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Abstract—This paper investigates the problem of online active
learning for training classification models from sequentially
arriving data. This is more challenging than conventional online
learning tasks since the learner not only needs to figure out
how to effectively update the classifier but also needs to decide
when is the best time to query the label of an incoming instance
given limited label budget. The existing online active learning
approaches are often based on first-order online learning methods
which generally fall short in slow convergence rate and sub-
optimal exploitation of available information when querying
the labeled data. To overcome the limitations, in this paper,
we present a new framework of Second-order Online Active
Learning (SOAL), which fully exploits both first-order and
second-order information to achieve high learning accuracy with
low labeling cost. We conduct both theoretical analysis and
empirical studies for evaluating the proposed SOAL algorithm
extensively. The encouraging results show clear advantages of the
proposed algorithm over a family of state-of-the-art online active
learning algorithms.

I. INTRODUCTION

Online learning represents a family of efficient and scalable
machine learning algorithms which are promising for large-
scale learning tasks from big data streams [1]–[6]. Online
learning typically works in a sequential manner. Consider
online binary classification as an example. At time t, the
learner receives an instance xt from the environment, and
then makes a prediction of its class label ŷt = sign(f(xt)).
After making the prediction, it often assumes the true label
yt ∈ {+1,−1} will be revealed from the environment, and
then make an update of the classifier whenever necessary (e.g.,
wrongly classified ŷt 6= yt or other criteria). In contrast to
traditional batch learning that often suffers from expensive re-
training cost when new training data comes, online learning
avoids re-training and learns incrementally from data streams
in an efficient and scalable way.

Although various online learning algorithms have been pro-
posed over the past decades [1], [7], conventional supervised
online learning methods often assume the feedback (e.g., the

∗ This work was done when the first author was with Nanyang Technolog-
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class label in a classification task) is always revealed to the
learner at the end of each iteration. However, this is not
always true for many real applications where data streams
could be unlabeled and the manually labeling cost could be
quite expensive in many scenarios. For example, in the social
media, data usually comes with a high speed and volume,
which usually makes labeling all of the instances costly and
nearly infeasible. This has raised the challenging problem
“online active learning”, which aims to maximize the learning
efficacy while minimizing human labeling cost in stream data
classification.

Some existing studies have attempted to address the chal-
lenge. A pioneering study is the “Perceptron-based active
learning” [8], where the learner decides when to query by
drawing a Bernoulli sampling of random variable Zt ∈ {0, 1}
with parameter δ/(δ+ |pt|), where |pt| is a form of prediction
margin and δ > 0 is a sampling parameter. If Zt = 1, the
learner will then place a query. The similar approach has
also been used by the online Passive Aggressive (PA) active
learning in another recent study [9]. Despite their simplicity,
these algorithms often suffer some critical limitations. First,
they often adopt first-order online learning algorithms for
training. Second, as the margin |pt| only depends on the
classifier wt, the query strategy would be sub-optimal when
the classifier wt is not precise, particularly in the early rounds
of online learning.

To overcome these limitations, we present a new Second-
order Online Active Learning (SOAL) algorithm, which ex-
plores second-order online learning techniques for both train-
ing the classifiers and forming the query strategy. Specifi-
cally, the proposed SOAL adopts Adaptive Regularization Of
Weights (AROW) algorithm [10] as the classifier, and devises
an effective query strategy by exploiting both margin and
second-order confidence information. We analyze the mistake
bound of the SOAL algorithm in theory, and further validate
its effectiveness via extensive empirical studies, which show
the high scalability and efficacy of the proposed algorithms.

The rest of this paper is organized as follows. Section II



gives a brief overview of related work in literature. Section
III presents the proposed SOAL algorithm and analyzes its
mistake bound. Section IV discusses the results of our empir-
ical studies, and finally Section V concludes this work.

II. RELATED WORK

Our work is related to two major groups of studies in ma-
chine learning literature: online learning and active learning.

A. Online Learning

Online learning has been extensively studied in machine
learning community [11]. Consider supervised online learning
tasks, there are two major groups of studies: (i) first-order
online learning, where only the first-order feature information
is exploited. Example algorithms include Perceptron [11]
and Passive-Aggressive (PA) algorithms [12], Online Gradient
Descent, etc; (ii) Second-order online learning, where second-
order information, such as covariance matrix of features, is
exploited. Example algorithms include the Second-Order Per-
ceptron (SOP) [13], Confidence-Weighted (CW) learning [14],
and the Adaptive Regularization Of Weights (AROW) algo-
rithm [10], etc. Most of these methods often assume a fully
supervised learning settings, where the class label is always
revealed to the learner at the end of each learning iteration,
a scenario which is not always realistic for many real-world
applications.

