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Abstract. A promising solution to protect data privacy in cloud stor-
age services is known as ciphertext-policy attribute-based encryption
(CP-ABE). However, in a traditional CP-ABE scheme, a ciphertext is
bound with an explicit access structure, which may leak private informa-
tion about the underlying plaintext in that anyone having access to the
ciphertexts can tell the attributes of the privileged recipients by looking
at the access structures. A notion called CP-ABE with partially hidden
access structures [14,15,18,19,24] was put forth to address this problem,
in which each attribute consists of an attribute name and an attribute
value and the specific attribute values of an access structure are hidden
in the ciphertext. However, previous CP-ABE schemes with partially
hidden access structures only support access structures in AND gates,
whereas a few other schemes supporting expressive access structures are
computationally inefficient since they are built from bilinear pairings
over the composite-order groups. In this paper, we focus on addressing
this problem, and present an expressive CP-ABE scheme with partially
hidden access structures in prime-order groups.

Keywords: Cloud storage · Ciphertext-policy attribute-based encryp-
tion · Access structures · Data privacy · Access control

1 Introduction

With the explosive growth of information, there is an increasing demand for
outsourcing data to cloud storage services due to its economical scale. However,
no user would like to store documents containing sensitive information to a public
cloud with no guarantee for security or privacy. A promising solution to provide
data privacy while sharing data in cloud is using an encryption mechanism such
that data owners upload their data in encrypted forms to the cloud and share
them with users having the required credentials (or attributes). One encryption
technique that meets this requirement is called ciphertext-policy attribute-based
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Table 1. Comparisons of CP-ABE schemes with partially hidden access structures

Schemes Anonymity of Expressiveness of Type of Security Unbounded

hidden access access bilinear attribute

structures structures group names

[19] partially hidden AND gates prime selective no

[18] partially hidden AND gates prime selective yes

[14] partially hidden AND gates composite full no

[15] partially hidden LSSS composite full no

[24] partially hidden AND gates prime selective yes

Our scheme partially hidden LSSS prime selective yes

encryption (CP-ABE) [3], in which a user’s private key issued by an attribute
authority (AA) is associated with a set of attributes, a message is encrypted
under an access structure (or access policy) over a set of attributes by the data
owner, and a user can decrypt the ciphertext using his/her private key if and
only if his/her attributes satisfy the access policy ascribed to this ciphertext.

Though a ciphertext in a traditional CP-ABE scheme (e.g., [3,7,16,23]) does
not directly tell the identities of its recipients, an access structure in the cleartext
is attached to the ciphertext, and thus anyone who sees a ciphertext may be able to
deduce certain private information about the encrypted message or the privileged
recipients of the message. Let us consider the cloud storage system, which is used
by a hospital to store electrical medical records (EMRs) of patients. In this system,
the hospital encrypts an EMR using CP-ABE under an access structure “(Patient:
NR005289ANDHospital: CityHospital)OR (Doctor:CardiologistANDHospital:
General Hospital)”, and then uploads the ciphertext together with the access pol-
icy to the cloud. The access policy requires that a patient identified by NR005289
at City Hospital or any Cardiologist at General Hospital can decrypt the cipher-
text to obtain the EMR, from which it can be easily inferred that a person in City
Hospital with a patient number NR005289 is suffering a heart problem. This infor-
mation leakage is definitely not expected by the cloud users, and thus it is necessary
to design CP-ABE schemes that can hide access structures.

It is known from [15] that a CP-ABE scheme with hidden access structures
can be built from attribute-hiding Inner-product Predicate Encryption (IPE) [13],
but this will result in an increase in the size for an arbitrary access structure in the
transformation.Also, it is inefficient to implementCP-ABE schemeswith fully hid-
den access structure fromattribute-hiding IPE [16].With the goal of having a trade
off between fully hidden access structures and efficiency of CP-ABE, partially hid-
den access structures [14,15,18,19,24] were embedded in CP-ABE schemes to mit-
igate the computational cost. However, the schemes in [14,18,19,24] can only be
applied to access structures expressed in AND gates. The construction in [15] sup-
ports expressive access structures but is built from pairings over the composite-
order groups, and “a Tate pairing on a 1024-bit composite-order elliptic curve is
roughly 50 times slower than the same pairing on a comparable prime-order curve,



CP-ABE with Partially Hidden Access Structures 21

and this performance gap will only get worse at higher security levels” [9]. Though
there exist several techniques [9] to convert pairing-based schemes from composite-
order groups to prime-order groups, there is still a significant performance degra-
dation due to the required size of the special vectors [21]. Therefore, it is desirable
to construct an expressive CP-ABE scheme with partially hidden access structures
using pairings in the prime-order groups.

In this paper, we focus on designing an expressive CP-ABE scheme in the
prime-order groups which can hide attribute values from access structures. We
compare our CP-ABE scheme with partially hidden access structures to others
in the literature in Table 1. It is straightforward to see that our construction is
comparable to the existing ones in that it allows unbounded attribute names,
supports expressive access structures and is built in the prime-order groups.

1.1 Challenges and Our Contributions

In the real world, the attribute values always contain more sensitive information
than the generic attribute names. For example, the attribute values “Cardiol-
ogist” and “NR005289” are more sensitive than the attribute names “Doctor”
and “Patient”, respectively. Due to this observation, a notion called CP-ABE
with partially hidden access structures [15,19] was proposed which divides each
attribute into an attribute name and an attribute value, and hides attribute val-
ues associated with an access structure included in a ciphertext. That is, instead
of a full access structure, a partially hidden access structure (e.g., “(Patient:
* AND Hospital: *) OR (Doctor: * AND Hospital: *)”) which consists of only
attribute names without attribute values is attached to a ciphertext.

We build a CP-ABE scheme with partially hidden access structures from
the large universe CP-ABE scheme proposed by Rouselakis and Waters [21],
which is an unbounded CP-ABE scheme supporting expressive access policies
in the prime-order groups. A naive approach to construct a CP-ABE scheme
with partially hidden access structures is simply removing the attribute names
from the access structure in the Rouselakis-Waters scheme. However, the result-
ing scheme suffers off-line dictionary attacks1. Therefore, the key challenge here
is to modify the Rouselakis-Waters scheme [21] such that its access structure
is partially hidden and secure against off-line dictionary attacks. Thanks to the
“randomness splitting” technique [6], we build a CP-ABE scheme where the sen-
sitive attribute values are hidden to a computationally bounded adversary by
performing some sort of blinding through splitting each attribute value into two
randomized complementary components. Thus, though the ciphertext and access
structure still contain information about generic attribute names, attribute val-
ues are protected from off-line dictionary attacks.

