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Abstract—Profitable tour problem (PTP) belongs to the class
of vehicle routing problem (VRP) with profits seeking to maximize
the difference between the total collected profit and the total cost
incurred. Traditionally, PTP involves single vehicle. In this paper,
we consider PTP with multiple vehicles. Unlike the classical VRP
that seeks to serve all customers, PTP involves the strategic-level
customer selection so as to maximize the total collected profit and
the operational-level route optimization to minimize the total cost
incurred. Therefore, PTP is essentially the knapsack problem at
the strategic level with VRP at the operational level. That means
the evolutionary bi-level programming would be a suitable choice
of methodology for solving the NP-hard PTP. Employing some
evolutionary method to solve the bi-level program naively would
undoubtedly be prohibitively expensive. We thus present in this
paper the notion of knowledge adoption to approximate the initial
solution to the lower-level optimization problem for a given trial
solution of the upper-level decision variables. One may consider
the knowledge adoption as a special case of knowledge transfer in
which the transfer takes place within the same problem domain.
Refining the approximate initial solution with local search causes
it to quickly converge to some locally optimal solution. The better
the estimation of the initial solution, the closer the local optimum
will be to the global one. PTP finds its important application in
the fields of transportation and logistics. In addressing last-mile
problem using auction at the urban consolidation center (UCC),
PTP plays a significant role in the winner determination problem
(WDP). Our computational study demonstrates the efficacy of
the proposed approach in solving the PTP-based WDP, yielding
significantly higher profit, utilization, and service level than when
the UCC use the conventional WDP based on multiple knapsack
problem (i.e. the MKP-based WDP).

I. INTRODUCTION

First proposed by Dantzig and Ramser [1] in 1959, vehicle
routing problem (VRP) is an important optimization problem
in the fields of transportation and logistics. It seeks to service
a number of customers with a fleet of vehicles while incurring
the minimum cost possible. Numerous variants of the original
problem has been considered to-date [2].

More recent extension to the VRP is the VRP with profits
(VRPP) where a profit level is associated with every customer
to serve. Unlike the classical VRP, VRPP allows the selection
of customers to serve in order to maximize the total collected
profits or the difference between the total collected profits and
the total costs incurred. In the reality, resources are generally
limited. Given a fleet of vehicles, there can only be some finite
number of customers served within a time period. Selection of
customers to serve is therefore practical. In the e-marketplace
or via an e-auction, plenty of requests to deliver spot loads can
be found or obtained. Logistics service providers—hereinafter,
will be referred to as carriers—must determine which requests
if served will be most profitable to them while being subjected
to the capacity of their fleets of delivery vehicles. Highlighted
in some surveys [3][4], VRPP finds its applications in logistics
[5][6][7][8], manufacturing [9][10], and tourism industry [11],
among others. There exist three generic problems in this class,
differing from one another by the objective and the constraint.

• Orienteering problem (OP) maximizes the total profit
subject to the route duration. Its extension to multiple
vehicles is called team orienteering problem (TOP).

• Price-collecting traveling salesman problem (PCTSP)
minimizes the total cost subject to the collected profit.

• Profitable tour problem (PTP) aims at maximizing the
difference between the total collected profit and the
total cost incurred.

Among the three generic problems in the class of VRPP,
we focus our work on the multi-vehicle PTP. With an objective
of maximizing the difference between the total collected profit
and the total cost incurred, PTP represents a realistic scenario
in the transportation and logistics businesses. PTP is especially
relevant when dealing with the final segment of goods delivery
from a freight station or port to their final destinations in some
congested urban areas. Congestion has increased the travel cost



in urban areas, which is a bad news for fragmented deliveries.
In addressing the congestion issue, the local government may
set up rules and regulations to provide better living conditions
to the residents. However, from the perspective of the carriers,
this usually complicates the planning of their last-mile delivery.
Often, waiting time becomes inevitable, increasing the delivery
cost even further. As the matter of fact, up to 28% of the total
delivery cost is contributed by the cost to perform the last-mile
delivery. With thinning profit margins due to the ever-growing
competition, it is important to include the considerable delivery
cost in the objective of the decision makers. Such high cost of
the last-mile delivery is commonly referred to as the last-mile
problem [12].

