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Efficient Community Maintenance
for Dynamic Social Networks

Hongchao Qin1,2(B), Ye Yuan2, Feida Zhu1, and Guoren Wang2

1 School of Information Systems, Singapore Management University,
Singapore, Singapore

2 School of Computer Science and Engineering,
Northeastern University, Shenyang, China

qhc.neu@gmail.com

Abstract. Community detection plays an important role in a wide
range of research topics for social networks. The highly dynamic nature
of social platforms, and accordingly the constant updates to the under-
lying network, all present a serious challenge for efficient maintenance
of the identified communities—How to avoid computing from scratch
the whole community detection result in face of every update, which
constitutes small changes more often than not. To solve this problem,
we propose a novel and efficient algorithm to maintain the communities
in dynamic social networks by identifying and updating only those ver-
tices whose community memberships are affected. The complexity of our
algorithm is independent of the graph size. Experiments across varied
datasets demonstrate the superiority of our proposed algorithm in terms
of time efficiency and accuracy.

Keywords: Community detection · Dynamic · Heuristic · Modularity

1 Introduction

Communities are groups of network nodes, within which the links connecting
nodes are dense but between which they are sparse. In many applications, the
structure of networks evolves over time, so do the communities in them. Most
existing works [1,3] identify communities in a static network. They define an
objective function Q which measures the quality of the communities. As the
number of all possible partitions of nodes [5] is exponential of the network size,
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it is NP-hard to obtain the communities with the maximum Q. Heuristic algo-
rithms, such as [2], are therefore usually proposed as a solution. Yet those algo-
rithms typically need to recompute the entire result for each network change,
even through the change affects only a small number of vertices, which renders
the detection computationally unaffordable for graphs that are large and evolve
fast.

We propose a novel algorithm to maintain communities in dynamic social
network by identifying and updating only those communities affected in graph
evolution. The complexity of our algorithm is independent of the graph size.
We conduct extensive experiments on various datasets and demonstrate the effi-
ciency and accuracy of our approach.

Consider an undirected graph G = (V,E). Let n = |V | and m = |E| be the
number of vertexes and the number of edges in G. The most general method of
detecting communities is to maximize the quality function Q [3].

Definition 1 (Modularity). Given a social network G and the partition CG =
{C1

G, C2
G...Ck

G}. The modularity is a quality function of the community struc-
ture, it can be denoted by Q and

Q(CG) =
k∑

i=1

(
l(Ci

G)
m

− (
d(Ci

G)
2m

)2) (1)

where l(Ci
G) is the total number of edges joining vertexes inside community Ci

G

and d(Ci
G) is the sum of the degrees of all the vertexes {Vi‖Vi = Ci

G

⋂
V } in G.

And Q(Ck
G) denotes single modularity of Ck

G.

Definition 2 (Dynamic Social Network). A dynamic network G is repre-
sented by a series of time dependent network snapshots

G = {G0, G1, G2, ...Gt, Gt+1, ...}

where G(t) = (Vt, Et) is the snapshot of the network at the time point t. The
differences between two consecutive snapshots Gt+1 and Gt is denoted by ΔGt,
which contain nodes’ insertions(deletions) and edges’ insertions(deletions).

Problem Definition. The goal of the community maintenance problem is to
update the communities of all the vertexes in G when the graph G is changed
by inserting or deleting edges (all the nodes’ insertions or deletions can trans-
form into edges’ insertions or deletions). It means that given the dynamic social
network G = {G0, G1, ...Gt, Gt+1, ...} and the communities at t time CGt

, the
community structure at time point t + 1 is detected based on the community
structure at the time point t and the changes ΔGt. And ΔGt is split into a
sequence of only one edge’s insertion or deletion so it is easy to consider.
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2 The Proposed Algorithm

Algorithm for Edge Insertion: There are three kinds of edge insertion.
When one vertex of the edge is a new vertex, we can simply join this node to

the community of the other side’s. There may have new edges containing the new
node, but we can match the later insertion with the following sub-algorithms.

When both sides of the new edge are in one community, if we don’t change
the community partition, the modularity will increase. It can be proved that we
can not divide the community to have higher modularity.