However, since an attribute name in practice may correspond to a number of
attribute values, a ciphertext with hidden attribute values raises another issue:
given solely attribute names associated with an access structure in a ciphertext,
how could a user know he/she is a privileged recipient or not? One solution to this

1 We will show how an off-line dictionary attack works in Sect. 4.
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problem is to also encrypt a publicly known message such as the unity element
“1” in addition to the encryption of the real data, all under the same access
structure [15,24], but this almost doubles the size of the original ciphertext,
which is undesirable to a cloud storage system who prefers to save storage space.
To reduce the storage cost of cloud services, we simply make a commitment to
the encrypted message, and thus a user can know whether he/she has access to
the encrypted data by checking whether the decryption result is consistent with
the given commitment of the underlying message.

In a nutshell, the differences between our construction of CP-ABE with par-
tially hidden access structure and the Rouselakis-Waters CP-ABE scheme are
threefold. Firstly, we perform a “linear splitting” technique [6] on various por-
tions of a ciphertext to overcome the off-line dictionary attacks. Secondly, we
re-randomize the key components upon each attribute to make the linear split-
ting methodology feasible for all attribute values appearing in the ciphertext.
Thirdly, we make a commitment to the message to allow a user to check whether
he/she is a privileged recipient of a ciphertext without knowing the attribute val-
ues ascribed to the ciphertext.

1.2 Related Work

Sahai and Waters [22] introduced a notion called attribute-based encryption
(ABE), and then Goyal et al. [11] formulated key-policy ABE (KP-ABE) and
CP-ABE as two complimentary forms of ABE. In a CP-ABE system, the private
keys are associated with the sets of attributes and the ciphertexts are associated
with the access policies, while the situation is reversed in a KP-ABE system.
Nevertheless, we believe that KP-ABE is less flexible than CP-ABE because the
access policy is determined once the user’s attribute-based private key is issued.
Bethencourt, Sahai and Waters [3] proposed the first CP-ABE construction, but
it was secure under the generic group model. Cheung and Newport [7] presented
a CP-ABE scheme that was proved to be secure under the standard model, but
it only supported the AND access structures. A CP-ABE system under more
advanced access structures was proposed by Goyal et al. [10] based on the number
theoretic assumption. Rouselakis and Waters [21] built a large universe CP-ABE
system under the prime-order groups to overcome the limitation that the size
of the attribute space is polynomially bounded. The cryptographic primitive of
CP-ABE with partially hidden access structures was introduced by Nishide et al.
[19], but their construction only admitted admissible access structures expressed
in AND gates and is selectively secure. Following the work in [19], Li et al. [18]
extended the construction with an additional property as user accountability.
With the aim of improving efficiency in [18,19], Zhang et al. [24] presented a
methodology to reduce the computational overhead in the decryption, but their
construction still did not support advanced access structures. Lai, Deng and
Li [14] put forth a fully secure CP-ABE scheme with partially hidden access
structures, but it only supports restricted access structures as in [18,19]. Later,
Lai, Deng and Li proposed [15] a fully secure CP-ABE scheme which can partially
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hide access structures of any boolean formulas, but it was built from bilinear
pairings in the composite-order groups.

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2, we briefly review
the notions and definitions relevant to this paper. In Sect. 3, after depicting the
framework for CP-ABE with partially hidden access structures, we present its
security model. In Sect. 4, we give a concrete expressive and unbounded CP-
ABE scheme with partially hidden access policies and analyze its security and
performance. We conclude the paper in Sect. 5.

2 Preliminaries

In this section, we review some basic cryptographic notions and definitions that
are to be used in this paper.

2.1 Bilinear Pairings and Complexity Assumptions

Let G be a group of prime order p that is generated from g. We define ê : G×G
→ G1 to be a bilinear map if it has the following properties [5]:

– Bilinear such that for all g ∈ G, and a, b ∈ Zp, we have ê(ga, gb) = ê(g, g)ab

– Non-degenerate such that ê(g, g) �= 1.

We say that G is a bilinear group if the group operation in G is efficiently
computable and there exists a group G1 and an efficiently computable bilinear
map ê : G × G → G1 as above.

Decisional (q −1) Assumption [21]. The decisional (q −1) problem is that for
any probabilistic polynomial-time algorithm, given −→y =

g, gμ,

gai

, gbj , gμ·bj , gaibj , gai/b2j ∀ (i, j) ∈ [q, q],
gai/bj ∀ (i, j) ∈ [2q, q] with i �= q + 1,

gaibj/b2
j′ ∀ (i, j, j′) ∈ [2q, q, q] with j �= j′,

gμaibj/bj′ , gμaibj/b2
j′ ∀ (i, j, j′) ∈ [q, q, q] with j �= j′,

it is difficult to distinguish (−→y , ê(g, g)aq+1μ) from (−→y , Z), where g ∈ G, Z ∈ G1,
a, μ, b1, ..., bq ∈ Zp are chosen independently and uniformly at random.

Decisional Linear Assumption [4]. The decisional linear problem is that for
any probabilistic polynomial-time algorithm, given g, gx1 , gx2 , gx1x3 , gx2x4 , it
is difficult to distinguish (g, gx1 , gx2 , gx1x3 , gx2x4 , gx3+x4) from (g, gx1 , gx2 ,
gx1x3 , gx2x4 , Z), where g, Z ∈ G, x1, x2, x3, x4 ∈ Zp chosen independently and
uniformly at random.
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2.2 Access Structures and Linear Secret Sharing

We review the the notions of access structures and linear secret sharing schemes
[17,23] as follows.

Access Structures. Let {P1, ..., Pn} be a set of parties. A collection A ⊆
2{P1,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C, then C ⊆ A. An
(monotone) access structure is a (monotone) collection A of non-empty subsets
of {P1, ..., Pn}, i.e., A ⊆ 2{P1,...,Pn} \{∅}. The sets in A are called the authorized
sets, and the sets that are not in A are called the unauthorized sets.