An urban consolidation center (UCC) provides a potential
solution to the last-mile problem. Carriers can engage the UCC
to perform the last-mile delivery on their behalf. At the UCC,
the deliveries are sorted based on their destinations. Deliveries
with the same destination or to destinations within some close
proximity are consolidated into truckload. Some cost-saving is
thus attainable thanks to the less-fragmented deliveries. Most
(if not all) UCCs employ the volume-based fixed-rate charges.
Setting the correct rate is crucial for the financial sustainability
of the UCC. However, it is not easy to identify the optimal one.
Handoko, et al. [13] proposed a profit-maximizing auction to
enhance the financial sustainability of the UCC.

The main idea of that UCC auction is to let carriers name
their prices to get their last-mile deliveries served by the UCC.
In the auction, the UCC first invites the interested carriers to
participate. The UCC then keeps the auction open for a fixed
period of time, during which carriers can submit their bids if
they are interested. In each bid, the destination and volume of
the goods to deliver is specified. Additionally, the price named
by the owner of the goods is stated. This is the price offered
to the UCC to serve that particular delivery. Carriers engaging
the UCC to serve their last-mile deliveries no longer need to
enter the congested urban area. This gives them some amount
of cost-savings, based on which the bid prices are determined
by the participating carriers. Depending on the willingness of
these carriers to share some of their anticipated cost-savings,
price offers of various amount may be received by the UCC.
At the end of the auction, the UCC determines which and how
deliveries can be consolidated to produce the maximum profit,
and subsequently, decides the schedule using which deliveries
in each individual vehicle are to be served.

To determine the winners of the auction, the UCC assumes
zone-based consolidation for the sake of simplicity. This would
require the delivery area to be distinguished into a number of
non-overlapping zones and each individual destination within
the delivery area to be assigned to exactly one zone. With this,
consolidation are then restricted to deliveries within the same
zone only. Delivery cost to a particular zone is assumed to be
representable by a single fixed cost estimate. This is the cost
of operating one vehicle to deliver to that zone. Subtracting
this cost estimate from the sum of the prices offered earlier
to the UCC for serving those deliveries consolidated into that
vehicle produces the profit of that particular consolidation. To
determine the winners, the UCC then finds the selection that
leads to the maximum total consolidation profit. With limited
fleet of capacitated delivery vehicles, the winner determination
problem (WDP) in this UCC auction resembles the multiple

knapsack problem (MKP) in which the “knapsack” is actually
one delivery vehicle. Solving the MKP-based WDP facilitates
the strategic-level decision-making. For the operational-level
decisions, classical VRP is solved for each vehicle dispatched.
Given one vehicle with consolidated deliveries, the VRP aims
to identify a schedule that serves all of them while incurring
the minimum cost. Clearly, this cost is likely to be different
from the cost estimate used in the MKP-based WDP.

In the UCC auction discussed above, the concept of VRPP
is actually present. Customer selection to maximize the total
collected profit and route optimization to minimize the total
delivery cost incurred constitute the two components of PTP.
Interaction between them is, however, missing. By assuming
zone-based consolidation, the delivery cost can be estimated
using some constants, one per zone. With this, the UCC does
not need to consider routing in order to determine the winning
bids. Even though this simplifies the WDP quite considerably,
the resulting consolidations are likely to be insufficient to claim
the effectiveness of the UCC in solving the last-mile problem.
Consider two neighboring zones. Single delivery with small
volume is going to one zone. Multiple deliveries are going to
the other, but their total volume is yet to make full truckload.
Consolidating all of them is possible, but not with zone-based
consolidation assumed. Relaxing such assumption, the WDP in
the UCC auction is essentially PTP with multiple vehicles. In
the PTP-based WDP, the delivery cost is obtained via routing.

From the above discussion, it is clear that PTP is bi-level.
At the upper level, a knapsack problem deals with the selection
of the customers to serve. The “knapsack” herein represents
the entire UCC’s fleet. At the lower level, a VRP deals with
the optimization of the route given a set of selected customers.
In this paper, we propose the use of PTP-based WDP in order
to enhance the UCC’s effectiveness in addressing the last-mile
problem. We formulate the corresponding multi-vehicle PTP
as a bi-level program. We then exploit the bi-level structure of
the problem and propose the concept of knowledge adoption
to efficiently solve the bi-level PTP by using the evolutionary
bi-level programming. Our contributions, summarized below,
are therefore three-fold.

