
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2014

A simple polynomial-time randomized distributed
algorithm for connected row convex constraints
T. K. Satish KUMAR

NGUYEN DUC THIEN
Singapore Management University, dtnguyen.2014@phdis.smu.edu.sg

William YEOH

Sven KOENIG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Theory and Algorithms Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
KUMAR, T. K. Satish; NGUYEN DUC THIEN; YEOH, William; and KOENIG, Sven. A simple polynomial-time randomized
distributed algorithm for connected row convex constraints. (2014). Proceedings of the Twenty-eighth AAAI Conference On Artificial
Intelligence and the Twenty-sixth Innovative Applications of Artificial Intelligence Conference. 3, 2308-2314. Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3464

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111754162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3464&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3464&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3464&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3464&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3464&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

A Simple Polynomial-Time Randomized Distributed Algorithm for Connected
Row Convex Constraints

T. K. Satish Kumar∗
Department of Computer Science
University of Southern California

tkskwork@gmail.com

Duc Thien Nguyen
School of Information Systems

Singapore Management University
dtnguyen.2011@smu.edu.sg

William Yeoh
Department of Computer Science

New Mexico State University
wyeoh@cs.nmsu.edu

Sven Koenig
Department of Computer Science
University of Southern California

skoenig@usc.edu

Abstract

In this paper, we describe a simple randomized algorithm that
runs in polynomial time and solves connected row convex
(CRC) constraints in distributed settings. CRC constraints
generalize many known tractable classes of constraints like 2-
SAT and implicational constraints. They can model problems
in many domains including temporal reasoning and geomet-
ric reasoning, and generally speaking, play the role of “Gaus-
sians” in the logical world. Our simple randomized algorithm
for solving them in distributed settings, therefore, has a num-
ber of important applications. We support our claims through
a theoretical analysis and empirical results.

Introduction
Many combinatorial problems in Artificial Intelligence can
be modeled as constraint satisfaction problems (CSPs).
While the task of solving general CSPs is NP-hard, much
work has been done on identifying tractable subclasses of
CSPs. An important subclass of tractable constraints is that
of connected row convex (CRC) constraints.

CRC constraints generalize many other known tractable
classes of constraints like 2-SAT, implicational, and binary
integer linear constraints (Deville, Barette, and Hentenryck
1999). In fact, they have been identified as the equivalent of
“Gaussians” in the logical world (Kumar 2005a). A filtering
algorithm, for example, analogous to the Kalman filter in
a logical world, is presented in (Kumar and Russell 2006)
and makes use of CRC constraints. CRC constraints have
also been used in the context of temporal reasoning (Kumar
2005b; 2006b) and geometric reasoning (Kumar 2004) to
identify tractable classes of temporal and spatial reasoning
problems respectively.

Although CRC constraints arise in a wide range of real-
world domains, centralized algorithms for solving them are
not always useful. This is because the variables and con-
straints are often distributed among many agents introduc-
ing privacy issues and knowledge transfer costs between
them (Yokoo 2001; Yeoh and Yokoo 2012). A plethora of
real-world problems such as in networked systems, multi-
agent planning and belief propagation, resource sharing and

∗Alias: Satish Kumar Thittamaranahalli
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

scheduling, and distributed spatio-temporal reasoning can
therefore benefit from efficient distributed algorithms for
CRC constraints. In this paper, we study the problem of
solving CRC constraints in distributed settings. We do this
using the formalism of distributed CSPs (Yokoo et al. 1992).

For the centralized version of solving CRC constraints,
there are two classes of efficient algorithms. The first class
of algorithms is based on the intuition that path consis-
tency (PC) ensures global consistency for row convex con-
straints (van Beek and Dechter 1995). CRC constraints are
known to be closed under the operations that establish PC
and therefore solvable in polynomial time (Deville, Barette,
and Hentenryck 1999). Additional properties of CRC con-
straints are used to establish PC faster and therefore solve
them more efficiently (Zhang 2007). A related algorithm
also solves CRC constraints very efficiently using variable
elimination (Zhang and Marisetti 2009).

The second class of algorithms is based on the idea of
smoothness: a property of constraints which ensures that “at
every infeasible point, there exist two directions such that
with respect to any feasible point, moving along at least one
of these two directions decreases a certain distance measure
to it” (Kumar 2006a). Smooth constraints can be solved us-
ing very simple randomized algorithms that run in polyno-
mial time (Kumar 2005a; 2005c). Moreover, it is easy to
show that CRC constraints are a special case of smooth con-
straints when the distance metric used is the manhattan dis-
tance (Kumar 2005c; 2006a). This makes CRC constraints
amenable to the above-mentioned simple but very powerful
polynomial-time randomized algorithms.

In this paper, we will use the simplicity of the randomized
algorithm for CRC constraints to solve them efficiently in
distributed settings as well. This straightforward generaliza-
tion stands in stark contrast to the difficulty of generalizing
PC-based algorithms to distributed settings.

The primary problem associated with PC-based algo-
rithms (including variable elimination) is that new con-
straints are added between pairs of variablesXi andXj even
if no direct constraint existed between them in the problem
specification. In distributed settings, this means that new
communications should be opened between pairs of agents
which potentially have to go through a large number of other
intermediate agents. In turn, this means that the commu-
nication complexity becomes prohibitively high. Translat-

ing knowledge between agents in an exchangeable format
could also be very expensive. Furthermore, in many appli-
cation domains, having agents exchange information about
“inferred” constraints is highly undesirable for purposes of
security and privacy.

In contrast, the randomized algorithm that works on
smooth constraints follows a simple random walk strategy.
It is very simple to implement and does not introduce any
newly inferred constraints between the original variables.
This power of randomization is especially well-suited for
generalization to distributed settings. In this paper, we ex-
ploit this intuition and present a simple polynomial-time
randomized algorithm that solves CRC constraints in dis-
tributed settings. We show that the randomized distributed
algorithm outperforms even the original centralized version
of it. This means that our algorithm effectively factors in
parallelism too.1 Finally, the techniques developed in this
paper can be applied more generally to solve convex opti-
mization problems in distributed settings as well.

Preliminaries and Background
A CSP is defined by a triplet 〈X ,D, C〉, where X =
{X1, X2 . . . XN} is a set of variables and C =
{C1, C2 . . . CM} is a set of constraints between subsets of
them. Each variable Xi is associated with a discrete-valued
domain Di ∈ D, and each constraint Ci is a pair 〈Si, Ri〉
defined on a subset of variables Si ⊆ X , called the scope of
Ci. Ri ⊆ DSi

(DSi
= ×Xj∈Si

Dj) denotes all compatible
tuples of DSi

allowed by the constraint. |Ri| is referred to
as the arity of the constraint Ci. A solution to a CSP is an
assignment of values to all variables from their respective
domains such that all constraints are satisfied. In a binary
CSP, the maximum arity of any constraint is 2. Binary CSPs
are representationally as powerful as CSPs and are NP-hard
to solve in general.