Linear Secret Sharing Schemes (LSSSs). Let P be a set of parties. Let M

be a matrix of size l × n. Let ρ : {1, ..., l} → P be a function that maps a row
to a party for labeling. A secret sharing scheme Π over a set of parties P is a
linear secret-sharing scheme over Zp if

1. the shares for each party form a vector over Zp;
2. there exists a matrix M which has l rows and n columns called the share-

generating matrix for Π. For x = 1, ..., l, the x-th row of matrix M is labeled
by a party ρ(i), where ρ : {1, ..., l} → P is a function that maps a row to
a party for labeling. Considering that the column vector v = (μ, r2, ..., rn),
where μ ∈ Zp is the secret to be shared and r2, ..., rn ∈ Zp are randomly
chosen, then Mv is the vector of l shares of the secret μ according to Π. The
share (Mv)i belongs to party ρ(i).

It has been noted in [17] that every LSSS also enjoys the linear reconstruction
property. Suppose that Π is an LSSS for access structure A. Let A be an autho-
rized set, and define I ⊆ {1, ..., l} as I = {i|ρ(i) ∈ A}. Then the vector (1, 0,
..., 0) is in the span of rows of matrix M indexed by I, and there exist constants
{wi ∈ Zp}i∈I such that, for any valid shares {vi} of a secret μ according to Π,
we have

∑
i∈I wivi = μ. These constants {wi} can be found in polynomial time

with respect to the size of the share-generating matrix M [2].
On the other hand, for an unauthorized set A′, no such constants {wi} exist.

Moreover, in this case it is also true that if I ′ = {i|ρ(i) ∈ A′}, there exists a
vector −→w such that its first component w1 is any non zero element in Zp and
< Mi,

−→w > = 0 for all i ∈ I ′, where Mi is the i-th row of M [21].

Boolean Formulas [17]. Access policies can also be described in terms of
monotonic boolean formulas. LSSS access structures are more general, and can be
derived from representations as boolean formulas. There are standard techniques
to convert any monotonic boolean formula into a corresponding LSSS matrix.
The boolean formula can be represented as an access tree, where the interior
nodes are AND and OR gates, and the leaf nodes correspond to attributes. The
number of rows in the corresponding LSSS matrix will be the same as the number
of leaf nodes in the access tree.
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3 System Architecture and Security Model

In this section, we describe the framework and security model of ciphertext-
policy attribute-based encryption with partially hidden access structures.

3.1 Framework

A CP-ABE scheme with partially hidden access structures consists of four algo-
rithms: setup algorithm Setup, attribute-based private key generation algorithm
KeyGen, encryption algorithm Encrypt and decryption algorithm Decrypt.

– Setup(1λ) → (pars, msk). Taking the security parameter λ as the input, this
algorithm outputs the public parameter pars and the master private key msk
for the system. This algorithm is run by the AA.

– KeyGen(pars, msk, A) → KA. Taking the public parameter pars, the master
private key msk and an attribute set A as the input, this algorithm outputs
an attribute-based private key KA over the attribute set A. This algorithm
is run by the AA.

– Encrypt(pars, M , (M, ρ, {Aρ(i)})) → CT. Taking the public parameter pars,
a message M and an access structure (M, ρ, {Aρ(i)}) where the function
ρ associates the rows of M to generic attribute names, and {Aρ(i)} are the
corresponding attribute values as the input. Let M be an l × n matrix as the
input, this algorithm outputs a ciphertext CT. This algorithm is run by the
data owner.

– Decrypt(pars, CT, A, KA) → M/⊥. Taking the public parameter pars,
a ciphertext CT and an attribute-based private key KA associated to an
attribute set A as the input, this algorithm outputs either the message M
when the private key KA satisfies the access structure, or a symbol ⊥ other-
wise. This algorithm is run by the user.

We require that a CP-ABE scheme with partially hidden access structures
is correct, meaning that for all messages M , all attribute sets A and access
structures (M, ρ, {Aρ(i)}) with authorized A satisfying (M, ρ, {Aρ(i)}), if (pars,
msk) ← Setup(1λ), KA ← KeyGen(pars, msk, A), CT ← Encrypt(pars, M ,
(M, ρ, {Aρ(i)})), then Decrypt(pars, CT, A, KA) = M .

3.2 Security Definitions

A CP-ABE scheme with partially hidden access structures should ensure confi-
dentiality and anonymity. Below we elaborately describe the security definitions
for these two requirements one by one.

Confidentiality. Assuming that the adversary makes the key generation queries
adaptively, we define the security model for confidentiality by the following game
between a challenger algorithm C and an adversary algorithm A, based on the
security model of indistinguishability under chosen-plaintext attacks (IND-CPA)
for CP-ABE [23].
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– Setup. Algorithm C runs the setup algorithm, and gives the public parameter
pars to algorithm A and keeps the master private key msk.

– Phase 1. Algorithm A makes the key generation queries to algorithm C. Algo-
rithm A sends an attribute set Ai to algorithm C. Algorithm C responds by
returning the corresponding key KAi

to algorithm A.
– Challenge. Algorithm A chooses two messages M∗

0 and M∗
1 of the same size,

and an access structure (M∗, ρ∗, {A∗
ρ(i)}) with the constraint that the key

generation queries {KAi
} in Phase 1 do not satisfy the access structure (M∗,

ρ∗, {A∗
ρ(i)}). The challenger chooses a random bit β ∈ {0, 1}, and sends

algorithm A a challenge ciphertext CT∗ which is an encryption of M∗
β under

the access structure (M∗, ρ∗, {A∗
ρ(i)}).

– Phase 2. Algorithm A continues issuing the key generation queries on
attribute sets Ai with the constraint that they do not satisfy the access
structure in the challenge phase. Algorithm C responds as in Phase 1.

– Guess. Algorithm A makes a guess β′ for β, and it wins the game if β′ = β.

Anonymity. Anonymity prevents an adversary from distinguishing a ciphertext
under one access matrix associated with one attribute set from a ciphertext under
the same access matrix associated with another attribute set. In the anonymity
game, the adversary is given the public parameter, as well as the access to
the key generation oracle, and its goal is to guess which of two attribute sets
satisfying the same access matrix generates the ciphertext in the challenge phase,
without being given either of the private keys associated with the two attribute
sets. Below we define the the game of anonymity under chosen-plaintext attacks
(ANON-CPA) between a challenger algorithm C and an adversary algorithm A.