• We propose the use of PTP-based WDP in the UCC
auction to improve the effectiveness of the UCC in
addressing the last-mile problem

• We formulate the corresponding multi-vehicle PTP as
a bi-level prorgram

• We propose the concept of knowledge adoption so as
to efficiently solve the bi-level PTP using evolutionary
bi-level programming

The rest of this paper is organized as follows. In Section II,
formulation of the multi-vehicle PTP as a bi-level program is
first presented. In Section III, the knowledge adoption method-
ology to solve a bi-level program using evolutionary technique
is proposed. Instantiation of the proposed methodology to solve
the WDP in the UCC auction based on multi-vehicle PTP
then quickly follows. Section IV discusses the various results
obtained via computational study. Finally, Section V concludes
the paper and provides directions for future works.



II. PROBLEM FORMULATION

In this section, we shall present the bi-level formulation of
the PTP used in determining the winners of the UCC auction.
We refer to it as the PTP-based WDP. For simplicity, we only
consider the single-period problem in this paper. The proposed
formulation can be extended easily to address the multi-period
problem in the future.

To begin with, we denote as B the set of N bids that have
been received by the UCC at the end of an auction. Each bid
bi consists of the following pieces of information.

• Delivery destination di

• Goods volume vi

• Bid price pi offered to the UCC

The UCC has K vehicles available for carrying out last-mile
delivery. The capacity of the vehicle k where k = 1, . . . ,K is
denoted as Qk.

Let X be the set of binary decision variables representing
the strategic-level decision on which bids are to be accepted.
Let Y be the set of integer decision variables which encodes
the operational-level delivery schedule as the permutation of
the indices of the bids accepted by the UCC. The PTP-based
WDP aims to solve the following bi-level program.

argmax
X,Y

N∑
i=1

pixi − cvrp(Y|Q) (1)

s.t.
N∑
i=1

vixi ≤
K∑

k=1

Qk (2)

xi ∈ {0, 1} (3)
Y ∈ argmin

Y
cvrp(Y|[Q, Qk+1, . . .]) (4)

s.t.

∀j, yj ∈ {i : xi = 1} (5)
∀j∀j′, j 6= j′ ⇒ yj 6= yj′ (6)

where xi ∈ X, yj ∈ Y, and Qk ∈ Q.

Abstracting the lower-level optimization as the capacitated
vehicle routing problem CVRP, we reformulate (4) taking into
account (5) and (6) as follows.

Y ∈ CVRP(C, [Q, Qk+1, . . .]) (7)

where

C = {i : xi = 1} (8)

In the above reformulation, CVRP receives the following
two parameters as inputs.

• The set C of customer indices whose bids are accepted
by the UCC. Having accepted these bids, the UCC is
hence committed to serve the corresponding last-mile
deliveries. This information is dictated by the value
of the vector X of the upper-level decision variables.
This subsequently governs the length of the vector Y
of the lower-level decision variables.

• The vector of vehicle capacities available at the UCC
for doing last-mile delivery. The vector Q quantifies
the possibly heterogeneous capacities of the delivery
vehicles at the UCC. For a given C, it is possible that
there exists no Y such that all selected customers can
be served using the vehicles specified in Q. Indeed,
constraint (2) only provides a loose upper bound on
the total consolidation volume. To address this issue,
Q must be augmented with some dummy vehicles so
as to be able to accommodate serving all the selected
customers even when more vehicles than the available
fleet are actually required. In the case of homogeneous
capacity, a sufficient number of dummy vehicles with
the same capacity are introduced to augment Q.