A distributed CSP (DCSP) (Yokoo et al. 1992) is defined
by the 5-tuplet 〈X ,D, C,A, α〉, where X ,D and C are the
sets of variables, domains and constraints as defined for a
regular CSP, respectively; A = {A1, A2 . . . AP } is a set of
agents; and α : X → A maps each variable to an agent.

A constraint network (constraint graph) is used to visual-
ize a CSP or DCSP instance. Here, nodes in the graph cor-
respond to variables in the DCSP, and edges connect pairs
of variables appearing in the same constraint. We use K to
refer to the size of the largest domain and T (Xi) to refer to
the set of neighbors of variable Xi in the constraint graph.

A network of binary constraints is said to be path consis-
tent if and only if for any three distinct variables Xi, Xj and
Xk, and for each pair of consistent values of Xi and Xj that
satisfies the direct constraint C(Xi, Xj), there exists a value
of Xk such that the constraints C(Xi, Xk) and C(Xj , Xk)
are also satisfied.

1It is important to note that the research motivation is funda-
mentally different from just exploiting parallelism. Unlike in dis-
tributed/parallel computing where we are free to choose the system
architecture to increase efficiency, in a distributed CSP, the problem
situation is already fixed (Yokoo 2001; Yeoh and Yokoo 2012).

ALGORITHM: PATH-CONSISTENCY
INPUT: A binary constraint network ⟨X , D, C⟩.
OUTPUT: A path-consistent network.
(1) Repeat until no constraint is changed:

(a) For k = 1, 2 . . . N :
(i) For i, j = 1, 2 . . . N :

(A) Rij = Rij ∩Πij(Rik ◃▹ Dk ◃▹ Rkj).
END ALGORITHM

Figure 1: Basic algorithm for enforcing path-consistency in a bi-
nary constraint network. Π indicates the projection operation, and
◃▹ indicates the join operation (similar to that in database theory).

Figure 2: Shows 3 scenarios in which random walks are per-
formed. In an undirected graph ((A) and (B)), for any 2 nodes
L and R, T (R,L)+T (L, R) is related to the “resistance” between
them. In (C) (p ≤ q at every node), T (R,L) is less than that in (B)
because of an increased “attraction” towards L at every node.

CSP is an assignment of values to all the variables from their
respective domains such that all the constraints are satisfied.

A network of binary constraints is path-consistent if and
only if for all variables Xi, Xj and Xk, and for every instan-
tiation of Xi and Xj that satisfies the direct relation Rij ,
there exists an instantiation of Xk such that Rik and Rkj

are also satisfied. Conceptually, path-consistency enforcing
algorithms work by iteratively “tightening” the binary con-
straints as shown in Figure 1. The best known algorithm that
implements this procedure exploiting low-level consistency
maintenance is presented in (Mohr and Henderson 1986),
and has a running time complexity of O(N3K3) (K is the
size of the largest domain). This algorithm is optimal, since
even verifying path-consistency has the same lower bound.

When binary relations are represented as matrices, path-
consistency algorithms employ the three basic operations
of composition, intersection and transposition. The (0,1)-
matrix representation of a relation Rij (denoted MRij) be-
tween variables Xi and Xj consists of |Di| rows and |Dj|
columns when orderings on the domains of Xi and Xj are
imposed. The ‘1’s and ‘0’s in the matrix respectively indi-
cate allowed and disallowed tuples.

Random Walks and Expected Arrival Times
We will provide a quick overview of random walks, and
some theoretical properties associated with them. Figure
2(A) shows an undirected graph (unit weights assumed on
all edges). A random walk on such a graph involves starting
at a particular node, and at any stage, randomly moving to
one of the neighboring positions of the current position. A
property associated with such random walks on undirected
graphs is that if we denote the expected time of arrival at
some node (say L) starting at a particular node (say R) by

Figure 3: Illustrates the notion of a smooth constraint (left side).
The right side illustrates the general pattern of the required pair of
directions for ‘0’s in a CRC constraint (shaded areas indicate ‘1’s).

T (R, L), then T (R, L) + T (L, R) is O(mH(L, R)); m is
the number of edges, and H(L, R) is the “resistance” be-
tween L and R, when the unit weights on edges are inter-
preted as electrical resistance values (Doyle and Snell 1984).

Figure 2(B) shows a particular case of the one in Figure
2(A), in which the nodes in the graph are connected in a
linear fashion—i.e. the probabilities of moving to the left
or to the right from a particular node are equal (except at
the end-points). In this scenario, it is easy to note that by
symmetry, T (L, R) = T (R, L). Further, using the property
of random walks stated above, if there are n nodes in the
graph, then both T (L, R) and T (R, L) are O(n2).

Figure 2(C) shows a slightly modified version of that in
Figure 2(B), where the graph is directed, although it is still
linear. Moreover, there are weights associated with edges,
which are interpreted as probabilities in the random walk;
and the weight on ⟨s, sleft⟩ is, in general, not equal to that
on ⟨s, sright⟩. Here, s is some node in the graph, and sleft

and sright are respectively the nodes occurring immediately
to the left and right of it. However, we are guaranteed that
the probability of moving to the left at any node is greater
than that of moving to the right (i.e. p ≤ q). Given this
scenario, it is easy to see that the expected time of arrival at
the left end-point (L), starting at the right end-point (R), is
also O(n2) (if there are n nodes in all). Informally, this is
because at every node, there is an increased “attraction” to
the left compared to that in Figure 2(B); and the expected
arrival time can only be less than that in the latter.

Tractable Row Convex Constraints
A binary relation Rij represented as a (0,1)-matrix, is row
convex if and only if, in each row, all of the ‘1’s are con-
secutive. If there exists an ordering of the domains of
X1, X2 . . . XN in a path-consistent network of binary con-
straints, such that all the relations can be made row con-
vex, then the network is globally consistent (Van Beek and
Dechter 1995). A globally consistent network has the prop-
erty that a solution can be found in a backtrack-free man-
ner. A (0,1)-matrix is connected row convex if, after re-
moving empty rows and columns, it is row convex and con-
nected (i.e. the positions of the ‘1’s in any two consecu-

75

ALGORITHM: PATH-CONSISTENCY
INPUT: A binary constraint network ⟨X , D, C⟩.
OUTPUT: A path-consistent network.
(1) Repeat until no constraint is changed:

(a) For k = 1, 2 . . . N :
(i) For i, j = 1, 2 . . . N :

(A) Rij = Rij ∩Πij(Rik ◃▹ Dk ◃▹ Rkj).
END ALGORITHM

Figure 1: Basic algorithm for enforcing path-consistency in a bi-
nary constraint network. Π indicates the projection operation, and
◃▹ indicates the join operation (similar to that in database theory).

Figure 2: Shows 3 scenarios in which random walks are per-
formed. In an undirected graph ((A) and (B)), for any 2 nodes
L and R, T (R,L)+T (L, R) is related to the “resistance” between
them. In (C) (p ≤ q at every node), T (R,L) is less than that in (B)
because of an increased “attraction” towards L at every node.

CSP is an assignment of values to all the variables from their
respective domains such that all the constraints are satisfied.