B. Active Learning

Active learning is a family of machine learning technique
for actively querying informative unlabeled data to improve
learning efficacy while reducing overall labeling cost. It has
been extensively studied in machine learning literature [15],
[16]. Existing active learning techniques could be generally
grouped into four categories: uncertainty-based [17], searching
through the hypothesis space [18], minimizing the expected
error and variance on the pool of unlabeled instances [19], and
exploiting the structure information [20] among the instances.
More about batch active learning studies can be found in the
comprehensive survey [21].

Batch-based active learning algorithms have shown promis-
ing results in reducing labeling cost on several applications,
such as text classification, image recognitions and abnormal
detection and so on. However, most of them require that
all of the data should be prepared firstly before the active
learning process. This makes them infeasible in some real-
world applications, such as in online social media, data usually
comes sequentially. To overcome this challenge, researchers
has studied online active learning (OAL) [6], [9], [22] , also
known as selective sampling, which aims to tackle the learning
on data streams by combining both the efficiency of online
learning and the effectiveness of active learning. However,
the existing works often suffer from two major limitations.
First, the learning efficacy (in terms of accuracy) of these
algorithms is limited as most of them adopt first-order based
online learning algorithms. Second, their active query strategy
often strongly rely on the weight vector, which may be not

precise in the early rounds of online learning. The work in
this paper aims to tackle these limitations by proposing a new
online active learning method going beyond the existing first-
order learning approaches.

III. SECOND-ORDER ONLINE ACTIVE LEARNING

In general, there are two open challenges with an online
active learning task: (i) how to devise an effective query strat-
egy that queries the most informative unlabeled example for
training; and (ii) how to update the classifier more effectively
once a query has been placed and the feedback is revealed to
the learner. In the following, we present a new framework of
Second-order Online Active Learning.

A. Problem Formulation

Without loss of generality, consider a learning for a typ-
ical online binary classification task. At time t, a learner
iteratively learns from a sequence of training instances
{(xt, yt) |t = 1, . . . , T}, where xt ∈ Rd is the feature vector
of the i-th instance and yt ∈ {−1,+1} is its true class label.
The goal of online binary classification is to learn a linear
classifier f(wt) = sign(w>t xt), where wt ∈ Rd is the weight
vector at the t-th round.

Unlike regular supervised online learning, when receiving
xt, online active learning needs to decide whether to query
its true label yt. If the true label is queried, the algorithm can
adopt regular online learning techniques to update the model
wt. Otherwise, the algorithm will ignore the instance and
process the next instance. In this way, online active learning
aims to query the true labels of a small fraction of informative
instances, and at the same time achieves a comparable accu-
racy with the regular online learning algorithms which query
the true labels of all the instances.

In this article, we assume the model follows a Gaussian
distribution [23], i.e., w ∼ N (µ,Σ) and predicts the label
ŷt = sign(pt), where pt = w>xt. In practice, however, it is
often easier to simply use the average weight vector µ = E[w]
to make predictions. The values µi and Σi,i encode the model’s
knowledge of and confidence in the weight for i-th feature wi:
the smaller the value of Σi,i is, the more confident the learner
is in the mean weight value µi. The covariance term Σi,j
captures interactions between wi and wj .

B. SOAL Algorithm

The proposed algorithm mainly consists of two parts: 1) how
to update the model when the true label is obtained, and 2)
when to query the label of an unlabeled instance. We discuss
each issue in detail below.

1) How to Update: At the t-th round, if the true label yt of
xt is provided, we will update the distribution by minimizing
the following objective function

Ct(µ,Σ) = DKL(N (µ,Σ)‖N (µt,Σt)) + ηg>t µ+
1

2γ
x>t Σxt,

where

DKL(N (µ,Σ)‖N (µt,Σt))

=
1

2
log

(
detΣt

detΣ

)
+

1

2
Tr(Σ−1

t Σ) +
1

2
‖µt − µ‖2

Σ−1
t
− d

2
,



gt = ∂`t(µt) = −ytxt, and `t(µt) = max(0, 1− ytµTt xt) is
the hinge loss function adopted. η, γ are positive parameters.
This objective has three terms. The first term is to keep the new
model not far away from the previous model. The second term
is to minimize the (linearized) loss of the new model on the
current example. The final term is to optimize the confidence
of the model.