– Setup. Algorithm C runs the setup algorithm, and gives the public parameter
pars to algorithm A and keeps the master private key msk.

– Phase 1. Algorithm A makes the key generation query to algorithm C. Algo-
rithm A sends an attribute set Ai to algorithm C. Algorithm C responds by
returning the corresponding key KAi

to algorithm A.
– Challenge. Algorithm A chooses a message M∗ and an access matrix (M∗,

ρ∗) which can be satisfied by attribute sets {A∗
ρ(i)}0 and {A∗

ρ(i)}1 with the
constraint that there are no key generation queries {KAi

} in Phase 1 that
can satisfy (M∗, ρ∗, {A∗

ρ(i)}0) and (M∗, ρ∗, {A∗
ρ(i)}1). The challenger chooses

a random bit β ∈ {0, 1}, and sends algorithm A a challenge ciphertext CT∗

which is an encryption of M∗ under the access structure (M∗, ρ∗, {A∗
ρ(i)}β).

– Phase 2. Algorithm A continues issuing the key generation queries to algo-
rithm C. Algorithm C responds as in Phase 1 with the constraint that the
attributes of the key generation queries satisfying (M∗, ρ∗, {A∗

ρ(i)}0) and
(M∗, ρ∗, {A∗

ρ(i)}1) are disallowed. Algorithm C responds as in Phase 1.
– Guess. Algorithm A makes a guess β′ for β, and it wins the game if β′ = β.

Algorithm A’s advantage in the above two games are defined as Pr[β =
β′] − 1/2. We say that a CP-ABE scheme with partially hidden access struc-
tures is indistinguishable (or anonymous) under the chosen-plaintext attacks if
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all probabilistic polynomial time (PPT) adversaries have at most a negligible
advantage in the security parameter λ. In addition, a CP-ABE scheme with
partially hidden access structures is said to be selectively indistinguishable (or
anonymous) if an Init stage is added before the Setup phase where algorithm A
commits to the challenge access structure (M, ρ, {Aρ(i)}).

4 Ciphertext-Policy Attribute-Based Encryption Scheme
with Partially Hidden Access Structures

In this section, we give a concrete construction of a CP-ABE scheme with par-
tially hidden access structures, and analyze its security and performance.

4.1 Attribute Value Guessing Attack

Below we briefly review the encryption algorithm of the CP-ABE scheme in [21],
and show that there is an attribute value guessing attack to such a construction.

Encrypt. This algorithm takes the public parameter pars, a message M and
an LSSS access structure (M, ρ) where the function ρ associates the rows of M to
attributes as the input. Let M be an l × n matrix. It randomly chooses a vector−→v = (μ, y2, ..., yn) ∈ Zn

p . These values will be used to share the encryption
exponent μ. For i = 1 to l, it calculates vi = −→v · Mi, where Mi is the vector
corresponding to the i-th row of M. In addition, it randomly chooses β, z1, ...,
zl ∈ Zp, and outputs a ciphertext CT =

(
C, D, {(Ci, Di, Ei)}i∈[1,l]

)
.

C = ê(g, g)αμ, D = gμ, Ci = wvivzi , Di = gzi , Ei = (uρ(i)h)−zi ,

where g, u, h, v, w, ê(g, g)α belong to the public parameter pars.

Attack. Given a ciphertext CT =
(
C, D, {(Ci, Di, Ei)}i∈[1,l]

)
, an adversary

can easily determine whether an attribute value Ai used in the ciphertext by
checking whether ê(Ei, g) = ê(uAih,Di

−1) holds. Clearly, this scheme cannot
achieve anonymity.

4.2 Construction

On the basis of the large universe CP-ABE scheme proposed in [21], we present
a CP-ABE scheme which can partially hide the access structures in the prime-
order groups. Let G be a bilinear group of a prime order p with a generator g.
Denote ê : G × G → G1 by the bilinear map.

– Setup. This algorithm takes the security parameter λ as the input. It ran-
domly chooses a group G of prime order p with a generator g. Also, it ran-
domly chooses u, h, v, w ∈ G, d1, d2, d3, d4, α ∈ Zp, and computes g1 = gd1 ,
g2 = gd2 , g3 = gd3 , g4 = gd4 . The public parameter is pars = (H, g, u, h,
w, v, g1, g2, g3, g4, ê(g, g)α) where H is a collision resistent hash function
that maps an element in G1 to an element in {0, 1}t with t being the security
parameter such that the concatenate elements in Zp are represented in t bits,
and the master private key is msk = (d1, d2, d3, d4, gα).
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– KeyGen. This algorithm takes the public parameter pars, the master private
key msk and an attribute set A2 as the input. Let k be the size of A, and A1,
..., Ak ∈ Zp be the attribute values of A. It randomly chooses r, r′, r1, ...,
rk, r′

1, ..., r′
k ∈ Zp, and outputs the attribute-based private key KA = (K1,

K2, {Ki,1, Ki,2, Ki,3, Ki,4, Ki,5}i∈[1,k]) over a set of attributes A as

K1 = gαwd1d2r+d3d4r′
, K2 = grd1d2+r′d3d4 ,

Ki,1 = ((uAih)riv−r)d2 , Ki,2 = ((uAih)riv−r)d1 , Ki,3 = gd1d2ri+d3d4r′
i ,

Ki,4 = ((uAih)r′
iv−r′

)d4 , Ki,5 = ((uAih)r′
iv−r′

)d3 .

– Encrypt. This algorithm takes the public parameter pars, a message M ∈ Zp

and an LSSS access structure (M, ρ, {Aρ(i)})3 as the input. It randomly
chooses a vector −→v = (μ, y2, ..., yn) ∈ Zn

p . These values will be used to share
the encryption exponent μ. For i = 1 to l, it calculates vi = −→v ·Mi, where Mi

is the vector corresponding to the i-th row of M. Then, it randomly chooses
γ, si,1, ..., si,l, s1,2, ..., sl,2, z1, ..., zl ∈ Zp, and outputs a ciphertext CT =(
(M, ρ), C, D, E, {(Ci, Di,1, Di,2, Ei,1, Ei,2, Fi)}i∈[1,l]

)
, where

C = (M ||γ) ⊕ H(ê(g, g)αμ), D = gμ, E = gMhγ ,

Ci = wvivzi , Di,1 = g1
zi−si,1 , Di,2 = g3

zi−si,2 ,

Ei,1 = g2
si,1 , Ei,2 = g4

si,2 , Fi = (uAρ(i)h)−zi .