Given the two parameters discussed above, CVRP aims to
find the permutation Y of the indices of the selected customers
that minimizes the total delivery cost while taking into account
the capacity of each of the available delivery vehicles. This is
as depicted in the objective (4) of the lower-level optimization
problem. Specifically, the vector Y contains each element of
C exactly once. As mentioned earlier, the set C is composed of
the indices of all the selected customers, that is {i : xi = 1}.
As an illustrative example, consider a case where there are 5
customers, each with index i where i ∈ {1, . . . , 5}. Suppose
we have X = [0, 1, 1, 0, 1] at the upper level, implying that
there are 3 customers selected. Consequently, C = {2, 3, 5}.
Y can thus assume any of the following values.

• [2, 3, 5]

• [2, 5, 3]

• [3, 2, 5]

• [3, 5, 2]

• [5, 2, 3]

• [5, 3, 2]

CVRP then returns in Y the optimal permutation that incurs
the minimum total delivery cost.

The way to interpret Y is to consider it as the solution to
some traveling salesman problem (TSP). Y can thus be viewed
as a giant TSP tour for a vehicle without capacity constraint,
that is a tour that visit all customers regardless of the vehicle
capacity. A splitting procedure must then be employed to get
the best CVRP solution respecting the sequence as dictated by
the optimal permutation. Prins proposed two different optimal
splitting methods to handle the case of the homogeneous [14]
and the heterogeneous [15] fleets of delivery vehicles. In our
formulation, the function cvrp(·) first employs the appropriate
splitting algorithm in order to come up with the schedule for
each individual vehicle and then calculates the total cost of
delivery according to the entire schedules. At the lower level,
the function cvrp(·) is conditioned on the augmented fleet of
delivery vehicles [Q, Qk+1, . . .]. At the upper level, the same
function cvrp(·) is conditioned on the actual fleet of vehicles
Q. Shortage of vehicles to serve all the selected deliveries may
consequently arise. For every excess of deliveries that cannot
be served using the vehicles specified, a sufficiently large cost
is imposed and added to the actual cost as penalty. This in
turn penalizes the corresponding vector X of the upper-level
decision variables.



III. PROPOSED METHODOLOGY

The naive method to solve bi-level programs is by treating
them as nested optimization problems. Taking the reference to
the bi-level PTP presented in the previous section, the optimal
solution vector Y to the lower-level optimization problem has
to be found for each trial solution vector X of the upper-level
decision variables. Thus, searching for the optimal solutions to
bi-level programs involve solving the lower-level optimization
problem multiple times. In the case of bi-level PTP formulated
in Section II, the NP-hard CVRP at the lower level needs to
be solved as many times as the number of the trial solutions
generated for the upper-level knapsack problem. Such would
undoubtedly be prohibitively expensive. This approach is only
practical on small-sized problems. That implies small number
of bids in the context of PTP-based WDP.

A plausible workaround for the above-mentioned problem
is by applying some kind of approximation to the optimization
problem at the lower level. This can be achieved using either
surrogate modeling or solution estimation. The earlier has been
attempted for real-parameter bi-level programs. In this paper,
we shall propose the latter for combinatorial bi-level programs.
Specifically, we shall present the notion of knowledge adoption
in evolutionary bi-level programming to estimate the solution
to the lower-level optimization problem and then instantiate it
for solving the PTP-based WDP.

Surrogate modeling is very commonly employed in dealing
with the computationally-expensive optimization problems in
the continuous domain. When dealing with bi-level programs,
solving the lower-level optimization problems multiple times
constitutes the most resource-intensive component throughout
the entire optimization process. Approximating the landscape
of the lower-level optimization problem with some polynomial
model makes it easier to find its optimal solution given the trial
solution of the upper-level decision variables. Intuitively, such
landscape approximation changes with the trial solution vector
of the upper-level decision variables. With a quadratic model,
BLEAQ [16] sets a successful example of this approach. It is,
however, only applicable to bi-level programs with continuous
parameters.