When the two vertexes of the edge are in different communities, after the
insertion, the communities may not change, or the two vertexes will be added
to a new community. We can mark the most possible common community as
Ccommon(u, v), and it has the largest number of same neighbours for vertex u
and v, i.e., Ccommon(u, v) = {Ci

Gt
∈ CGt

‖argmax(|N(u)∩Ci
Gt

|+ |N(v)∩Ci
Gt

|)}.
After the insertion of edge (u,v), we can join both u and v in Ccommon(u, v)

and the modularity will increase if there holds a inequation and the complexity
checking it is independent with the graph size. If the modularity increase after
joining both u and v in Ccommon(u, v) (marked as Cc), then we have

Q(Cc ∪ u ∪ v) +Q(CGt (u)\u) +Q(CGt (v)\v) > Q(Cc) +Q(CGt (u)) +Q(CGt (v)) (2)

Considering the definition of Q, formula 2 can be transformed to an simple
inequation and the complexity checking it is independent with the graph size.

If the inequations in formula 2 do not hold, the modularity will not increase
whatever community the vertex u and v join in.

Algorithm for Edge Deletion: There are two kinds of edge deletion.
When the two vertexes of the edge are in different communities, we can

simply remain the communities unchanged. The number of the inside edges of
CGt

(u) and CGt
(v) will not change after the deletion of edge (u, v), and the sum

degree of all the vertexes in CGt
(u) and CGt

(v) will increase, so the modularity
will increase if the communities don’t change.

When vetex u, v are in the same community C∗, after the deletion of edge
(u,v), we split the community into two parts {C∗

1 , C∗
2} and the modularity will

increase if the number of edges between the two partions is not larger than
one equation. Suppose that the number of edges between the two partions is
d(C∗

1 , C∗
2 ). If we need to split the community, it’s obvious that u, v are in different

community of {C∗
1 , C∗

2} and there holds Q(C∗
1 ) + Q(C∗

2 ) > Q(C∗). Then we
can take

d(C∗
1 , C∗

2 ) >
d(C∗

1 )d(C∗
2 ) − d(C∗

1 ) − d(C∗
2 ) + 1

2(m − 1)
− 1 (3)

The formula 3 is easy to calculate. If it holds, we can split the community C∗

into two parts, otherwise we need not to change it.

3 Experiments

In the experiments, we collect four real world datasets named Blogs (6,803 edges),
ego-Facebook (88,234 edges), soc-Epinions1 (508,837 edges) and com-DBLP
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(1,049,866 edges). We get all the datasets from [4] and conduct the experiments
on a server with Intel Core i7 @3.6 GHz CPU and 16 GB RAM.

We can use the FNM (Fast Newman) algorithm [5] to get the communities of
G0 in the static network. And we compare our method, marked as CM (Commu-
nity Maintenance), with FNM and the QCA (Quick Community Adaptive) [6,7]
algorithm in dynamic network. To maintain the communities in the network,
we need to emulate changes to the graph. Suppose that from Gt to Gt+1, five
percent numbers of the nodes change. So we randomly insert or delete nodes to
modify the graph as large as 5 % between each point.

Accuracy: We investigate the accuracy of the algorithm. As the FNM algorithm
compute completely in every step, the modularity of the graph is a little much
higher than the other algorithms. But they can only get a approximation value
of the modularity and the difference is small in both algorithms. From the result,
we can know that our algorithm have good accuracy.

Efficiency: In terms of efficiency, we report the time cost of maintaining com-
munities from Gt to Gt+1. Figure 1 shows the running time of the algorithms.
We can see that the speed of our method CM is faster than the QCA algorithm.
But the cost of FNM is not acceptable if the original graph is large.

Fig. 1. Running time Fig. 2. Scalability of our algorithm CM

Scalability: To show the scalability of our algorithm, we average the running
time of updating the communities from Gt to Gt+1 with t ranges from 1 to 10 in
different datasets. From Fig. 2, we can see that our algorithm CM perform well
with the size of the dataset becomes larger.

4 Conclusion

We propose an efficient algorithm for maintaining the communities in dynamic
social networks. We split the changes of the graph into edge insertions or dele-
tions and discuss how they influence the communities. Extensive experiments
demonstrate the efficiency and accuracy of our algorithm.
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