A network of binary constraints is path-consistent if and
only if for all variables Xi, Xj and Xk, and for every instan-
tiation of Xi and Xj that satisfies the direct relation Rij ,
there exists an instantiation of Xk such that Rik and Rkj

are also satisfied. Conceptually, path-consistency enforcing
algorithms work by iteratively “tightening” the binary con-
straints as shown in Figure 1. The best known algorithm that
implements this procedure exploiting low-level consistency
maintenance is presented in (Mohr and Henderson 1986),
and has a running time complexity of O(N3K3) (K is the
size of the largest domain). This algorithm is optimal, since
even verifying path-consistency has the same lower bound.

When binary relations are represented as matrices, path-
consistency algorithms employ the three basic operations
of composition, intersection and transposition. The (0,1)-
matrix representation of a relation Rij (denoted MRij) be-
tween variables Xi and Xj consists of |Di| rows and |Dj|
columns when orderings on the domains of Xi and Xj are
imposed. The ‘1’s and ‘0’s in the matrix respectively indi-
cate allowed and disallowed tuples.

Random Walks and Expected Arrival Times
We will provide a quick overview of random walks, and
some theoretical properties associated with them. Figure
2(A) shows an undirected graph (unit weights assumed on
all edges). A random walk on such a graph involves starting
at a particular node, and at any stage, randomly moving to
one of the neighboring positions of the current position. A
property associated with such random walks on undirected
graphs is that if we denote the expected time of arrival at
some node (say L) starting at a particular node (say R) by

Figure 3: Illustrates the notion of a smooth constraint (left side).
The right side illustrates the general pattern of the required pair of
directions for ‘0’s in a CRC constraint (shaded areas indicate ‘1’s).

T (R, L), then T (R, L) + T (L, R) is O(mH(L, R)); m is
the number of edges, and H(L, R) is the “resistance” be-
tween L and R, when the unit weights on edges are inter-
preted as electrical resistance values (Doyle and Snell 1984).

Figure 2(B) shows a particular case of the one in Figure
2(A), in which the nodes in the graph are connected in a
linear fashion—i.e. the probabilities of moving to the left
or to the right from a particular node are equal (except at
the end-points). In this scenario, it is easy to note that by
symmetry, T (L, R) = T (R, L). Further, using the property
of random walks stated above, if there are n nodes in the
graph, then both T (L, R) and T (R, L) are O(n2).

Figure 2(C) shows a slightly modified version of that in
Figure 2(B), where the graph is directed, although it is still
linear. Moreover, there are weights associated with edges,
which are interpreted as probabilities in the random walk;
and the weight on ⟨s, sleft⟩ is, in general, not equal to that
on ⟨s, sright⟩. Here, s is some node in the graph, and sleft

and sright are respectively the nodes occurring immediately
to the left and right of it. However, we are guaranteed that
the probability of moving to the left at any node is greater
than that of moving to the right (i.e. p ≤ q). Given this
scenario, it is easy to see that the expected time of arrival at
the left end-point (L), starting at the right end-point (R), is
also O(n2) (if there are n nodes in all). Informally, this is
because at every node, there is an increased “attraction” to
the left compared to that in Figure 2(B); and the expected
arrival time can only be less than that in the latter.

Tractable Row Convex Constraints
A binary relation Rij represented as a (0,1)-matrix, is row
convex if and only if, in each row, all of the ‘1’s are con-
secutive. If there exists an ordering of the domains of
X1, X2 . . . XN in a path-consistent network of binary con-
straints, such that all the relations can be made row con-
vex, then the network is globally consistent (Van Beek and
Dechter 1995). A globally consistent network has the prop-
erty that a solution can be found in a backtrack-free man-
ner. A (0,1)-matrix is connected row convex if, after re-
moving empty rows and columns, it is row convex and con-
nected (i.e. the positions of the ‘1’s in any two consecu-

75

Figure 1: Illustrates the idea of smoothness. The left side,
(a), is a binary smooth constraint. It satisfies the property
that at each ‘0’, there exist two directions, as indicated, such
that with respect to any ‘1’, as encircled, moving along at
least one of these two directions decreases the manhattan
distance to it. The right side, (b), does not satisfy the prop-
erty of smoothness. The required pair of directions does not
exist at the ‘0’ marked with a cross. In some sense, this is
because the ‘1’s lie on three or more sides of it, as shown
encircled. Binary smooth constraints are the same as CRC
constraints, as proved in (Kumar 2005c). (a) therefore satis-
fies the definitional conditions for a CRC constraint as stated
in the running text as well.

ALGORITHM: PATH-CONSISTENCY
INPUT: A binary constraint network ⟨X , D, C⟩.
OUTPUT: A path-consistent network.
(1) Repeat until no constraint is changed:

(a) For k = 1, 2 . . . N :
(i) For i, j = 1, 2 . . . N :

(A) Rij = Rij ∩Πij(Rik ◃▹ Dk ◃▹ Rkj).
END ALGORITHM

Figure 1: Basic algorithm for enforcing path-consistency in a bi-
nary constraint network. Π indicates the projection operation, and
◃▹ indicates the join operation (similar to that in database theory).

Figure 2: Shows 3 scenarios in which random walks are per-
formed. In an undirected graph ((A) and (B)), for any 2 nodes
L and R, T (R,L)+T (L, R) is related to the “resistance” between
them. In (C) (p ≤ q at every node), T (R,L) is less than that in (B)
because of an increased “attraction” towards L at every node.

CSP is an assignment of values to all the variables from their
respective domains such that all the constraints are satisfied.

A network of binary constraints is path-consistent if and
only if for all variables Xi, Xj and Xk, and for every instan-
tiation of Xi and Xj that satisfies the direct relation Rij ,
there exists an instantiation of Xk such that Rik and Rkj

are also satisfied. Conceptually, path-consistency enforcing
algorithms work by iteratively “tightening” the binary con-
straints as shown in Figure 1. The best known algorithm that
implements this procedure exploiting low-level consistency
maintenance is presented in (Mohr and Henderson 1986),
and has a running time complexity of O(N3K3) (K is the
size of the largest domain). This algorithm is optimal, since
even verifying path-consistency has the same lower bound.

When binary relations are represented as matrices, path-
consistency algorithms employ the three basic operations
of composition, intersection and transposition. The (0,1)-
matrix representation of a relation Rij (denoted MRij) be-
tween variables Xi and Xj consists of |Di| rows and |Dj|
columns when orderings on the domains of Xi and Xj are
imposed. The ‘1’s and ‘0’s in the matrix respectively indi-
cate allowed and disallowed tuples.

Random Walks and Expected Arrival Times
We will provide a quick overview of random walks, and
some theoretical properties associated with them. Figure
2(A) shows an undirected graph (unit weights assumed on
all edges). A random walk on such a graph involves starting
at a particular node, and at any stage, randomly moving to
one of the neighboring positions of the current position. A
property associated with such random walks on undirected
graphs is that if we denote the expected time of arrival at
some node (say L) starting at a particular node (say R) by

Figure 3: Illustrates the notion of a smooth constraint (left side).
The right side illustrates the general pattern of the required pair of
directions for ‘0’s in a CRC constraint (shaded areas indicate ‘1’s).