– Decrypt. This algorithm takes the public parameter pars, a ciphertext
(
(M,

ρ), C, D, E, {(Ci, Di,1, Di,2, Ei,1, Ei,2, Fi)}i∈[1,l]

)
and a private key KA for

an attribute set A as the input. It calculates IM,ρ from (M, ρ), which is a set
of minimum subsets of attributes satisfying (M, ρ). Denote by {wi ∈ Zp}i∈I
a set of constants such that if {vi} are valid shares of any secret μ according
to M, then

∑
i∈I wivi = μ. For an I ∈ IM,ρ, it computes

ê(D,K1)∏
i∈I(ê(Ci,K2)ê(Di,1,Ki,1)ê(Ei,1,Ki,2)ê(Fi,Ki,3)ê(Di,2,Ki,4)ê(Ei,2,Ki,5))wi

=
ê(g, g)αμê(gμ, w)r1d1d2 ê(gμ, w)r2d3d4

∏
i∈I(ê(g, wvi)d1d2r1+d3d4r2)wi

= ê(g, g)αμ,
C

H(ê(g, g)αμ)
= M ||γ.

If gMhγ = E, it outputs M . Otherwise, it outputs ⊥.

Remarks. In the above construction, the term E, computed using a commit-
ment scheme [20], is added to the ciphertext such that a user can easily ascertain
whether he/she is a privileged recipient by checking the decryption result via
the given E. Note that according to the binding property of the commitment
scheme [8], each E can only be obtained from a unique pair of M and γ, which
2 Note that each attribute is denoted as Ni = Ai, where Ni is the generic name of an

attribute and Ai is the corresponding attribute value.
3 For the details about how to convert a boolean formula into an equivalent LSSS

matrix, please refer to [17].
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guarantees the correctness of decryption, in spite of the fact that the user has
no idea whether his/her attribute set satisfies the access structure ascribed the
ciphertext before performing decryption.

4.3 Security Proof

Theorem 1. Assuming that the (q − 1) assumption holds in G, and the deci-
sional linear assumption holds in G, then the above system is selectively indis-
tinguishable and anonymous.

Proof. At a hight level, the proof is reduced via a sequence of games by concluding
that these games are computationally indistinguishable from each other. For suc-
cinct description, we remove the access structure related elements from the cipher-
text. Denote

(
C∗, D∗, E∗, {(C∗

i , D∗
i,1, D

∗
i,2, E

∗
i,1, E

∗
i,2, F

∗
i )}i∈[1,l]

)
by the challenge

ciphertext given to the adversary during an attack in the real world. Let Z be a
random element of G1, and {Zi,1}, {Z ′

i,1} be sets of random elements of G. We
define a sequence of games Game0, Game1, ..., Gamel, Gamel+1, ..., Game2l+1 that
differ on which challenge ciphertext is given by the challenger to the adversary,
where Game0 is the original game, Game1 changes the term C∗ to Z, and Game2
to Gamel+1 change the D∗

i,1 term to Zi,1 one by one for i ∈ [1, l], and Gamel+2 to
Game2l+1 change the E∗

i,1 term to Z ′
i,1 one by one for i ∈ [1, l].

– Game0: The challenge ciphertext is CT∗
0 =

(
C∗, D∗, E∗, {(C∗

i , D∗
i,1, D∗

i,2,
E∗

i,1, E∗
i,2, F ∗

i )}i∈[1,l]

)
.

– Game1: The challenge ciphertext is CT∗
1 =

(
Z, D∗, E∗, {(C∗

i , D∗
i,1, D∗

i,2, Ei,1,
Ei,2, F ∗

i )}i∈[1,l]

)
.

– Game2: The challenge ciphertext is CT∗
2 =

(
Z, D∗, E∗, (C1, Z1,1, D∗

1,2, E∗
1,1,

E∗
1,2, F ∗

1 ), {(C∗
i , D∗

i,1, D∗
i,2, E∗

i,1, E∗
i,2, F ∗

i )}i∈[2,l]

)
.

– · · · · · ·
– Gamel+1: The challenge ciphertext is CT∗

l+1 =
(
Z, D∗, E∗, {(Ci, Zi,1, D∗

i,2,
E∗

i,1, E∗
i,2, F ∗

i )}i∈[1,l]

)
.

– Gamel+2: The challenge ciphertext is CT∗
l+2 =

(
Z, D∗, E∗, (C∗

1 , Z1,1, Z ′
1,1,

E∗
1,1, E∗

1,2, F ∗
1 ), {(C∗

i , Zi,1, D∗
i,2, E∗

i,1, E∗
i,2, F ∗

i )}i∈[2,l]

)
.

– · · · · · ·
– Game2l+1: The challenge ciphertext is CT∗

2l+1 =
(
Z, D∗, E∗, {(C∗

i , Zi,1, Z ′
i,1,

E∗
i,1, E∗

i,2, F ∗
i )}i∈[1,l]

)
.

To complete the proof, we will show that the games Game0, Game1, ..., Game2l+1

are computationally indistinguishable.

Lemma 1. Assuming that the (q − 1) assumption holds in G, then there is no
adversary that distinguishes between the games Game0 and Game1.

Proof. Assume that there exists an adversary algorithm A that can distinguish
Game0 from Game1. Then we can build a challenger algorithm C that solves the
(q − 1) problem.
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– Init. Algorithm A gives algorithm C a challenge access structure (M∗, ρ∗,
{ρ(i)∗})4, where M

∗ is an l × n matrix.
– Setup. Algorithm C randomly chooses d1, d2, d3, d4 ∈ Zp, and computes g1 =

gd1 , g2 = gd2 , g3 = gd3 , g4 = gd4 . Then, it randomly chooses a hash function
H: G1 → {0, 1}t, α̃, ũ, ṽ, h̃ ∈ Zp, In addition, it implicitly sets α = aq+1 + α̃,
and outputs the rest of the public parameter as g = g, w = ga,

v = gṽ ·
∏

(j,j′)∈[l,n]

(gaj′
/bj )M

∗
j,j′ , u = gũ ·

∏

(j,j′)∈[l,n]

(gaj′
/bj

2
)M

∗
j,j′ ,

h = gh̃ ·
∏

(j,j′)∈[l,n]

(gaj′
/bj

2
)−ρ∗(j)M∗

j,j′ , ê(g, g)α = ê(ga, gaq

) · ê(g, g)α̃.

