
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2016

Deduplication on encrypted big data in cloud
Zheng YAN

Wenxiu DING

Xixun YU

Haiqi ZHU

DENG, Robert H.
Singapore Management University, robertdeng@smu.edu.sg

DOI: https://doi.org/10.1109/TBDATA.2016.2587659

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
YAN, Zheng; DING, Wenxiu; YU, Xixun; ZHU, Haiqi; and DENG, Robert H.. Deduplication on encrypted big data in cloud. (2016).
IEEE Transactions on Big Data. 2, (2), 138-150. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3345

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111751438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TBDATA.2016.2587659
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Deduplication on Encrypted Big Data in Cloud
Zheng Yan, Senior Member, IEEE, Wenxiu Ding, Xixun Yu, Haiqi Zhu, and Robert H. Deng, Fellow, IEEE

Abstract—Cloud computing offers a new way of service provision by re-arranging various resources over the Internet. The most

important and popular cloud service is data storage. In order to preserve the privacy of data holders, data are often stored in cloud in an

encrypted form. However, encrypted data introduce new challenges for cloud data deduplication, which becomes crucial for big data

storage and processing in cloud. Traditional deduplication schemes cannot work on encrypted data. Existing solutions of encrypted

data deduplication suffer from security weakness. They cannot flexibly support data access control and revocation. Therefore, few of

them can be readily deployed in practice. In this paper, we propose a scheme to deduplicate encrypted data stored in cloud based on

ownership challenge and proxy re-encryption. It integrates cloud data deduplication with access control. We evaluate its performance

based on extensive analysis and computer simulations. The results show the superior efficiency and effectiveness of the scheme for

potential practical deployment, especially for big data deduplication in cloud storage.

Index Terms—Access control, big data, cloud computing, data deduplication, proxy re-encryption

Ç

1 INTRODUCTION

CLOUD computing offers a new way of Information
Technology services by rearranging various resources

(e.g., storage, computing) and providing them to users
based on their demands. Cloud computing provides a big
resource pool by linking network resources together. It has
desirable properties, such as scalability, elasticity, fault-tol-
erance, and pay-per-use. Thus, it has become a promising
service platform.

The most important and popular cloud service is data
storage service. Cloud users upload personal or confidential
data to the data center of a Cloud Service Provider (CSP)
and allow it to maintain these data. Since intrusions and
attacks towards sensitive data at CSP are not avoidable [35],
it is prudent to assume that CSP cannot be fully trusted by
cloud users. Moreover, the loss of control over their own
personal data [44], [45] leads to high data security risks,
especially data privacy leakages [43]. Due to the rapid
development of data mining and other analysis technolo-
gies, the privacy issue becomes serious [42]. Hence, a good
practice is to only outsource encrypted data to the cloud in
order to ensure data security and user privacy [36]. But the
same or different users may upload duplicated data in
encrypted form to CSP, especially for scenarios where data
are shared among many users. Although cloud storage
space is huge, data duplication greatly wastes network

resources, consumes a lot of energy, and complicates data
management. The development of numerous services
further makes it urgent to deploy efficient resource manage-
ment mechanisms [37], [38]. Consequently, deduplication
becomes critical for big data storage and processing in the
cloud.

Deduplication has proved to achieve highcost savings,
e.g., reducing up to 90-95 percent storage needs for backup
applications [9] and up to 68 percent in standard file sys-
tems [10]. Obviously, the savings, which can be passed back
directly or indirectly to cloud users, are significant to the
economics of cloud business. How to manage encrypted
data storage with deduplication in an efficient way is a prac-
tical issue. However, current industrial deduplication solu-
tions cannot handle encrypted data. Existing solutions for
deduplication suffer from brute-force attacks [7], [11], [12],
[13], [14]. They cannot flexibly support data access control
and revocation at the same time [16], [18], [19], [20]. Most
existing solutions cannot ensure reliability, security and pri-
vacy with sound performance [23], [24], [25].

