visualization. For the large
scale trajectory data, visualization suffers from visual clutter
and rendering efficiency problems. In our system, we propose
several novel visual encoding schemes for trajectory data
analysis, and we also employ a set of visualization techniques.
To address the scalability problem, our system follows the
principle: overview first; zoom and filter; then details-on-
demand. The system mainly consists of three components:
region view, road view, and vehicle view. The region view
provides a good overview of the different data attributes’
distribution in a certain period of time. The overview describes
an abstraction of the query result, providing the users an
entrance to investigate the problems of their interest. The
road view and vehicle view shows the query result based

Fig. 11: Monitoring Result of Road 5588. It clearly detects
sudden increases in taxi density at the usual time.

on the users’ interaction in the overview. The road view
reveals the correlations between the average value and history
information, and then we can check the temporal distribution
over the spatial to explore their spatial evolution. We introduce
a novel visual structure called the cell-glyph for instant vehicle
values fingerprinting, which can display real-time data with
historical knowledge simultaneously. By interactively explor-
ing the traffic data with the above visual displays, we are
able to identify the correlations between the traffic and taxis’
behaviors with clear patterns. We can further investigate the
expected traffic patterns by applying the dataset to validate
our design. We also discovered some hidden information and
unexpected patterns that is, an anonymous error in the taxi
trajectory data and unusual taxi terminal time with several
attributes changing by using our fingerprinting design and we
believe this can help data mining experts to explore traffic
data. This method supplies a quick visualization process and
user-friendly interface.
Since our system is developed based on a visual analytics
idea, it may not be correct to use some of the traditional
system evaluation metrics here. Our accuracy is relatively high
since it utilizes a human analysts’ intelligence to make the
decisions. Analysts can refine or re-tune their results in an
iteration way with the help of rich user interactions, so they
can achieve satisfying results by progressively improving the
parameters. The time cost for our data preprocessing is rather
high but the query response time is acceptable with the filtering
technique. We can apply our system to bigger datasets and
achieve approximately the same results at a reasonable cost,
since our system bottleneck is the data preprocessing and the
visualization processing time cost is lower than we expected.

VII. CONCLUSIONS

In this paper, we have presented an interactive visual
analytics system, T-Watcher, for monitoring and analyzing
complex traffic situations in big cities via taxi trajectory data.
Several new integrated traffic fingerprinting designs have been
elaborated. We also designed a novel visual structure called
cell-glyph to compare instantaneous situations with statistical
information. Our system consists of three major modules (the
region fingerprint, the road fingerprint, and the vehicle finger-
print). The region fingerprint allows users to investigate overall
statistical information of important hot spots in the city and
to suggest some interesting locations for further exploration.
The road fingerprint displays both geographical and statistical
information with routine data. Finally, the vehicle fingerprint
presents the real-time data with historic information, which
greatly improves the monitoring. Because of the excessive
amount of data, we applied a preprocessing method such
as aggregation to reduce the scale of data to be visualized.
We did not study the problem related scalability since we
did not check our design with extremely large datasets. In
future, we will investigate other effective methods to handle
the scalability problem. We plan to add region separation and
design a node projection algorithm to put nodes in better
positions in the map.



Fig. 12: Monitoring Results of Road 4693 to 4696. It clearly reveals many vacant taxis coming in one afternoon and staying
for hours. We guessed it might be a terminal for a group of taxi drivers. Historical data backed up our findings.
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