T (R, L), then T (R, L) + T (L, R) is O(mH(L, R)); m is
the number of edges, and H(L, R) is the “resistance” be-
tween L and R, when the unit weights on edges are inter-
preted as electrical resistance values (Doyle and Snell 1984).

Figure 2(B) shows a particular case of the one in Figure
2(A), in which the nodes in the graph are connected in a
linear fashion—i.e. the probabilities of moving to the left
or to the right from a particular node are equal (except at
the end-points). In this scenario, it is easy to note that by
symmetry, T (L, R) = T (R, L). Further, using the property
of random walks stated above, if there are n nodes in the
graph, then both T (L, R) and T (R, L) are O(n2).

Figure 2(C) shows a slightly modified version of that in
Figure 2(B), where the graph is directed, although it is still
linear. Moreover, there are weights associated with edges,
which are interpreted as probabilities in the random walk;
and the weight on ⟨s, sleft⟩ is, in general, not equal to that
on ⟨s, sright⟩. Here, s is some node in the graph, and sleft

and sright are respectively the nodes occurring immediately
to the left and right of it. However, we are guaranteed that
the probability of moving to the left at any node is greater
than that of moving to the right (i.e. p ≤ q). Given this
scenario, it is easy to see that the expected time of arrival at
the left end-point (L), starting at the right end-point (R), is
also O(n2) (if there are n nodes in all). Informally, this is
because at every node, there is an increased “attraction” to
the left compared to that in Figure 2(B); and the expected
arrival time can only be less than that in the latter.

Tractable Row Convex Constraints
A binary relation Rij represented as a (0,1)-matrix, is row
convex if and only if, in each row, all of the ‘1’s are con-
secutive. If there exists an ordering of the domains of
X1, X2 . . . XN in a path-consistent network of binary con-
straints, such that all the relations can be made row con-
vex, then the network is globally consistent (Van Beek and
Dechter 1995). A globally consistent network has the prop-
erty that a solution can be found in a backtrack-free man-
ner. A (0,1)-matrix is connected row convex if, after re-
moving empty rows and columns, it is row convex and con-
nected (i.e. the positions of the ‘1’s in any two consecu-

75

Figure 2: Shows the general geometry of a CRC constraint
and the pattern of the required pairs of directions at the infea-
sible points. Shaded areas represent feasible combinations
in the constraint.

Conceptually, algorithms that enforce PC work by iter-
atively “tightening” the binary constraints of a constraint
network (Kumar, Cohen, and Koenig 2013). When binary
constraints are represented as matrices, PC algorithms em-
ploy the three basic operations of composition, intersection
and transposition. The (0,1)-matrix representation of a con-
straint C(Xi, Xj) between the variables Xi and Xj consists
of |Di| rows and |Dj | columns when orderings on the do-
main values of Xi and Xj are imposed. The ‘1’s and ‘0’s in
the matrix respectively indicate the allowed and disallowed
tuples. Figure 1 presents examples of matrix notations for
binary constraints.

A binary constraint represented as a (0,1)-matrix is row
convex if and only if, in each row, all the ‘1’s are consec-
utive. It has been shown in (van Beek and Dechter 1995)
that if there exist domain orderings for all the variables in
a path consistent network of binary constraints such that all
the constraints can be made row convex, then the network
is globally consistent.2 The orderings on the domain values
of all the variables are critical to establishing row convexity
in path consistent networks. In order to find these required
domain orderings for row convexity, the well known result
of (Booth and Lueker 1976) is used.

Although row convexity implies global consistency in
path consistent networks, the very process of achieving PC

2A globally consistent network has the property that a solution
can be found in a backtrack-free manner.

ALGORITHM: PATH-CONSISTENCY
INPUT: A binary constraint network ⟨X , D, C⟩.
OUTPUT: A path-consistent network.
(1) Repeat until no constraint is changed:

(a) For k = 1, 2 . . . N :
(i) For i, j = 1, 2 . . . N :

(A) Rij = Rij ∩Πij(Rik ◃▹ Dk ◃▹ Rkj).
END ALGORITHM

Figure 1: Basic algorithm for enforcing path-consistency in a bi-
nary constraint network. Π indicates the projection operation, and
◃▹ indicates the join operation (similar to that in database theory).

Figure 2: Shows 3 scenarios in which random walks are per-
formed. In an undirected graph ((A) and (B)), for any 2 nodes
L and R, T (R,L)+T (L, R) is related to the “resistance” between
them. In (C) (p ≤ q at every node), T (R,L) is less than that in (B)
because of an increased “attraction” towards L at every node.

CSP is an assignment of values to all the variables from their
respective domains such that all the constraints are satisfied.

A network of binary constraints is path-consistent if and
only if for all variables Xi, Xj and Xk, and for every instan-
tiation of Xi and Xj that satisfies the direct relation Rij ,
there exists an instantiation of Xk such that Rik and Rkj

are also satisfied. Conceptually, path-consistency enforcing
algorithms work by iteratively “tightening” the binary con-
straints as shown in Figure 1. The best known algorithm that
implements this procedure exploiting low-level consistency
maintenance is presented in (Mohr and Henderson 1986),
and has a running time complexity of O(N3K3) (K is the
size of the largest domain). This algorithm is optimal, since
even verifying path-consistency has the same lower bound.

When binary relations are represented as matrices, path-
consistency algorithms employ the three basic operations
of composition, intersection and transposition. The (0,1)-
matrix representation of a relation Rij (denoted MRij) be-
tween variables Xi and Xj consists of |Di| rows and |Dj|
columns when orderings on the domains of Xi and Xj are
imposed. The ‘1’s and ‘0’s in the matrix respectively indi-
cate allowed and disallowed tuples.

Random Walks and Expected Arrival Times
We will provide a quick overview of random walks, and
some theoretical properties associated with them. Figure
2(A) shows an undirected graph (unit weights assumed on
all edges). A random walk on such a graph involves starting
at a particular node, and at any stage, randomly moving to
one of the neighboring positions of the current position. A
property associated with such random walks on undirected
graphs is that if we denote the expected time of arrival at
some node (say L) starting at a particular node (say R) by

Figure 3: Illustrates the notion of a smooth constraint (left side).
The right side illustrates the general pattern of the required pair of
directions for ‘0’s in a CRC constraint (shaded areas indicate ‘1’s).

T (R, L), then T (R, L) + T (L, R) is O(mH(L, R)); m is
the number of edges, and H(L, R) is the “resistance” be-
tween L and R, when the unit weights on edges are inter-
preted as electrical resistance values (Doyle and Snell 1984).

Figure 2(B) shows a particular case of the one in Figure
2(A), in which the nodes in the graph are connected in a
linear fashion—i.e. the probabilities of moving to the left
or to the right from a particular node are equal (except at
the end-points). In this scenario, it is easy to note that by
symmetry, T (L, R) = T (R, L). Further, using the property
of random walks stated above, if there are n nodes in the
graph, then both T (L, R) and T (R, L) are O(n2).