In practice, it is hard to allow data holders to manage
deduplication due to a number of reasons. First, data hold-
ers may not be always online or available for such a man-
agement, which could cause storage delay. Second,
deduplication could become too complicated in terms of
communications and computations to involve data holders
into deduplication process. Third, it may intrude the pri-
vacy of data holders in the process of discovering dupli-
cated data. Forth, a data holder may have no idea how to
issue data access rights or deduplication keys to a user in
some situations when it does not know other data holders
due to data super-distribution. Therefore, CSP cannot coop-
erate with data holders on data storage deduplication in
many situations.

In this paper, we propose a scheme based on data owner-
ship challenge and Proxy Re-Encryption (PRE) to manage
encrypted data storage with deduplication. We aim to solve
the issue of deduplication in the situation where the data
holder is not available or difficult to get involved. Mean-
while, the performance of data deduplication in our scheme

� Z. Yan is with the State Key Laboratory on Integrated Services Networks,
Xidian University, Xi’an 710071, China and with the Department of Com-
munications and Networking, Aalto University, Espoo 02150, Finland.
E-mail: zyan@xidian.edu.cn.

� W. Ding and X. Yu are with the State Key Laboratory on Integrated Serv-
ices Networks, Xidian University, Xi’an 710071, China.
E-mail: {wenxiuding_1989, Gabrielyu}@126.com.

� H. Zhu is with the Baidu Online Network Technology, Beijing 100085,
China. E-mail: zhuhaiqi_xdu@163.com.

� R.H. Deng is with the School of Information Systems, Singapore Manage-
ment University, Singapore. E-mail: robertdeng@smu.edu.sg.

Manuscript received 15 Feb. 2016; revised 15 May 2016; accepted 25 June
2016. Date of publication 12 July 2016; date of current version 29 July 2016.
Recommended for acceptance by H. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TBDATA.2016.2587659

138 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 2, APRIL-JUNE 2016

2332-7790� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Published in IEEE Transactions on Big Data, 2016 June, Volume 2, Issue 2, Pages 138-150
https://doi.org/10.1109/TBDATA.2016.2587659

mailto:
mailto:
mailto:
mailto:

is not influenced by the size of data, thus applicable for big
data. Specifically, the contributions of this paper can be
summarized as below:

� We motivate to save cloud storage and preserve the
privacy of data holders by proposing a scheme to
manage encrypted data storage with deduplication.
Our scheme can flexibly support data sharing with
deduplication even when the data holder is offline,
and it does not intrude the privacy of data holders.

� We propose an effective approach to verify data
ownership and check duplicate storage with secure
challenge and big data support.

� We integrate cloud data deduplication with data
access control in a simple way, thus reconciling data
deduplication and encryption.

� We prove the security and assess the performance of
the proposed scheme through analysis and simula-
tion. The results show its efficiency, effectiveness
and applicability.

The rest of the paper is organized as follows. Section 2
gives a brief overview of related work. Section 3 introduces
system and security models, preliminaries and notation. Sec-
tion 4 gives the detailed description of our scheme, followed
by security analysis and performance evaluation in Section
5. Finally, a conclusion is presented in the last section.

2 RELATED WORK

2.1 Encrypted Data Deduplication

Cloud storage service providers such as Dropbox [2], Goo-
gle Drive [3], Mozy [4], and others perform deduplication to
save space by only storing one copy of each file uploaded.
However, if clients conventionally encrypt their data, stor-
age savings by deduplication are totally lost. This is because
the encrypted data are saved as different contents by apply-
ing different encryption keys. Existing industrial solutions
fail in encrypted data deduplication. For example, DeDu
[17] is an efficient deduplication system, but it cannot han-
dle encrypted data.