When `t(µt) > 0, we solve the above minimization in the
following two steps:
• Update the confidence matrix parameters:

Σt+1 = arg min
Σ
Ct(µ,Σ);

• Update the mean parameters:

µt+1 = arg min
µ
Ct(µ,Σ);

For the first step, by setting the derivative to zero, i.e.,
∂ΣCt(µ,Σt+1) = 0, we can derive the closed-form update:

Σt+1 = Σt −
Σtxtx

>
t Σt

γ + x>t Σtxt
, (1)

where the Woodbury identity is used.
For the second step, by setting the derivative to zero, i.e.,

∂µCt(µt+1,Σ) = 0, we can derive the closed-form update:

µt+1 = µt − ηΣtgt, (2)

Since the update of the mean relies on the confidence parame-
ter, we try to update the mean based on the updated covariance
matrix Σt+1, i.e.,

µt+1 = µt − ηΣt+1gt, (3)

which should be more accurate than the update in Equation (2).
To intuitively explain the above updating Equation (3), let
us assume Σt+1 is a diagonal matrix. Then, this update
rule actually assigns different feature dimension with different
learning rate, so that the less confident weights will be updated
more aggressively. In order to handle high-dimensional data,
we can only keep the diagonal elements of Σ, and the updating
rules in Equation (1) and (3) becomes

Σt+1 = Σt −
Σt � xt � xt �Σt

γ + (xt �Σt)>xt
, (4)

µt+1 = µt − ηΣt+1 � gt, (5)

where � denotes the element-wise multiplication.
2) When to Query: For each incoming instance xt, we

consider two factors when designing a query strategy for active
learning.

The first factor is the margin value |pt| = |µ>t xt|, which
represents how far the instance is away from the decision
boundary of the current classifier wt. The larger the value
of |pt| is, the more certain the classifier is about its prediction
on the instance xt.

The second factor is the confidence value of the model

ct =
−ηγvt

2(γ + vt)
=

1

2

−η
1
vt

+ 1
γ

,

Algorithm 1 SOAL:Second-order Online Active Learning.

Input: learning rate η; regularization parameter γ,
Initialize: µ1 = 0, Σ1 = I .
for t = 1, . . . , T do

Receive xt ∈ Rd;
Compute pt = µ>t xt, vt = x>t Σtxt and ct = −ηγvt

2γ+2vt
;

Compute ρt = |pt|+ ct;
if ρt > 0 then

Draw Bernoulli random variable Zt ∈ {0, 1} of param-
eter δ

δ+ρt
else
Zt = 1;

end if
if Zt = 1 then

Query yt ∈ {−1,+1};
Compute `t(µt) = [1− ytx>t µt]+;
if `t > 0 then

Update model with Eq. (1) or (4), and (3) or (5)
end if

end if
end for

where vt = V ar[w>t xt] = x>t Σtxt models the variance of
the model on xt. In other words, vt characterizes how often xt
is seen by the classifier till the t-th round. When vt is large
(ct is small, the model is not confident on the classifier), it
means the classifier has not been well trained on the instances
which are similar to xt so far, and it’s necessary to place high
probability to query the true label of xt. When vt is small (ct
is large, and the model is more confident on the classifier), it
means the classifier has well trained on the instances which
are similar to xt so far, and we should place a low chance to
query the true label of xt.

By combining these two terms together, we can compute
the term

ρt = |pt|+ ct. (6)

There are two cases to be considered. When ρt ≤ 0, which
means the model is least confident on the trained classifier, we
will always query the label of instance no matter how large
|pt| is. Compared to the traditional query strategy [8], [9], a
large value of |pt| always results in a small query probability,
no matter how unreliable the trained classifier is, our proposed
strategy is more reasonable.

When ρt > 0, the model is confident on the trained
classifier (ct is large), the margin value |pt| computed based
on the trained weight vector is more reliable. In this situation,
we draw a Bernoulli random variable Zt ∈ {0, 1} of parameter
δ

δ+ρt
, where δ > 0 is a smoothing parameter . Here, ρt

contains both the first-order information pt and the second-
order information vt, which is more reliable than the margin
value pt alone. Formally,
• If ρt ≤ 0, query yt;
• Else ρt > 0, draw a Bernoulli random variable Zt ∈
{0, 1} of parameter δ

δ+ρt
;



– If Zt = 1, query xt for true label yt;
– Else Zt = 0, discard xt.

In summary, the proposed query strategy balances the trade-
off between the uncertainty of instance and the confidence of
model on the trained classifier.