For the combinatorial bi-level program, we propose herein
a methodology to approximate the solution to the lower-level
optimization problem. Two phases of the algorithm in Fig. 1
summarizes our proposed methodology. In the first phase, we
identify a diverse set X of the upper-level candidate solution
X for which the corresponding optimal lower-level solutions
are sought. At the end of this phase, we thus have a collection
K of optimal lower-level solution vectors that are sufficiently
distinct from one another. In the second phase, we focus our
search effort on optimizing the upper-level decision variables.
For each trial solution to the upper-level decision variables,
we estimate the lower-level solution via knowledge adoption
from the optimal lower-level solutions in K. This consists of
knowledge filtering to select which knowledge to adopt and
knowledge assimilation to transform the selected knowledge
into a meaningful estimate of the lower-level solution. As with
any solution estimates, the approximate solution is likely to be
imprecise. Refining the approximate solution with local search
quickly makes it converge to a locally optimal solution. With
better quality of the approximate solution, the local optimum
reached shall be closer to the global one.

1: assign a number of diverse X’s to X . Phase 1
2: for each X in X do
3: find the optimal Y and assign it to K
4: end for
5: initialize a population P of X . Phase 2
6: while no terminating condition is met do
7: for each X in P do
8: estimate Y for X via knowledge adoption from K
9: refine Y with local search

10: evaluate the quality of X and the refined Y
11: end for
12: evolve P via crossover and mutation
13: end while

Fig. 1. An evolutionary bi-level programming with solution estimation via
knowledge adoption.

1: assign the optimal Y for X = 1 to K . Phase 1
2: initialize a population P of X . Phase 2
3: while no terminating condition is met do
4: for each X in P do
5: estimate Y for X as subset of permutation in K
6: refine Y with local search
7: evaluate the quality of X and the refined Y
8: if Y requires more vehicles than available then
9: repair X in the spirit of Lamarckian learning

10: end for
11: evolve P via crossover and mutation
12: end while

Fig. 2. Solving the bi-level PTP-based WDP using solution estimation via
knowledge adoption.

Fig. 3. Knowledge adoption by extracting the subset of the permutation in
the knowledge base, which is employed in finding the solution to the bi-level
PTP-based WDP using algorithm in Fig. 2. X selects the 2nd, 3rd, and 5th
customers. Y is thus initialized with their indices in the order found in K.

Fig. 2 presents the instantiation of the above methodology
for solving the bi-level PTP-based WDP formulated in Section
II. The UCC is setup to address the last-mile problem. Thus, it
must wish to accept as many bids as possible to be effective.
Inspired by this, the lower-level VRP is first solved with
X = 1 as if all bids are accepted. A memetic algorithm
[14][15] can be employed to search for the optimal Y to
form the knowledge base K. A genetic algorithm with binary
chromosomes is then invoked to search for the optimal X
that solves the upper-level knapsack problem with the PTP
objective. Each individual in the population represents a trial
solution X of the upper-level decision variables. For each of
them, a solution estimate for Y is generated via knowledge
adoption by extracting the subset of the permutation in K
as illustrated in Fig. 3. The estimate is first refined via local
search before evaluating the quality of the individual. In this
instantiation, X is repaired to match the deliveries in Y
that can be served using the available fleet. Evolution then
continues until the terminating condition is met.



IV. COMPUTATIONAL STUDY

A. Data Generation

To assess the efficacy of our proposed solution technique,
we generate synthetic datasets by following the steps outlined
below.

1: //Generating destinations
2: randomize L delivery points in 2D Cartesian coordinates

[0, 100]× [0, 100]
3: //Generating datasets
4: for j = 1 to M do
5: for i = 1 to N do
6: select destination di randomly from the L locations
7: randomize volume vi ∈ [vmin, vmax]
8: randomize ω ∈ [ωmin, ωmax]
9: compute bid price pi = ω(vi/Q)cost(d0,di)

10: end for
11: end for

Specifically, we generate L delivery locations and M datasets,
each with N bids. In the above, d0 is the location of the UCC
and Q represents the average capacity of the last-mile delivery
vehicles available at the UCC, that is

Q =
1

K

K∑
k=1

Qk (9)

B. Experimental Setup

In our computational study, we set the relevant parameters
as follows.

• L = 100 (see Fig. 4)

• M = 10

• N = 100

• vmin = 5

• vmax = 20

• ωmin = 1.5

• ωmax = 2.0

Additionally, we set the following UCC-related parameters
in our experiments.