– Phase 1 and Phase 2. In both phases, algorithm C has to output the private
keys for attribute sets A = {A1, ..., A|A|} issued by algorithm A.

Since A does not satisfy (M∗, ρ∗, {ρ(i)∗}), there exists a vector −→w =
(w1, ..., wn)⊥ ∈ Zn

p such that w1 = −1, (M∗
i ,

−→w ) = 0 for all i ∈ I =
{i|i ∈ [l] ∧ ρ(i)∗ ∈ A}. Algorithm B computes −→w using linear algebra. In
addition, it randomly chooses r̃, r̃′ ∈ Zp, implicitly sets

r = r̃ + w1a
q + w2a

q−1 + ... + wnaq+1−n = r̃ +
∑

i∈[n]

wia
q+1−i,

r′ = r̃′ + w1a
q + w2a

q−1 + ... + wnaq+1−n = r̃ +
∑

i∈[n]

wia
q+1−i,

and computes

K1 = gαwd1d2r+d3d4r′

= (gaq+1
gα̃)(gar̃

∏

i∈[n]

gwia
q+2−i

)d1d2(gar̃′ ∏

i∈[n]

gwia
q+2−i

)d3d4 ,

K2 = gd1d2r+d3d4r′

= (gr̃
∏

i∈[n]

(gaq+1−i

)wi)d1d2(gr̃′ ∏

i∈[n]

(gaq+1−i

)wi)d3d4 .

Then it computes

v−r = v−r̃ ·
∏

i∈[n]

(gaq+1−i

)−ṽwi

·
∏

(i,j,j′)∈[n,l,n]
i�=j′

(
gaq+1+j′−i/bj

)−wiM
∗
j,j′

∏

j∈[l]
ρ(j)/∈A

g(
−→w ·M∗

j )a
q+1/bj ,

v−r′
= v−r̃′ ·

∏

i∈[n]

(gaq+1−i

)−ṽwi

·
∏

(i,j,j′)∈[n,l,n]
i�=j′

(
gaq+1+j′−i/bj

)−wiM
∗
j,j′

∏

j∈[l]
ρ(j)/∈A

g(
−→w ·M∗

j )a
q+1/bj ,

4 For notation simplicity, we use {ρ(i)∗} to replace {A∗
ρ(i)} in the rest of the proof.
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where the last parts cannot be directly calculated, so it must be canceled by
the (uAih)ri , (uAih)r′

i parts.
Therefore, for all i ∈ [|A|], algorithm C randomly chooses r̃i ∈ Zp, and

implicitly sets

ri = r̃i + (r̃ ·
∑

i′∈[l]
ρ∗(i′)/∈A

bj

Ai − ρ∗(i′)
+

∑

j,i′∈[n,l]
ρ∗(i′)/∈A

wjbi′aq+1−j

Ai − ρ∗(i′)
),

r′
i = r̃′

i + (r̃′ ·
∑

i′∈[l]
ρ∗(i′)/∈A

bj

Ai − ρ∗(i′)
+

∑

j,i′∈[n,l]
ρ∗(i′)/∈A

wjbi′aq+1−j

Ai − ρ∗(i′)
).

and computes

gri = gr̃i ·
∏

i′∈[l]

ρ∗(i′)/∈A

(gbi′ )
r̃

Ai−ρ∗(i) ·
∏

(k′,i′)∈[n,l]

ρ∗(i′)/∈A

(gbi′ aq+1−k′
)

w
k′

Ai−ρ∗(i′) ,

(uAih)ri = (uAih)r̃i · (
gri

gr̃i
)ũAi+h̃ ·

∏

(i′,j,j′)∈[l,l,n]
ρ∗(i)/∈A

(
gbi′ aj′

/bj
2) r̃(Ai−ρ∗(j))M∗

j,j′
Ai−ρ∗(i′)

·
∏

(k′,i′,j,j′)∈[n,l,l,n]

ρ∗(i′)/∈A,(j �=i′,k′ �=j′)

(
g

b
i′ aq+1+j′−k′

bj
2

)Ai−ρ∗(j)w
k′M∗

j,j′
Ai−ρ∗(i′)

·
∏

j∈[l]
ρ∗(j)/∈A

g

(−→w ·M∗
j )aq+1

bj ,

(uAih)r′
i = (uAih)r̃′

i · (
gr′

i

gr̃′
i

)ũAi+h̃ ·
∏

(i′,j,j′)∈[l,l,n]
ρ∗(i)/∈A

(
gbi′ aj′

/bj
2) r̃(Ai−ρ∗(j))M∗

j,j′
Ai−ρ∗(i′)

·
∏

(k′,i′,j,j′)∈[n,l,l,n]

ρ∗(i′)/∈A,(j �=i′,k′ �=j′)

(
g

b
i′ aq+1+j′−k′

bj
2

)Ai−ρ∗(j)w
k′M∗

j,j′
Ai−ρ∗(i′)

·
∏

j∈[l]
ρ∗(j)/∈A

g

(−→w ·M∗
j )aq+1

bj .

Therefore, algorithm C can output the private key KA = (K1, K2, {Ki,1,
Ki,2, Ki,3, Ki,4, Ki,5}i∈[1,k]) for an attribute set A as required.

– Challenge. Algorithm A sends algorithm C a message M∗. Algorithm C ran-
domly chooses γ ∈ Zp, computes

C∗ = (M∗||γ) ⊕ H(Z · ê(g, gs)α̃), D∗ = gs, E∗ = gM∗
hγ .
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Then it implicitly sets −→v = (s, sa + ỹ2, sa2 + ỹ3, ..., san−1 + ỹn), where ỹ2,
..., ỹn ∈ Zp, and

vi =
∑

j∈[n]

M
∗
i,jsa

j−1 +
n∑

j=2

M
∗
i,j ỹj =

∑

j∈[n]

M
∗
i,jsa

j−1 + ṽi

for each row i ∈ [l].