Finally, Algorithm 1 summarizes the proposed algorithm.

C. Theoretical Analysis

To be concise, we introduce two notations:

Mt = I(ŷt 6= yt), Lt = I(`t(µt) > 0, ŷt = yt).

Next we would analyze the performance of the proposed
algorithm in terms of expected mistake bound E[

∑T
t=1Mt].

Theorem 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of input
examples, where xt ∈ Rd and yt ∈ {−1,+1} for all t. If the
SOAL algorithm is run on this sequence of examples, then the
expected number of prediction mistakes made is bounded from
above by the following inequality, for any vector µ ∈ Rd,

E

[
T∑
t=1

Mt

]

≤ E

[
T∑
t=1

Zt`t(µ)

]
+
Dµ + (1− δ)2‖µ‖2

ηδ
Tr(Σ−1T+1)

+
1

δ
E

[∑
ρt<0

ηγvt
(γ + vt)

]
+

2

δ
E

[∑
ρt>0

Lt

]
− E

[
T∑
t=1

Lt

] (7)

where δ > 0, Dµ = maxt≤T ‖µt − µ‖2.

Remark: First, when γ = 1, E
∑
ρt<0

γvt
(γ+vt)

≤∑d
i=1 ln(1 + λi), where the right hand side is used in the

Theorem 3 of [22], which implies our term is better.
Second, since

E
∑
ρt<0

γvt
(γ + vt)

≤ E
∑
t

γvt
(γ + vt)

≤ γE ln(
∣∣Σ−1T+1

∣∣),
if η =

√
(Dµ+(1−δ)2‖µ‖2)Tr(Σ−1

T+1)

γ ln |Σ−1
T+1|

, we have the following

expected mistake bound,

E

[
T∑
t=1

Mt

]

≤ E
T∑
t=1

Zt`t(µ) +
2

δ
E

[∑
ρt>0

Lt

]
− E

[
T∑
t=1

Lt

]

+
2

δ

√
Dµ + (1− δ)2‖µ‖2

√
γTr(Σ−1T+1) ln

∣∣Σ−1T+1

∣∣.
(8)

IV. EXPERIMENTS

A. Compared Algorithms and Experimental Testbed

To evaluate the proposed algorithms, we compare it with
several state-of-the-art algorithms, which are listed as follows:
• “APE”: the Active PErceptron algorithm [8];
• “APAII”: the state-of-the-art first-order Active Passive-

Aggressive algorithm [9];

• “ASOP”: the state-of-the-art Second-Order Active Per-
ceptron algorithm [22];

• “SOL”: the passive version of SOAL algorithm which
queries all of the instances;

• “SORL”: the random version of SOAL algorithm with
random query strategy;

• “SOAL-M”: the margin-based SOAL algorithm which
adopt the query strategy same as in APE, APAII and
ASOP;

• “SOAL”: our proposed Second-order Online Active
Learning in Algorithm 1.

To examine the performance of proposed algorithm, we
conduct extensive experiments on a variety of benchmark
datasets from machine learning repositories. Table I shows
the details of datasets used in the following experiments. All
of these datasets can be freely downloaded from LIBSVM
website 1 and UCI machine learning repository 2.

TABLE I: Summary of datasets in the experiments.

Dataset # Instances # Features Source
a8a 32,561 123 LIBSVM

covtype 116,405 54 LIBSVM
HIGGS 11,000,000 28 LIBSVM

kddcup99 494,012 41 UCI
letter 20,000 16 LIBSVM

magic04 19,002 10 UCI

All the compared algorithms learn a linear classifier for
the binary classification tasks (The multi-class datasets are
changed into binary datasets with one-vs-all strategy). The
parameters of each algorithm are searched from 10[−5:5]

through cross validation for all datasets. The smoothing pa-
rameter (determining the query ratio) δ is set as 2[−10:10] in
order to examine varied querying ratios. All the experiments
were conducted over 20 runs of different random permutations
for each dataset. All the results were reported by averaging
over these 20 runs. The algorithms are evaluated in terms of
accuracy and time complexity.

All of the algorithms are implemented with C++ language,
and all of following experiments are conducted in a Ubuntu
OS 64 bit PC with Intel Core i7-4770 CPU @ 3.40GHz × 8
and 16 GB memory.

B. Evaluation of Varied Query Ratio

In this experiment, we investigate the performance of pro-
posed algorithm SOAL with varied query ratio by setting
different δ. Fig. 1 summarizes the average performance on
eight different datasets in terms of accuracy. Based on the
results, we can made several observations.