• d0 = (0, 0)

• K = 10

• Qk = 100,∀k = 1, . . . ,K

For simplicity, we have assumed that a homogeneous fleet of
vehicles are available at the UCC for carrying out the last-mile
delivery. As such, it is also assumed that all the vehicles incur
the same cost to travel between two fixed locations. Herein,
we consider the Euclidean distance between the two locations
as the travel cost. The function cost(·) thus calculates the cost
of traveling from location di to location dj as

cost(di,dj) = ‖dj − di‖ (10)

where ‖ · ‖ denotes the L2-norm.

Fig. 4. 100 uniformly randomized destinations in 2D Cartesian coordinates.

Fig. 5. 10 delivery zones as the results of applying k-means clustering with
k = 10 to the 100 uniformly randomized destinations in Fig. 4. Destinations
in each zone are depicted using a unique legend. These zones are used for
zone-based consolidations in the MKP-based WDP.

For our baseline, we are going to use the MKP-based WDP
that facilitates zone-based consolidations [13]. For that reason,
we simulate the zoning of the 100 randomized destinations via
the use of k-means clustering. Fig. 5 shows the resulting zones
with k = 10 by means of 10 different legends. Delivery costs
to these zones are tabulated in Table I. They are composed of
two components. The first is the average cost to travel between
the UCC and the destinations in a particular zone. The second
is the average cost of traveling between any two destinations
in the zone. With the volume of individual deliveries ranging
from 5 to 20 with uniform distribution and with homogenous
vehicle capacity of 100, a vehicle is expected to deliver to 8
destinations, performing 7 inter-destination travels. The second
cost component must thus be multiplied by 7 or one less than
the number of destinations in the zone, whichever is smaller.
Summing up the two cost components yields the approximate
cost of operating a delivery vehicle to the zone. In our study,
we solve the MKP-based WDP to optimality using CPLEX’s
exact algorithm.



TABLE I. ZONE-BASED DELIVERY COST FOR THE MKP-BASED WDP

Zone Cost
1 234.40
2 331.17
3 239.50
4 257.39
5 234.66
6 161.21
7 310.83
8 272.78
9 263.85

10 272.00

Lastly, the specifications listed below are adhered to when
employing the evolutionary methods to solve the bi-level PTP
to determine the winners of the UCC auction.

• For the first-phase memetic algorithm,
◦ Chromosomes: ordered (permutation-based)
◦ Population size: 36
◦ Evolutionary operators:

order crossover with probability of 0.8
substring-reshuffling mutation with proba-
bility of 0.2

◦ Evolution length: 10 generations

• For the second-phase genetic algorithm,
◦ Chromosomes: binary
◦ Population size: 50
◦ Evolutionary operators:

uniform crossover with probability of 0.9
flip-bit mutation with probability of 0.1

◦ Evolution length: 100 generations

• For refining the lower-level solution estimates, we use
Prins’ local search [14]

Note that we have purposely utilized quite different settings for
the first- and second-phase algorithms. While the second-phase
genetic algorithm is a general-purpose evolutionary technique,
the first-phase memetic algorithm is a specialized evolutionary
procedure for solving the VRP [14]. As will subsequently be
witnessed, the settings have been effective in producing good
results for the PTP-based WDP.

C. Results and Discussions

First of all, we shall investigate the UCC’s earned profits.
Herein, the UCC’s earned profit refers to the total collected bid
payments subtracted by the total actual delivery costs incurred.
In the context of MKP-based WDP, the highest objective value
identified by solving the corresponding mixed-integer program
does not directly constitute the earned profit. Routing must be
performed for each “knapsack” (that is, vehicle) to determine
the actual cost of deliveries. Intuitively, the PTP-based WDP
brings the UCC higher profit than does the MKP-based WDP.
With PTP, consolidating small delivery with those that are yet
to reach full truckload from two neighboring zones is possible.
Fig. 6 summarizes the statistics of the UCC’s earned profits in
boxplot. Paired t-test on the data yields a p-value of 2.6×10−6,
showing the superiority of the PTP- over the MKP-based WDP.
The individual datasets representing unique UCC scenarios in
Table II shows consistent enhancements to the earned profits,
hence the statistical significance.