Additionally, it implicitly sets zi = −sbi, and computes

C∗
i = wvivzi = wṽi ·

∏

j∈[n]

gM
∗
i,jsaj · (gsbi)−ṽ ·

∏

(i′,j′)∈[l,n]

g
−M

∗
i′,j′ aj′

sbi

b
i′

= wṽi · (gsbi)ṽ ·
∏

(i′,j′)∈[l,n]
i′ �=i

(gsaj′
bi/bi′ )−M

∗
i′,j′ ,

F ∗
i = (uρ∗(i)h)zi = (gsbi)−(ũρ∗(i)+h̃) ·

( ∏

(i′,j′)∈[l,n]

g

(ρ∗(i)−ρ∗(i′))M∗
i′,j′ aj′

b
i′2

)−sbi

= (gsbi)−(ũρ∗(i)+h̃) ·
∏

(i′,j′)∈[l,n]
i′ �=i

(g
saj′

bi
b
i′2 )−(ρ∗(i)−ρ∗(i′))M∗

i′,j′ ,

D∗
i,1 = g1

zi−si,1 = (g−sbi)d1 · g−d1si,1 , E∗
i,1 = g2

si,1 = gd2si,1 ,

D∗
i,2 = g3

zi−si,2 = (g−sbi)d3 · g−d3si,2 , E∗
i,2 = g4

si,2 = gd4si,2 ,

where si,1, si,2 ∈ Z∗
p . Therefore, algorithm C outputs the ciphertext CT∗ =

(
C∗, D∗, E∗, {(C∗

i , D∗
i,1, D∗

i,2, E∗
i,1, E∗

i,2, F ∗
i )}i∈[1,l]

)
as required.

– Guess. Algorithm A outputs a guess β′ for β to guess which game algorithm
C has been playing, and algorithm C forwards β′ as its own answer to the
(q − 1) assumption.

If Z = ê(g, g)sαaq+1

, then algorithm A’s view of this simulation is identical
to the original game, because C∗ = (M∗||γ)⊕H(Z · ê(g, gs)α̃) = (M∗||γ)⊕H(Z ·
ê(g, g)αs). On the other hand, if Z is a random term of G1, then all the informa-
tion about the message M∗ is hidden in the challenge ciphertext. Therefore the
advantage of algorithm A is 0. As a result, if algorithm A distinguishes game
Game0 from game Game1 with a non-negligible probability, then algorithm C
has a non-negligible advantage in breaking the (q − 1) assumption.

Lemma 2. Assuming that the decisional linear assumption holds in G, then
there is no adversary that distinguishes between the games Gamej+1 and Gamej

for j ∈ [1, l].

Proof. Assume that there exists an adversary algorithm A that can distinguish
Gamej from Gamej+1. Then we can build a challenger algorithm C that solves
the decisional linear assumption.
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• Init. Algorithm A gives algorithm C a challenge access structure (M∗, ρ∗,
{ρ(i)∗}), where M

∗ is an l × n matrix.
• Setup. Algorithm C randomly chooses d3, d4, y, w̃, ṽ, α ∈ Zp, and computes

g3 = gd3 , g4 = gd4 . Then, it sets d1 = x2, d2 = x1, and outputs the public
parameter as pars = (H, g, u, h, w, g1, g2, g3, g4, ê(g, g)α) where H is hash
function that maps from G1 to {0, 1}t as follows.

g = g, w = gw̃, g1 = gx2 , g2 = gx1 , g3 = gx3 , g4 = gx4 ,

v = gṽ, u = gx2α, h = g−x2αA∗
l′ gy, ê(g, g)α = ê(g, g)α.

• Phase 1 and Phase 2. To answer an attribute-based private key query on a
set of attributes A = {A1, ..., Ak}, algorithm C randomly chooses r, r′, r1,
..., rk, r′

1, ..., r′
k ∈ Zp, implicitly sets

r̃ =
rα(Ai − A∗

l′)
α(Ai − A∗

l′)x2 + y
, r̃′ = r′ +

yx1r

d3d4(α(Ai − A∗
l′)x2 + y)

,

ri =
r̃i(α(Ai − A∗

l′)x2 + y) − ṽr̃

α(Ai − A∗
l′)

, r′
i = r̃′

i − yx1r̃i − x1r̃ṽ

d3d4(α(Ai − A∗
l′))

,

and computes

K1 = gαK2
w̃ = gαwd1d2r̃+d3d4r̃′

, K2 = (gx1)rgr′d3d4 = gd1d2r̃+d3d4r̃′
,

Ki,1 = (gx1)α(Ai−A∗
l′ )ri = ((uAih)r̃iv−r̃)d2 ,

Ki,2 = (gx2)α(Ai−A∗
l′ )ri = ((uAih)r̃iv−r̃)d1 ,

Ki,4 = g
yx1ri−x1rṽ

d3 (uAih)d4r′
i(v−r′

)d4 = ((uAih)r̃′
iv−r̃′

)d4 ,

Ki,5 = g
yx1ri−x1rṽ

d4 (uAih)d3r′
i(v−r′

)d3 = ((uAih)r̃′
iv−r̃′

)d3 ,

Ki,3 = (gx1)rigr′
id3d4 = gd1d2r̃i+d3d4r̃′

i .

• Challenge. Algorithm A sends algorithm C a message M∗. Algorithm C ran-
domly chooses a vector −→v = (μ, y2, ..., yn) ∈ Zn

p . Also, for i ∈ [1, l] and
i �= l, algorithm C randomly chooses γ, si,1, si,2, zi ∈ Zp, μ ∈ Zp. Algorithm
C implicitly sets zl = x3 + x4, sl,1 = x3, and computes

C∗ = H(ê(g, g)αμ) ⊕ (M∗||γ), D∗ = gμ, E∗ = gM∗
hγ ,

C∗
l = wvlZ ṽ = wvlvzl , D∗

l,1 = gx2x4 = g1
zl−sl,1 ,

D∗
l,2 = Zd3g−d3sl,2 = g3

zl−sl,2 , E∗
l,1 = gx1x3 = g2

sl,1 ,

E∗
l,2 = g4

sl,2 , F ∗
l = Zy = (uρ(l)h)−zl ,

∀i �= l ∈ [1, l] C∗
i = wvivzi , D∗

i,1 = g1
zi−si,1 , E∗

i,2 = g4
si,2 ,

E∗
i,1 = g2

si,1 , D∗
i,2 = g3

zi−si,2 , F ∗
i = (uρ(i)h)−zi ,

where vl = −→v · Ml, vi = −→v · Mi, sl,2 ∈ Zp. Therefore, algorithm C outputs
the ciphertext CT∗ =

(
C∗, D∗, E∗, {(C∗

i , D∗
i,1, D∗

i,2, E∗
i,1, E∗

i,2, F ∗
i )}i∈[1,l]

)

as required.
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• Guess. Algorithm A outputs a guess β′ for β.