First, on most of the cases, second-order based OAL algo-
rithms (SOAL-M and SOAL) can outperform the first-order
based OAL algorithms (APE and APAII). This is consistent
with the results found in [10], [14] and confirms the necessity

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
2http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Fig. 1: Evaluation of accuracy with respect to log of varied query ratio.

of considering second-order information to improve the pre-
dictive performance. Active Second-order Perceptron (ASOP)
algorithm usually performs better than the first-order based
Active Perceptron (APE) algorithm, which is consistent with
the finding in [22]. However, on half of the cases, ASOP even
performs worse than the first-order algorithm APAII, which
makes it usually as a baseline.

Second, compared to the algorithm SORL which adopt
the random query strategy, both the margin-based algorithm
SOAL-M and SOAL algorithms proposed in this article can
consistently achieve better performance. This observation indi-
cate that both the margin-based query strategy in SOAL-M and
our proposed query strategy in SOAL are effective to identify
more informative instances to label thus can greatly reduce the
cost in labeling.

Third, compared to the margin-based query strategy in
SOAL-M, our proposed strategy in SOAL can consistently
achieve higher accuracy with varied query ratio on all of
the datasets. Compared to SOAL-M, we have imported a
second term to evaluate how well the classifier is trained
on t-th iteration. By considering both the margin-value and
the confidence of us on the model, SOAL can identify the
instances on which the model has low uncertainty on its
predication and low confidence on the learned classifier, such
as in the early rounds of online learning. Besides, we observe
that the SOAL can achieve comparable performance as SOL
by querying less than 20% of the instances.

These observations make the proposed SOAL algorithm
attractive in building real-world large-scale applications. Con-

sidering recommendation in social media for an example, data
is usually coming with a high speed and volume. To label every
data is usually costly and impossible. The proposed SOAL
can quickly identify more informative instances to query thus
greatly reducing the labeling cost by querying only a few of
the instances. Meanwhile, the proposed algorithm also enjoy
the efficacy of second-order online learners.

C. Evaluation of Scalability and Efficiency

Time complexity is usually a major concern for large-scale
problems, to evaluate the scalability of the proposed algorithm
SOAL, we conducted this experiment to show the time cost
corresponding to the log of varied query ratio on two datasets
in Fig. 2. Similar observations also could be made on the other
datasets.

First, as expected, the first-order based algorithms APE
and APAII are the most efficient ones among all algorithms,
which only cost less than 0.5 seconds when being trained on
all of the instances. This confirms that the first-order online
learning scheme is efficient and easy to be scalable to large
scale applications. And we also observe that the second-order
based algorithms (ASOP, SOL, SORL, SOAL-M and SOAL)
typically cost more time due to the computation of the second-
order information Σ. Among them, AOSP usually requires
more time, which is almost two times of the other second-order
algorithms (SOL, SORL, SOAL-M and SOAL). Moreover, the
proposed algorithm SOAL costs more time than its random
version SORL and the margin-based SORL-M algorithms due
to the computation of the query strategy shown in Equation 6.



Second, compared to the passive version SOL, the time
complexity of both the random algorithm (SORL) and active
algorithms (SOAL-M and SOAL) is smaller when query ratio
is less than 100%. The reason is that we will skip to update
the model if the label of an instance is not queried. When
query ratio increases, the time cost of these algorithms slowly
approach to the SOL as expected. This indicated that the
proposed algorithm SOAL can not only reduce the labeling
cost shown in Fig. 1, but also can speed up the training process
by updating the model with the queried instance alone.

Third, when query ratio is around 100%, the time cost of
SOAL exceeds the one of SOL as SOAL needs extra time
to compute the query strategy. However, the extra time cost
could be almost ignored considering the high efficiency of the
online learning scheme.
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Fig. 2: Evaluation of time cost (seconds) with respect to log
of varied query ratio.

V. CONCLUSION

In this paper, we proposed a new framework of online
active learning, named as Second-order Online Active Learn-
ing (SOAL) to overcome the labeling challenge of existing
algorithms. We theoretically analyzed the mistake bound of
the proposed SOAL algorithm and conducted a set of extensive
experiments to examine its empirical effectiveness. For future
work, we plan to explore some self-tuned learning strategy
for automatically re-adjusting the parameters γ and η on the
learning process. Besides, we also plan to investigate online
active learning for AUC maximization [24], active learning for
parallel computing [25].
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