Reconciling deduplication and client-side encryption is
an active research topic [1]. Message-Locked Encryption
(MLE) intends to solve this problem [5]. The most promi-
nent manifestation of MLE is Convergent Encryption (CE),
introduced by Douceur et al. [6] and others [7], [11], [12]. CE
was used within a wide variety of commercial and research
storage service systems. Letting M be a file’s data, a client
first computes a key K HðMÞ by applying a crypto-
graphic hash function H to M, and then computes cipher-
text C EðK;MÞ via a deterministic symmetric encryption
scheme. A second client B encrypting the same file M will
produce the same C, enabling deduplication. However, CE
is subject to an inherent security limitation, namely, suscep-
tibility to offline brute-force dictionary attacks [13], [14].
Knowing that the target data M underlying the target
ciphertext C is drawn from a dictionary S ¼ fM1; . . . ;Mng
of size n, an attacker can recover M in the time for n ¼ jSj
off-line encryptions: for each i ¼ 1; . . . ; n, it simply CE-
encrypts Mi to get a ciphertext denoted as Ci and returns
Mi such that C ¼ Ci. This works because CE is deterministic
and keyless. The security of CE is only possible when the
target data is drawn from a space too large to exhaust.

Another problem of CE is that it is not flexible to support
data access control by data holders, especially for data revo-
cation process, since it is impossible for data holders to gen-
erate the same new key for data re-encryption [18], [19]. An
image deduplication scheme adopts two servers to achieve
verifiability of deduplication [18]. The CE-based scheme
described in [19] combines file content and user privilege to
obtain a file token with token unforgeability. However, both
schemes directly encrypt data with a CE key, thus suffer
from the problem as described above. To resist the attack of
manipulation of data identifier, Meye et al. proposed to
adopt two servers for intra-user deduplication and inter-
deduplication [20]. The ciphertext C of CE is further
encrypted with a user key and transferred to the servers.
However, it does not deal with data sharing after deduplica-
tion among different users. ClouDedup [16] also aims to
cope with the inherent security exposures of CE, but it can-
not solve the issue caused by data deletion. A data holder
that removes the data from the cloud can still access the
same data since it still knows the data encryption key if the
data is not completely removed from the cloud.

Bellare et al. [1] proposed DupLESS that provides secure
deduplicated storage to resist brute-force attacks. In Dup-
LESS, a group of affiliated clients (e.g., company employees)
encrypt their data with the aid of a Key Server (KS) that is
separate from a Storage Service (SS). Clients authenticate
themselves to the KS, but do not leak any information about
their data to it. As long as the KS remains inaccessible to
attackers, high security can be ensured. Obviously, Dup-
LESS cannot control data access of other data users in a flex-
ible way. Alternatively, a policy-based deduplication proxy
scheme [15] was proposed but it did not consider dupli-
cated data management (e.g., deletion and owner manage-
ment) and did not evaluate scheme performance.

As stated in [21], reliability, security and privacy should
be taken into considerations when designing a deduplica-
tion system. The strict latency requirements of primary stor-
age lead to the focus on offline deduplication systems [22].
Recent studies proposed techniques to improve restore per-
formance [23], [24], [25]. Fu et al. [23] proposed History-
Aware Rewriting (HAR) algorithm to accurately identify
and rewrite fragmented chunks, which improved the
restore performance. Kaczmarczyk et al. [24] focused on
inter-version duplication and proposed Context-Based
Rewriting (CBR) to improve the restore performance for lat-
est backups by shifting fragmentation to older backups.
Another work [25] even proposed to forfeit deduplication to
reduce the chunk fragmentation by container capping. In
our previous work [33], we proposed using PRE for cloud
data deduplication. This scheme applies the hash code of
data to check ownership with signature verification, which
is unfortunately insecure ifHðMÞ is disclosed to a malicious
user. In this paper, we propose a new ownership verifica-
tion approach to improve our previous work and aim to
support big data deduplication in an efficient way.