On the one hand, if Z = gx3+x4 , then algorithm A’s view of this simulation is
identical to the original game. On the other hand, if Z is randomly chosen from
G, then algorithm A’s advantage is nil. Therefore, if algorithm A can distinguish
game Gamej from game Gamej+1 with a non-negligible probability, algorithm
B has a non-negligible probability in breaking the decisional linear assumption.

Lemma 3. Assuming that the decisional linear assumption holds in G, then the
advantage of an adversary that can distinguish between the games Gamej+l+1

and Gamej+l for j ∈ [1, l] is negligible.

Proof. This proof follows almost the same as that of Lemma 2, except that the
simulation is done over the parameters g3 and g4 instead of g1 and g2.

This completes the proof of Theorem 1.

4.4 Performance Evaluation and Implementation

Denote l by the number of attributes in an access structure, k by the size of
an attribute set possessed by each user, χ1 by the number of elements in IM,ρ

= {I1, ..., Iχ1}, χ2 by |I1| + ... + |Iχ1 |. Table 2 shows the sizes of the public
parameter, the master private key, the ciphertext, the attribute-based private key
(i.e., storage complexity) of our expressive CP-ABE scheme supporting partially
hidden access structures, where |A| is the size of the access structure. Note that
our scheme is measured in terms of the number of elements in the prime-order
groups. According to the analysis in [12], in terms of the pairing-friendly elliptic
curves, prime-order groups have a clear advantage in the parameter sizes over
composite-order groups. Table 3 gives the computational costs incurred by the
encryption and decryption algorithms in the scheme proposed in this paper. Since
regarding the same security level, composite-order groups are several orders of
magnitude slower than the prime-order groups [21], and the performance gap
will get worse with the increase of security level [9], it is not difficult to see that
our expressive CP-ABE scheme with partially hidden access structures in the
prime-order groups becomes very competitive.

Table 2. The storage overheads in our proposed scheme.

Public parameter Master private key Private key Ciphertext Group oder

11 5 5k + 3 6l + 3 + |A| prime

We implement the proposed CP-ABE scheme with partially hidden access
structures in Charm [1]5, which is a framework developed to facilitate rapid
5 For the explicit information on Charm, please refer to [1]. Note that since it has been

clearly shown in [12,21] that the efficiency of schemes in composite-order groups is
much worse than that of schemes in prime-order groups, we will not implement those
schemes in composite-order groups (e.g., [15]).
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Table 3. The computational costs in our proposed scheme, “Expo” and “Multi” denote
the exponentiation and multiplication calculation, respectively.

Encrypt Decrypt

Multi Expo Pairing Multi Expo Pairing

2l + 1 8l + 4 0 ≤ 5χ2 + 2χ1 ≤ χ2 + 2χ1 ≤ 6χ2 + χ1

prototyping of cryptographic schemes and protocols. Since all Charm routines
are designed under the asymmetric groups, our construction is transformed into
the asymmetric setting before the implementation. That is, three groups G, Ĝ
and G1 are used and the pairing ê is a function from G × Ĝ to G1. Notice that
it has been stated in [21] that the assumptions and the security proofs in the
symmetric groups can be converted to the asymmetric setting in a generic way.
Our experiments are run on a desktop computer with Intel Core i5 − 3470T
CPU (4 core 3.20 GHz) and 4 GB RAM running Linux Kernel 3.13.0, which
is installed with Charm-0.43 and Python 3.4 for the implementation. Also, we
install the PBC library of version 0.5.14 and OpenSSL library of version 1.02 for
underlying cryptographic operations.

We simulate the algorithms of the proposed scheme over four elliptic curves:
SS512 (a symmetric curve with a 512-bit base field), MNT159 (an asymmetric
curve with a 159-bit base field), MNT201 (an asymmetric curve with a 201-bit

Fig. 1. Performance of our expressive CP-ABE scheme with partially hidden access
structures
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base field) and MNT224 (an asymmetric curve with a 224-bit base field), which
provide security levels of 80-bit, 80-bit, 100-bit and 112-bit, respectively.

In Fig. 1, the performance of the proposed CP-ABE scheme with partially
access structures is shown in terms of four algorithms: the setup algorithm
Setup (Fig. 1-(a)), the attribute-based private key generation algorithm KeyGen
(Fig. 1-(b)), the encryption algorithm Encrypt (Fig. 1-(c)) and the decryption
algorithm Decrypt (Fig. 1-(d)). It is not difficult to see from Fig. 1 that SS512
has the best performance, while MNT224 has the most expensive computational
cost among all four curves. For each curve, the computation time for the setup
algorithm is immutable with the maximum number of attributes allowed in the
system, the computation time for the key generation algorithm increases linearly
with the size of attribute set, whilst the computation time for the encryption and
decryption algorithms grows linearly with the complexity of the access policy.
In addition, in our experiments, the computation time of decrypting a cipher-
text ranges from 0.30 s to 0.80 s for a ciphertext with an access policy of 20
attributes and a private key with 20 attributes, and this result is acceptable to
most applications in practice.

5 Conclusions

A promising solution for preserving data privacy in cloud services is called
ciphertext-policy attribute-based encryption (CP-ABE) [22], where data own-
ers upload their data in encrypted forms to the cloud and share them with
users with the specified credentials or attributes. In a standard CP-ABE scheme,
every ciphertext is attached with an access structure in a cleartext which may
leak sensitive information about the recipients and the encrypted message. To
address this problem, the notion of CP-ABE with partially hidden access struc-
tures [14,15,18,19,24] was introduced such that the concrete attribute values
in access structures are hidden from the public view. Unfortunately, existing
CP-ABE schemes with partially hidden access structures [14,15,18,19,24] either
only support restricted access structures or are built in the inefficient composite-
order bilinear groups. Motivated by this observation, in this paper, we presented
a CP-ABE scheme with partially hidden access structures in the prime-order
groups, supporting access structures in monotonic boolean formulas expressed
as LSSSs. Also, we formally proved its security, and evaluated its efficiency.
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