Figure 2(C) shows a slightly modified version of that in
Figure 2(B), where the graph is directed, although it is still
linear. Moreover, there are weights associated with edges,
which are interpreted as probabilities in the random walk;
and the weight on ⟨s, sleft⟩ is, in general, not equal to that
on ⟨s, sright⟩. Here, s is some node in the graph, and sleft

and sright are respectively the nodes occurring immediately
to the left and right of it. However, we are guaranteed that
the probability of moving to the left at any node is greater
than that of moving to the right (i.e. p ≤ q). Given this
scenario, it is easy to see that the expected time of arrival at
the left end-point (L), starting at the right end-point (R), is
also O(n2) (if there are n nodes in all). Informally, this is
because at every node, there is an increased “attraction” to
the left compared to that in Figure 2(B); and the expected
arrival time can only be less than that in the latter.

Tractable Row Convex Constraints
A binary relation Rij represented as a (0,1)-matrix, is row
convex if and only if, in each row, all of the ‘1’s are con-
secutive. If there exists an ordering of the domains of
X1, X2 . . . XN in a path-consistent network of binary con-
straints, such that all the relations can be made row con-
vex, then the network is globally consistent (Van Beek and
Dechter 1995). A globally consistent network has the prop-
erty that a solution can be found in a backtrack-free man-
ner. A (0,1)-matrix is connected row convex if, after re-
moving empty rows and columns, it is row convex and con-
nected (i.e. the positions of the ‘1’s in any two consecu-

75

Figure 3: Shows three scenarios in which random walks are
performed. In an undirected graph, as in (a) and (b), for
any two nodes L and R, T (R,L) + T (L,R) is related to
the “resistance” between them. In (c), p ≤ q at every node,
and T (R,L) is less than that in (b) because of an increased
“attraction” towards L at every node.

may destroy it. This means that row convexity of the origi-
nal set of constraints does not necessarily imply global con-
sistency. CRC constraints avoid this problem by imposing
a few additional restrictions. A (0,1)-matrix is CRC if, af-
ter removing empty rows and columns,3 it is row convex
and connected, that is, the positions of the ‘1’s in any two
consecutive rows intersect, or are consecutive. Unlike row
convex constraints, CRC constraints are closed under com-
position, intersection and transposition—the three basic op-
erations employed by algorithms that enforce PC—hence
establishing that enforcing PC over CRC constraints is suf-
ficient to ensure global consistency (Deville, Barette, and
Hentenryck 1999). Figures 1(a), 1(b) and 2 show examples
to illustrate the properties of CRC constraints.

Random Walks and Expected Arrival Times
In this section, we will provide a quick overview of random
walks and some theoretical properties associated with them.
Figure 3(a) shows an undirected graph (with unit weights
assumed on all edges). A random walk on such a graph in-
volves starting at a particular node, and at any stage, ran-
domly moving to one of the neighboring nodes of the cur-
rent node. A property associated with such random walks on
undirected graphs is that if we denote the expected time of
arrival at some node (say L) starting at a particular node (say
R) by T (R,L), then T (R,L) + T (L,R) is O(mH(L,R)).
Here, m is the number of edges, and H(L,R) is the “re-
sistance” between L and R when the unit weights on the
edges are interpreted as electrical resistance values (Doyle
and Snell 1984).

Figure 3(b) shows a particular case of the one in Fig-
ure 3(a) in which the nodes of the graph are connected in
a linear fashion—i.e., the probabilities of moving to the left
or to the right from a particular node are equal (except at the
end-points). In this scenario, it is easy to note that by sym-
metry, T (L,R) = T (R,L). Furthermore, using the prop-
erty of random walks stated above, if there are n nodes in
the graph, then both T (L,R) and T (R,L) are O(n2).

Figure 3(c) shows a slightly modified version of that in
Figure 3(b) where the graph is directed although it is still
linear. Moreover, there are weights associated with edges
which are interpreted as probabilities in the random walk;

3rows or columns with only ‘0’s

and the weight on 〈s, sleft〉 is, in general, not equal to that on
〈s, sright〉. Here, s is some node in the graph, and sleft and
sright are, respectively, the nodes occurring immediately to
the left and right of it. However, we are guaranteed that
the probability of moving to the left at any node is greater
than that of moving to the right (i.e., p ≤ q). Given this
scenario, it is easy to see that the expected time of arrival
at the left end-point (L), starting at the right end-point (R),
is also O(n2) (if there are n nodes in all). Informally, this
is because at every node, there is an increased “attraction”
to the left compared to that in Figure 3(b); and the expected
arrival time can only be less than that in the previous case.

A Simple Polynomial-Time Randomized
Algorithm for CRC Constraints

In (Kumar 2005c; 2006a), the theory of random walks is
shown to be useful in identifying tractable classes of con-
straints.4 In particular, simple randomized algorithms for
solving CRC constraints are presented in (Kumar 2005c).

The idea is to start with an initial arbitrary assignment to
all the variables from their respective domains and use the
violated constraints in each iteration to guide the search for
the satisfying assignment E∗ (if it exists). In particular, in
each iteration, a violated constraint is chosen, and the rank
of the assignment of one of the participating variables (ac-
cording to the domain orderings) is either increased or de-
creased. Since we know that the true assignmentE∗ satisfies
all constraints, and therefore the chosen one too, randomly
moving along one of the two directions associated with the
‘0’ corresponding to the current assignment E will reduce
the manhattan distance to E∗ with a probability ≥ 0.5.5

Much like the random walk in Figure 3(c), therefore, we
can bound the convergence time to E∗ by a quantity that is
only quadratic in the maximum manhattan distance between
any two complete assignments. (We also note that the man-
hattan distance between two complete assignments E1 and
E2 is at most NK, and 0 if and only if E1 = E2.) See (Ku-
mar 2005c) for more details and further reductions in the
time and space complexities. The total expected running
time of the randomized algorithm is O(γN2K2) where γ is
the maximum degree of any node in the constraint network.6
This complexity matches that of the best algorithms known
for solving CRC problems with high treewidths (Marisetti
2008).

4Also see (Papadimitriou 1991) for similar randomized algo-
rithms for 2-SAT.

5The manhattan distance between two complete assignments
E1 = 〈X1 = v1, X2 = v2 . . . XN = vN 〉 and E2 = 〈X1 =
v′1, X2 = v′2 . . . XN = v′N 〉 is |r(v1) − r(v′1)| + |r(v2) −
r(v′2)| . . . |r(vN) − r(v′N)|. Here, r(v) is the rank of the domain
value v in the corresponding domain.

6Because of the Amplification Lemma, it suffices to analyze a
randomized algorithm using the expected running time (Motwani
and Raghavan 1995). This does not mean that the algorithm works
only on a fraction of the input instances. The algorithm works
on all input instances with the same analysis. The probabilities
are associated with the internal coin flips of the algorithm and are
controlled using the Amplification Lemma.