2.2 Data Ownership Verification and Others

Halevi et al. [39] first introduced the practical implementa-
tion of Proofs of Ownership (PoW) based on Merkle tree for
deduplication, which realized client-side deduplication.
They proposed to apply an erasure coding or hash function

YAN ET AL.: DEDUPLICATION ON ENCRYPTED BIG DATA IN CLOUD 139

over the original file first and then use Merkle tree on the
pre-processed data to generate the verification information.
When challenging a prover, a verifier randomly chooses
several leaves of the tree and obtains the corresponding sib-
ling-paths of all these leaves. Only when all paths are valid,
will the verifier accept the proof. This construction can iden-
tify deduplication at a client to save network bandwidth
and guarantee that the client holds a file rather than some
part. Pietro et al. [40] chose the projection of a file onto some
randomly selected bit-positions as proof to realize the
PoW. But both schemes above do not pay attention to data
privacy and the server for data storage could be aware of
the file content. Ng et al. [41] adapted the PoW to manage
the deduplication of encrypted data. This scheme also gen-
erates verification information for deduplication check
based on Merkle trees. Each leaf value is generated based
on several data blocks, while each interactive proof proto-
col can only challenge one leaf of the Merkle tree. In order
to achieve higher security by checking more data, the pro-
tocol should be executed multiple times which introduces
much overhead.

Yang et al. also proposed a cryptographically secure and
efficient scheme to check the ownership of a file, in which a
client proves to the server that it indeed possesses the entire
file without uploading the file [28]. By relying on dynamic
spot checking, a data holder only needs to access small but
dynamic portions of the original file to generate the proof of
possession of the original file, thus greatly reducing the bur-
den of computation on the data holder and minimizing the
communication cost between the data holder and CSP. At
the same time, by utilizing dynamic coefficients and ran-
domly chosen indices of the original files, the scheme mixes
the randomly sampled portions of the original file with the
dynamic coefficients to generate the unique proof in every
challenge. The work focuses on ownership proof of the
uploaded data during data deduplication. In this paper, we
use Eillptic Curve Cryptography (ECC) to verify data own-
ership with the support of an authorized party.

Yuan and Yu attempted to solve the issue of supporting
efficient and secure data integrity auditing with storage
deduplication for cloud storage [31]. They proposed a novel
scheme based on techniques including polynomial-based
authentication tags and homomorphic linear authenticators.
Their design allows deduplication of both files and their
corresponding authentication tags. Data integrity auditing

and storage deduplication are achieved simultaneously.
Public auditing and batch auditing are both supported. But
feasibility of supporting deduplication big data was not dis-
cussed in this work.

In order to reduce workloads due to duplicate files, Wu
et al. proposed Index Name Servers (INS) to manage not
only file storage, data deduplication, optimized node selec-
tion, and server load balancing, but also file compression,
chunk matching, real-time feedback control, IP information,
and busy level index monitoring [29]. To manage and opti-
mize storage nodes based on a client-side transmission sta-
tus by the proposed INS, all nodes must elicit optimal
performance and offer suitable resources to clients. In this
way, not only can the performance of a storage system be
improved, but the files can also be reasonably distributed,
decreasing the workload of the storage nodes. However,
this work cannot deduplicate encrypted data.

Fan et al. proposed a hybrid data deduplication mecha-
nism that provides a practical solution with partial semantic
security [30]. This solution supports deduplication on plain-
text and ciphertext. But this mechanism cannot support
encrypted data deduplication very well. It works based on
the assumption that CSP knows the encryption key of data.
Thus it cannot be used in the situation that the CSP cannot
be fully trusted by the data holders or owners.

In this paper, we apply ECC, PRE and symmetric encryp-
tion to deduplicate encrypted data. Our scheme can resist
the attacks mentioned above in CE and achieve good perfor-
mance without keeping data holders online all the time.
Meanwhile, it also ensures the confidentiality of stored data
and supports digital rights management. We aim to achieve
deduplication on encrypted big data in cloud.

3 PROBLEM STATEMENTS

3.1 System and Security Model

We propose a scheme to deduplicate encrypted data at CSP
by applying PRE to issue keys to different authorized data
holders based on data ownership challenge. It is applicable
in scenarios where data holders are not available for dedu-
plication control.