Fig. 6. Statistics of the UCC’s earned profit over 10 different scenarios. The
UCC’s earned profit refers to the total collected bid payments subtracted by
the total actual delivery costs incurred.

TABLE II. DETAILS OF THE UCC’S EARNED PROFIT

Scenario MKP-based WDP PTP-based WDP Improvement Ratio
1 412.00 817.30 1.98
2 654.86 752.12 1.15
3 371.27 715.04 1.93
4 429.80 878.02 2.04
5 600.01 876.75 1.46
6 741.53 995.88 1.34
7 442.73 793.76 1.79
8 421.74 810.04 1.92
9 533.82 855.61 1.60

10 522.49 896.43 1.72

Fig. 7. Statistics of the UCC’s utilized capacity over 10 different scenarios.

TABLE III. DETAILS OF THE UCC’S UTILIZED CAPACITY

Scenario MKP-based WDP PTP-based WDP Improvement Ratio
1 381 960 2.52
2 577 875 1.52
3 297 976 3.29
4 300 980 3.27
5 489 970 1.98
6 676 960 1.42
7 459 971 2.12
8 386 972 2.52
9 475 964 2.03

10 397 882 2.22



For the understanding on what causes the enhanced profit,
we would now investigate the utilization of the UCC’s fleet of
last-mile delivery vehicles. The zone-based consolidations in
MKP-based WDP have, as the matter of fact, rendered many
of the vehicles unutilized. This is mainly due to the lack of
deliveries to consolidate within the same zone. The UCC will
simply not profit from the zone-based consolidations of such
deliveries. Instead, it will suffer from losses if these deliveries
were to be forcibly consolidated based on their zones. Though
there may be sufficient deliveries to consolidate within a zone,
non-profitable consolidation can still occur. Dispatching every
vehicle incurs a considerable cost. Utilization of every vehicle
needs to generally be maximized to achieve the most profitable
consolidation. This often leaves behind several deliveries with
low bid prices, which are not sufficient to produce a profitable
consolidation. In contrast, nearly full utilization of the UCC’s
fleet of last-mile delivery vehicles is obtained with PTP-based
WDP. This is achieved as consolidations of various deliveries
to different zones are allowed. Such significant difference on
the utilization of the UCC’s fleet of last-mile delivery vehicles
is summarized in Fig. 7 and detailed in Table III. The paired
t-test on the results yield a p-value of 8.8× 10−7, signifying
considerable improvement on the utilization of the UCC’s fleet.
From the individual scenarios detailed in the table, it is clear
that improvement ratio between 2 to 3 is generally attainable.
Exceptions are noted when deliveries are sufficiently clustered,
resulting in the MKP-based WDP producing reasonably high
utilization of the UCC’s fleet.

Comparing the improvement ratio of the utilized capacity
with that of the earned profit of the UCC in Table III and II,
respectively, we observe that large improvement in the utilized
capacity does not necessarily translate into an improvement as
large in the earned profit. The deliveries not served in the case
of MKP-based WDP are generally those with lower bid prices.
Although PTP-based WDP manages to form several profitable
consolidations for some of these deliveries, serving them will
not bring as much profit to the UCC. This explains the lower
improvement ratio in the earned profit. Despite this, nearly full
utilization of the UCC’s fleet signifies the UCC’s effectiveness
in addressing the last-mile problem. At the same time, higher
earned profit means better financial sustainability to the UCC.
With this, the UCC’s dependence on the government’s subsidy
is reduced. Handoko, et al. [13] suggested that the UCC’s profit
can be enhanced by conducting auction rather than employing
the fixed-rate mechanism. While this is true, considering PTP
instead of MKP in the WDP further increases the profit.

Finally, we will now examine the service level of the UCC.
The service level is defined as the ratio of the number of bids
accepted by to the total number of bids submitted to the UCC,
expressed in term of percentage. Intuitively, higher utilization
of the UCC’s fleet can be linked to more bids being accepted
by the UCC, hence higher service level. In Fig. 8, the statistics
of the UCC’s service level over 10 different datasets is shown
via boxplots. In Table IV, details of the UCC’s service level
are tabulated. Subjecting the results to paired t-test, a p-value
of 5.6×10−7 is obtained. This is quite close to the p-value of
the UCC’s utilized capacity. As the matter of fact, comparing
improvement ratio of the service level with that of the utilized
capacity of the UCC, one shall notice their similarity with one
another. Indeed, they are very highly correlated with Pearson’s
correlation coefficient of 0.9869.