Algorithm 1: DISTRIBUTED-CRC()
1 Each agent Xi calls INITIALIZE()

Procedure Initialize
2 di = ValInit(Xi)

3 Ri = {〈Xk, ValInit(Xk)〉 | Xk ∈ T (Xi)}
4 ti = 0

5 zi = 0

6 for Xk ∈ T (Xi) do
7 rik = NULL
8 end
9 Send VALUE(Xi, di, ti) to each Xk ∈ T (Xi)

A Simple Polynomial-Time Randomized
Distributed Algorithm for CRC Constraints

In this section, we will generalize the polynomial-time ran-
domized algorithm for solving CRC constraints to work in
distributed settings. The distributed algorithm is described
in Algorithm DISTRIBUTED-CRC and its accompanying
‘Procedures’. The algorithm and procedures are mostly self-
explanatory, but we provide a brief explanation below. With-
out loss of generality, we will assume that each agent Ai

is associated with a unique variable Xi (Yeoh and Yokoo
2012). When there is no scope for confusion, we will useAi

and Xi interchangeably.
Each agent Xi maintains the following data structures:

• Its current value di, which is initialized by ValInit(Xi)—
the first value in the ordered domain of Xi.
• Its current context Ri, which is initialized with all tuples

of its neighbors and their initial values. Ri is Xi’s belief
about the current values of its neighbors.
• Its current time index ti, which is initialized to 0. The

time index is used to synchronize all the agents such that
they progress in synchronized iterations.
• Its random variable zi, which is initialized to 0. zi is used

to ensure that each iteration of the distributed algorithm
has a valid serialization order of its steps in terms of the
centralized random walk strategy.
• Its decision variable rik for each constraint C(Xi, Xk),

which is initialized to ‘NULL’. rik indicates which agent
should change its value if C(Xi, Xk) is violated.
• Its recommended directions possibleDirectionsiik(di, dk)

for changing its current value in accordance with the
property of smoothness forC(Xi, Xk). This is a function
of the current values di of variable Xi and dk of variable
Xk. It is initialized in a pre-processing procedure (Ku-
mar 2005c).7

• Its priority p(Xi), which is used to determine the agent
responsible for “flipping a coin” in order to decide which
variable should change its value when C(Xi, Xk) is vi-
olated. These priorities can be randomly assigned in a
pre-processing procedure. Moreover, no two agents have

7The procedure ELIMINATE-DIRECTIONS (Kumar 2005c) re-
moves the complement of this set.

Procedure When-Rcvd-Value(Xs, ds, ts)
10 Update (Xs, d

′
s) ∈ Ri with (Xs, ds)

11 if received VALUE(Xk, dk, ti) from all Xk ∈ T (Xi) then
12 zi ∼ U(0, 1)

13 for Xk ∈ T (Xi) do
14 if p(Xi) > p(Xk) and C(Xi, Xk) is unsatisfied then
15 possibleDirectionsiik(di, dk) =

suggested directions for Xi in C(Xi ← di, Xk ← dk)

16 if |possibleDirectionsiik(di, dk)| = 0 then
17 rik = Xk

18 else if |possibleDirectionsiik(di, dk)| = 1 then
19 rik = ChooseRandom{Xi, Xk}
20 else
21 rik = Xi

22 end
23 else
24 rik = NULL
25 end
26 Send PROPOSAL(Xi, rik, zi, ti) to Xk

27 end
28 end

the same priority.8

The algorithm starts by each agent making a call to the
initialization procedure. In this procedure, each agent Xi

initializes to its first domain value. Knowing that the other
agents do similarly, Xi also initializes its belief about its
neighbors in Ri. ti, zi and rik are initialized appropriately
as well. Xi then sends a VALUE message to all its neigh-
bors informing them of its current value appropriately time-
stamped. This triggers further computation.

In Procedure WHEN-RCVD-VALUE, Xi first updates Ri.
Then, if it has received VALUE messages from all neighbors
for that iteration ti, it picks a value for zi—for imminent
use—uniformly at random from the interval (0, 1).9 It then
identifies those neighborsXk that share a violated constraint
C(Xi, Xk) for which it is responsible for “flipping a coin”.10

After identifying such Xk, Xi looks at the recommended
directions for change as dictated by the smooth constraint
C(Xi, Xk). If both these directions do not concern Xi, then
we are in an empty column of the matrix representation of
C(Xi, Xk). In such a case, Xk should change its value,
and rik is so assigned. Similarly, if both directions do not
concern Xk, Xi should change its value, and rik = Xi. In
the case that there is a direction for both Xi and Xk, the
choice is made by flipping a fair coin in ‘ChooseRandom’.
Xi sends a PROPOSAL message to Xk suggesting changes.

In Procedure WHEN-RCVD-PROPOSAL, Xi waits to re-
ceive PROPOSAL messages from each neighbor Xk that
shares a violated constraint with it and is of higher priority.
If the message from Xk recommends that Xi should change
its value, it does so modulo checking that zi > zk.11 If there

8The priorities do not affect the behavior of the algorithm. They
are only used to decide which of two agents flips a coin. The out-
come of the coin flip is itself completely random.

9For simplicity of argument, we assume that each sample from
the continuous interval generates a different value.

10By convention, the higher priority agent flips a coin.
11As explained later, this is required to prove the convergence of

Procedure When-Rcvd-Proposal(Xs, rsi, zs, ts)
29 if received PROPOSAL(Xk, rki, zk, ti) from all Xk ∈ T (Xi) where

p(Xk) > p(Xi) and C(Xi, Xk) is unsatisfied then
30 for Xk ∈ T (Xi) where C(Xi, Xk) is unsatisfied and rik = Xi do
31 if zi > zk then
32 possibleDirectionsiik(di, dk) =

suggested directions for Xi in C(Xi ← di, Xk ← dk)

33 if |possibleDirectionsiik(di, dk)| = 1 then
34 di = new value as suggested by
35 the unique possible direction for Xi

36 else
37 di = new value as suggested by
38 ChooseRandom(possibleDirectionsiik(di, dk)) for Xi

39 end
40 break
41 end
42 end
43 end
44 if received PROPOSAL(Xk, rki, zk, ti) from all Xk ∈ T (Xi) then
45 ti = ti + 1

46 Send VALUE(Xi, di, ti) to each Xk ∈ T (Xi)

47 end

is only one recommended direction of change for Xi for a
violated constraint C(Xi, Xk) with rik = Xi, that is sim-
ply followed. If there are two directions, we are in an empty
row or column, and a choice is made with the flip of a fair
coin. The loop breaks after one change is affected for Xi,
and VALUE messages are sent to all neighbors for the next
iteration after all PROPOSAL messages are received.

Correctness and Convergence
The distributed algorithm for solving CRC constraints em-
ploys randomness at various steps. To analyze the ran-
domized distributed algorithm, we can draw intuitions from
the randomized algorithm that solves CRC constraints in a
centralized setting. In this centralized algorithm, although
there might be multiple violated constraints in any iteration,
it does not matter which violated constraint we choose to
guide the random walk. In any iteration, exactly one vari-
able changes its value. This means that all the violated con-
straints that do not contain this variable appear as violated
constraints in the next iteration too.

In the distributed algorithm, multiple variables can change
their values in the same iteration. However, if we simulate
each iteration in this algorithm using a valid sequence of
iterations in the centralized algorithm, then the correctness
of the former is proved. Let the set of violated constraints in
iteration itr of the distributed algorithm be Vd(itr).