As shown in Fig. 1, the system contains three types of
entities: 1) CSP that offers storage services and cannot be
fully trusted since it is curious about the contents of stored
data, but should perform honestly on data storage in order
to gain commercial profits; 2) data holder (ui) that uploads
and saves its data at CSP. In the system, it is possible to
have a number of eligible data holders ðui; i ¼ 1; . . . ; nÞ
that could save the same encrypted raw data in CSP. The
data holder that produces or creates the file is regarded as
data owner. It has higher priority than other normal data
holders, which will be presented in Section 4; 3) an autho-
rized party (AP) that does not collude with CSP and is fully
trusted by the data holders to verify data ownership and
handle data deduplication. In this case, AP cannot know the
data stored in CSP and CSP should not know the plain user
data in its storage.

In theory it is possible that CPS and its users (e.g., data
holders) can collude. In practice, however, such collusion
could make the CSP lose reputation due to data leakage. A
negative impact of bad reputation is the CSP will lose its

Fig. 1. System model.

140 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 2, APRIL-JUNE 2016

users and finally make it lose profits. On the other hand, the
CSP users (e.g., data holders) could lose their convenience
and benefits of storing data in CSP due to bad reputation of
cloud storage services. Thus, the collusion between CSP
and its users is not profitable for both of them. Concrete
analysis based on Game Theory is provided in [26]. There-
fore, we hold such an assumption as: CSP does not collude
with its users, e.g., performing re-encryption for unautho-
rized users to allow them to access data.

Additional assumptions include: data holders honestly
provide the encrypted hash codes of data for ownership
verification. The data owner has the highest priority. A data
holder should provide a valid certificate in order to request
a special treatment. Users, CSP and AP communicate
through a secure channel (e.g., SSL) with each other. CSP
can authenticate its users in the process of cloud data stor-
age. We further assume that the user policy PolicyðuÞ for
data storage, sharing and deduplication is provided to CSP
during user registration.

3.2 Preliminary and Notation

3.2.1 Preliminaries

1) Proxy Re-Encryption
A PRE scheme is represented as a tuple of (possibly proba-
bilistic) polynomial time algorithms ðKG;RG;E;R;DÞ:
ðKG;E;DÞ are the standard key generation, encryption,

and decryption algorithms. On input the security parameter

1k, KG outputs a public and private key pair ðpkA; skAÞ for
entity A. On input pkA and data M, E outputs a ciphertext
CA ¼ EðpkA;MÞ. On input skA and ciphertext CA, D out-
puts the plain dataM ¼ DðskA;CAÞ.

On input ðpkA; skA; pkBÞ, the re-encryption key genera-
tion algorithm RG, outputs re-encryption key rkA!B for a
proxy.

On input rkA!B and ciphertext CA, the re-encryption
function R, outputs RðrkA!B;CAÞ ¼ EðpkB;mÞ ¼ CB which
can be decrypted with private key skB.

2) Symmetric Encryption
EncryptðDEK;MÞ. The Encrypt algorithm takes as input

data M, the symmetric key DEK. It encrypts M with DEK
and outputs the ciphertext CT . This process is conducted at
user u to protect its data stored at CSP with DEK.

DecryptðDEK;CT Þ. The Decrypt algorithm takes as
input the encrypted data CT , the symmetric key DEK. The
algorithm decrypts CT with DEK and outputs the plain
data M. A user (data holder) conducts this process to gain
the plaintext of stored data at CSP.

3.2.2 Notation

Table 1 summarizes the notation used in the proposed
scheme.

3.2.3 System Setup

There are two groups G1; GT of prime order q with a
bilinear map e : G1 �G1 ! GT . The system parameters are
random generators g 2 G1 and Z ¼ eðg; gÞ 2 GT .