Fig. 8. Statistics of the UCC’s service level over 10 different scenarios. The
service level is the percentage of the bids accepted with respect to the total
number of bids. With 100 bids in each scenario, the service level is the same
as the number of bids accepted by the UCC.

TABLE IV. DETAILS OF THE UCC’S SERVICE LEVEL

Scenario MKP-based WDP PTP-based WDP Improvement Ratio
1 33 76 2.30
2 45 69 1.53
3 23 75 3.26
4 22 74 3.36
5 38 77 2.03
6 49 73 1.49
7 34 76 2.24
8 32 80 2.50
9 38 73 1.92

10 32 69 2.16

A collection of 100 deliveries with uniformly randomized
volume between 5 to 20 has an expected total volume of 1250.
The total capacity of the UCC’s fleet is 1000. The UCC is thus
expected to be able to serve approximately 80 deliveries. With
service level ranging from 69% to 80%, the PTP-based WDP
virtually makes the UCC run at full capacity most of the time.
This demonstrates, in particular, the efficacy of the algorithm
outlined in Fig. 2 for solving the bi-level PTP-based WDP. In
general, this proves the effectiveness of the proposed solution
methodology for solving any bi-level programs via knowledge
adoption in evolutionary bi-level programming. With most bids
rejected due to capacity constraint, the PTP-based WDP will
undoubtedly be hailed as a fair competition by the participating
carriers. This provides the incentives for the carriers to keep
participating in the UCC auction and to adjust their bid prices
strategically. Note that the purpose of a carrier participating in
the UCC auction is primarily to reduce cost. This is realized
when the UCC delivers on behalf of the carrier. As the result,
the carrier no longer needs to enter the city center where there
may be traffic congestion and numerous rules and regulations
set by the government, which in turn complicates the planning
of the carrier. To avoid these hassles, the carrier must be willing
to strategically adjust the bid prices offered to the UCC so long
as cost-saving is attainable. In MKP-based WDP, lots of bids
are rejected due to lack of deliveries to consolidate with, unless
the deliveries are nicely clustered. This issue can be addressed
by offering the UCC ridiculously high prices, hence attaining
no cost-saving. As such, this will drive the carriers away from
participating in the UCC auction.



V. CONCLUSION

In this paper, we present a winner determination problem
(WDP) for the UCC auction based on multi-vehicle profitable
tour problem (PTP). The PTP-based WDP is a more realistic
yet more complex alternative to the conventional WDP based
on multiple knapsack problem (MKP). First, we re-formulate
the PTP as a bi-level program. Then, we propose the notion of
knowledge adoption as a means to approximate the solution to
the lower-level optimization problem, given a trial solution to
the upper-level decision variables. Subsequently, we instantiate
the proposed solution methodology so as to effectively identify
the solution to the PTP-based WDP. Via computational study,
we show the efficacy of our solution methodology empirically
in solving the multi-vehicle PTP, producing all of the time an
almost full utilization of the UCC’s fleet of last-mile delivery
vehicles. We also demonstrate the superiority of the PTP-based
over the MKP-based WDP by bringing the UCC higher profit.
This suggests the importance of combining the strategic-level
with the operational-level decision-making. Since the resulting
optimization problem easily becomes intractable, evolutionary
bi-level programming sooner or later shall become the method
of choice for solving the problem.

Moving forward, we shall consider different options of data
generation, such as the non-uniform randomization, to simulate
an even more diverse set of scenarios possibly encountered at
the UCC. We shall also consider the multi-period problem in
which deliveries cannot be served before their arrival periods
at the UCC or beyond their deadline periods. Additionally, we
shall consider a fleet of delivery vehicles with heterogeneous
capacities. Algorithmically, we shall instantiate the proposed
knowledge adoption methodology to solve more problems that
can be re-formulated as bi-level programs and then compare
these instantiations’ performance with that of the conventional
methods commonly-used to solve them.
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