We now present a simple graphical way of visualizing the
behavior of the distributed algorithm. This facilitates the
proofs of correctness and other properties of the algorithm.
Consider the constraint network of the problem instance. In
each iteration, some subset of the edges represents the vio-
lated constraints. Now let us analyze the subset of violated
constraints that affect the algorithm in that iteration.

the algorithm by showing that there is a valid serialization order of
the various steps in terms of the random walk strategy.

First, we note that an initial priority is assigned to each
variable. These priorities are used to nominate for each con-
straint, which of the two end-point agents flips a coin to gen-
erate a random bit when that constraint is violated. By con-
vention, we assume that the one with the higher priority does
this task of coin flipping. Of course, the result of the coin
flip is used to decide which agent would be recommended to
change its current value. Because the symmetry is broken in
this way, we can now represent each violated constraint in
iteration itr as a directed edge in the constraint graph. By
convention, the tail of the directed edge represents the agent
recommended to change its value.

From Procedure WHEN-RCVD-PROPOSAL, it is clear
that in any iteration, a variable changes its value at most once
as per one of the recommendations. In our graphical visual-
ization, this means that an agent heeds to at most one of its
outgoing directed edges. Further, consider the subset of vio-
lated constraints and their associated recommendations that
qualify for affecting the values of the variables. The use of
randomly generated z-values in each iteration ensures that
the graphical representation of this subset of violated con-
straints does not have a cycle. Put together, let us call this
“effective” subset of violated constraints as Veff (itr) and
the corresponding DAG induced by it as Geff (itr).

Now because Geff (itr) is a DAG, there exists a topo-
logical ordering on its nodes, starting from a node that has
no incoming edges. Further, since every node has at most
one outgoing edge in Geff (itr), a topological ordering on
the nodes represents a topological ordering on the edges as
well. In turn, this total ordering on the edges represents a
consistent serialization order for simulating the behavior of
the distributed algorithm in iteration itr using multiple iter-
ations of the centralized algorithm. Consider the first edge
and the change of value it recommends for the tail variable.
This recommendation does not change the violation status of
the other constraints in Geff (itr). Repeating this argument
for the 2nd, 3rd, 4th edges, and so on, a consistent serial-
ization is achieved. Of course, the simulation uses the same
outcome of the random coin flips for the centralized algo-
rithm. (It doesn’t matter when the random bits are generated
as far as they are generated independently.)

The correctness of the distributed algorithm is now estab-
lished by its reducibility to a compressed version of the cen-
tralized algorithm. The analysis of the running time of the
distributed algorithm, however, requires further arguments.
In particular, it could be the case that Veff (itr) is empty in
spite of Vd(itr) being non-empty. This stagnates the random
walk for that iteration. We will now show that stagnation
can happen with a probability of at most 0.5 in any iteration.
From the theory of random walks, it is easy to see that prov-
ing this would increase the expected convergence time by a
factor of at most 2. Put together, this would mean that the
expected running time of the distributed algorithm is at most
twice that of the centralized algorithm which is known to be
polynomial. This analysis, of course, is conservative; and as
our experiments show, the distributed algorithm runs much
faster in practice.

To prove that stagnation can happen with a probability of
at most 0.5 in any iteration, we make the observation that

Number of CRC DPOP D-CRC
Agents |X| Runtime (s) Runtime (s) Runtime (s)

15 76.24 241.60 37.26
16 75.92 374.04 39.14
17 76.20 579.26 39.24
18 69.74 1380.36 39.78
19 85.34 1985.18 39.24
20 96.84 19432.08 40.26
21 102.24 timeout 39.94
22 106.60 timeout 40.02
23 112.92 timeout 39.96
24 113.92 timeout 44.08
25 120.26 timeout 43.30

Table 1: Varying Number of Agents |X |: 0.5 density; do-
main size = 3.

Domain CRC DPOP D-CRC
Size |Di| Runtime (s) Runtime (s) Runtime (s)

3 102.04 38538.50 41.54
4 135.66 274822.40 41.80
5 166.38 timeout 42.66
6 181.15 timeout 45.53
7 201.24 timeout 43.92
8 225.58 timeout 45.24
9 234.65 timeout 47.10
10 243.09 timeout 48.80

Table 2: Varying Domain Size |Di|: 21 agents; 0.5 density.

if Vd(itr) is non-empty, it must have at least one violated
constraint C(Xu, Xv). Let’s say that Xu is chosen as the
tail variable. For Xu to remain unchanged in that iteration,
it must reject all recommendations (potentially fromXv and
other variables) based on the z-values. But each such rejec-
tion happens with a probability of 0.5. Therefore, Xu must
change its value and avoid stagnation with a probability of
at least 0.5, hence proving our claim.

Experimental Results and Discussions
In this section, we compare our randomized distributed al-
gorithm (D-CRC) with the centralized algorithm of (Kumar
2005c)12 and DPOP (Petcu and Faltings 2005) (an off-the-
shelf general-purpose state-of-the-art DCSP algorithm).13

We used a publicly available version of DPOP which is
implemented on the FRODO framework (Leaute, Ottens,
and Szymanek 2009). We implemented D-CRC on the
same framework to allow for fairer comparisons. We ran
our experiments on an Intel Xeon 2.40GHz machine with
512GB of memory per run. We measured runtime using
the simulated time metric (Sultanik, Lass, and Regli 2007),
which is a common metric for simulating parallel run-
times in DCR algorithms (Yeoh, Felner, and Koenig 2010;
Hatano and Hirayama 2013; Nguyen, Yeoh, and Lau 2013).
We used the default latency of zero in our experiments.

We evaluated the algorithms on randomly generated fea-
sible CRC problems where we varied the size of the problem
instances by increasing the number of agents N from 15 to
25, the domain size of each agent |Di| from 3 to 10, the
graph density p1—defined as the ratio between the number
of constraints and

(
N
2

)
—from 0.1 to 0.5, and a parameter

that controls the constraint tightness.14

12also abbreviated “CRC” in the tables for convenience
13We chose to compare against DPOP as its implementation is

publicly available.
14Varying the constraint tightness was mostly inconsequential

Graph CRC DPOP D-CRC
Density p1 Runtime (s) Runtime (s) Runtime (s)

0.1 53.54 52.16 31.72
0.2 64.24 204.38 39.66
0.3 77.12 946.36 44.68
0.4 86.64 4943.90 41.42
0.5 95.88 timeout 41.38

Table 3: Varying Graph Density p1: 21 agents; domain size
= 3.

Tables 1-3 provide the results of our experiments. Each
data point is the median over 50 instances. It is easy to
observe the superior performance of D-CRC. DPOP is not
competitive with D-CRC at all. The reason is that DPOP
does not prune any of the search space and needs to eval-
uate all constraints and optimize over them even if a large
portion of the search space is infeasible. Moreover, D-CRC
outperforms even the centralized CRC algorithm by about
a factor of 2 across all parameter settings. The reason for
the speedup is that D-CRC allows multiple agents to con-
currently change their respective values.

One could also possibly use other local search algo-
rithms like MGM (Maheswaran, Pearce, and Tambe 2004)
or DSA (Zhang et al. 2005) to solve CRC problems. How-
ever, unlike D-CRC, the convergence of these algorithms is
not guaranteed.

Conclusions
In this paper, we presented a simple polynomial-time ran-
domized algorithm for solving CRC constraints in dis-
tributed settings. Because CRC constraints encompass such
diverse problems like 2-SAT, implicational constraints, sim-
ple temporal problems, restricted disjunctive temporal prob-
lems (Kumar 2005b), metric temporal problems with do-
main rules (Kumar 2006b), logical filtering and planning
problems (Kumar and Russell 2006), and spatial reasoning
problems (Kumar 2004), our distributed algorithm for solv-
ing them has a number of important applications in problem
solving for multi-agent systems.

Our algorithm is simple to implement, does not compro-
mise privacy by having agents exchange information about
inferred constraints, and does not bear additional overhead
for exchanging knowledge in different formats. Empirically,
our algorithm outperforms DPOP by a large margin and also
performs better than the centralized version. The arguments
used in the proofs generalize to convex optimization prob-
lems. Further, they provide a handle for analyzing the effect
of randomization in solving DCSPs with the inkling that ran-
domization often helps in multi-agent problem solving.

Acknowledgements
This research was partially supported by NSF under grant
numbers HRD-1345232 and IIS-1319966, by ONR under
grant number N00014-09-1-1031, and by the Singapore Na-
tional Research Foundation under its International Research
Centre @ Singapore Funding Initiative and administered by
the IDM Programme Office. The views and conclusions
contained in this document are those of the authors and

for the algorithms.

should not be interpreted as representing the official policies,
either expressed or implied, of the sponsoring organizations,
agencies or the U.S. government.

References
Booth, K., and Lueker, G. 1976. Testing for the consecu-
tive ones property, interval graphs, and graph planarity us-
ing PQ-tree algorithms. Journal of Computer and System
Sciences 13(3):335–379.
Deville, Y.; Barette, O.; and Hentenryck, P. V. 1999. Con-
straint satisfaction over connected row convex constraints.
Artificial Intelligence 109(1–2):243–271.
Doyle, P., and Snell, J. L. 1984. Random Walks and Elec-
trical Networks, volume 22 of Carus Mathematical Mono-
graphs. Mathematical Association of America.
Hatano, D., and Hirayama, K. 2013. DeQED: An efficient
divide-and-coordinate algorithm for DCOP. In Proceedings
of the International Joint Conference on Artificial Intelli-
gence (IJCAI), 566–572.
Kumar, T. K. S., and Russell, S. 2006. On some tractable
cases of logical filtering. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 83–92.
Kumar, T. K. S.; Cohen, L.; and Koenig, S. 2013. Incorrect
lower bounds for path consistency and more. In Proceedings
of the International Symposium on Abstraction, Reformula-
tion and Approximation (SARA).
Kumar, T. K. S. 2004. On geometric CSPs with (near)-linear
domains and max-distance constraints. In Proceedings of
the ECAI Workshop on Modeling and Solving Problems with
Constraints.
Kumar, T. K. S. 2005a. Contributions to Algorithmic Tech-
niques in Automated Reasoning About Physical Systems.
Ph.D. Dissertation, Stanford University.
Kumar, T. K. S. 2005b. On the tractability of restricted dis-
junctive temporal problems. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 110–119.
Kumar, T. K. S. 2005c. On the tractability of smooth con-
straint satisfaction problems. In Proceedings of the Interna-
tional Conference on Integration of AI and OR Techniques
in Constraint Programming (CPAIOR), 304–319.
Kumar, T. K. S. 2006a. Simple randomized algorithms for
tractable row and tree convex constraints. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), 74–
79.
Kumar, T. K. S. 2006b. Tractable classes of metric temporal
problems with domain rules. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 847–852.
Leaute, T.; Ottens, B.; and Szymanek, R. 2009. Frodo:
An open-source framework for distributed constraint opti-
mization. In Proceedings of the International Workshop on
Distributed Constraint Reasoning.
Maheswaran, R.; Pearce, J.; and Tambe, M. 2004. Dis-
tributed algorithms for DCOP: A graphical game-based ap-
proach. In Proceedings of the International Conference on

Parallel and Distributed Computing Systems (PDCS), 432–
439.
Marisetti, S. 2008. Experimental study of algorithms for
connected row convex constraints. Master’s thesis, Texas
Tech University.
Motwani, R., and Raghavan, P. 1995. Randomized Algo-
rithms. Cambridge University Press.
Nguyen, D. T.; Yeoh, W.; and Lau, H. C. 2013. Distributed
Gibbs: A memory-bounded sampling-based DCOP algo-
rithm. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
167–174.
Papadimitriou, C. 1991. On selecting a satisfying truth as-
signment (extended abstract). In Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS),
163–169.
Petcu, A., and Faltings, B. 2005. Dpop: A scalable method
for multiagent constraint optimization. In Proceedings of the
International Joint Conference on Artificial Intelligence.
Sultanik, E.; Lass, R.; and Regli, W. 2007. DCOPolis:
A framework for simulating and deploying distributed con-
straint reasoning algorithms. In Proceedings of the Work-
shop on Distributed Constraint Reasoning.
van Beek, P., and Dechter, R. 1995. On the minimality
and global consistency of row convex constraint networks.
Journal of the ACM 42(3):543–561.
Yeoh, W., and Yokoo, M. 2012. Distributed problem solv-
ing. AI Magazine 33(3):53–65.
Yeoh, W.; Felner, A.; and Koenig, S. 2010. BnB-
ADOPT: An asynchronous branch-and-bound DCOP algo-
rithm. Journal of Artificial Intelligence Research 38:85–133.
Yokoo, M.; Durfee, E.; Ishida, T.; and Kuwabara, K.
1992. Distributed constraint satisfaction for formalizing
distributed problem solving. In Proceedings of the In-
ternational Conference on Distributed Computing Systems
(ICDCS), 614–621.
Yokoo, M., ed. 2001. Distributed Constraint Satisfac-
tion: Foundation of Cooperation in Multi-agent Systems.
Springer.
Zhang, Y., and Marisetti, S. 2009. Solving connected row
convex constraints by variable elimination. Artificial Intelli-
gence 173:1204–1219.
Zhang, W.; Wang, G.; Xing, Z.; and Wittenberg, L. 2005.
Distributed stochastic search and distributed breakout: Prop-
erties, comparison and applications to constraint optimiza-
tion problems in sensor networks. Artificial Intelligence
161(1–2):55–87.
Zhang, Y. 2007. Fast algorithm for connected row convex
constraints. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), 192–197.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2014

	A simple polynomial-time randomized distributed algorithm for connected row convex constraints
	T. K. Satish KUMAR
	NGUYEN DUC THIEN
	William YEOH
	Sven KOENIG
	Citation

	A Simple Polynomial-Time Randomized Distributed Algorithm for Connected Row Convex Constraints