During system setup, every data holder ui generates ski
and pki for PRE: ski ¼ ai; pki ¼ gai where ai 2 Zp. The
public key pki is used for generating the re-encryption key
at AP for ui. Assuming that Eqða; bÞ is an elliptic curve over
GF ðqÞ, P is a base point that is shared among system enti-
ties, si2Rf0; . . . ; 2s � 1g is the ECC secret key of user ui and
Vi ¼ �siP is the corresponding public key and s is a secu-
rity parameter. The keys (pki; ski) and ðVi; siÞ of ui are
bound to a unique identifier of the user, which can be a
pseudonym. This binding is crucial for the verification of
the user identity. AP independently generates pkAP and
skAP for PRE and broadcast pkAP to CSP users.

4 SCHEME

Our scheme contains the following main aspects:
Encrypted Data Upload. If data duplication check is nega-

tive, the data holder encrypts its data using a randomly
selected symmetric keyDEK in order to ensure the security
and privacy of data, and stores the encrypted data at CSP
together with the token used for data duplication check.
The data holder encrypts DEK with pkAP and passes the
encrypted key to CSP.

Data Deduplication. Data duplication occurs at the time
when data holder u tries to store the same data that has
been stored already at CSP. This is checked by CSP through
token comparison. If the comparison is positive, CSP con-
tacts AP for deduplication by providing the token and the
data holder’s PRE public key. The AP challenges data own-
ership, checks the eligibility of the data holder, and then
issues a re-encryption key that can convert the encrypted
DEK to a form that can only be decrypted by the eligible
data holder.

Data Deletion. When the data holder deletes data from
CSP, CSP firstly manages the records of duplicated data

TABLE 1
System Notation

Key Description

ðpki; skiÞ The public key and secret key
of user ui for PRE

DEKi The symmetric key of ui

HðÞ The hash function
CT The ciphertext
CK The cipherkey
M The user data
KG The key generation algorithm

of PRE
RG The re-encryption key generation

algorithm of PRE
E The encryption algorithm

of PRE
R The re-encryption algorithm

of PRE
D The decryption algorithm

of PRE
EncryptðDEK;MÞ The symmetric encryption function

onM withDEK
DecryptðDEK;CT Þ The symmetric decryption function

on CT with DEK
ðVi; siÞ The key pair of user ui in Eillptic

Curve Cryptography (ECC) for
duplication check

P The base point in ECC
x ¼ HðHðMÞ � P Þ The token used for data

duplication check

YAN ET AL.: DEDUPLICATION ON ENCRYPTED BIG DATA IN CLOUD 141

holders by removing the duplication record of this user. If
the rest records are not empty, the CSP will not delete the
stored encrypted data, but block data access from the holder
that requests data deletion. If the rest records are empty, the
encrypted data should be removed at CSP.

Data Owner Management. In case that a real data owner
uploads the data later than the data holder, the CSP canman-
age to save the data encrypted by the real data owner at the
cloud with the owner generated DEK and later on, AP sup-
ports re-encryption ofDEK at CSP for eligible data holders.

Encrypted Data Update. In case that DEK is updated by a
data owner with DEK0 and the new encrypted raw data is
provided to CSP to replace old storage for the reason of
achieving better security, CSP issues the new re-encrypted
DEK0 to all data holders with the support of AP.

4.1 Scheme to Verify Data Ownership

In order to check duplication, we first propose an ownership
verification protocol based on a cryptoGPS identification
scheme [47]. As shown in Fig. 2, we let AP to challenge data
holder ui to ensure that it is the real party that possesses data
M. CSP just checks if duplication happens by verifying if the
token xi ¼ HðHðMÞ � P Þ of dataM has existed already. This
design ensures that CSP cannot gain si and disclose HðMÞ to
a malicious party. In case that the same token exists, CSP
passes the further verification to AP that randomly chooses
c 2Rf0; . . . ; 2s � 1g and challenges ui by c. ui checks c tomake
sure that 0 � c � 2s � 1, computes y ¼ HðMÞ þ ðsi � cÞ and
sends y and Vi to AP. AP computes HðyP þ cViÞ and com-
pares it with xi. If challenge verification is positive, i.e.,
HðyP þ cViÞ ¼ xi, AP generates reencryption key rkAP!ui

and issues it to CSP. CSP re-encryptsEðpkAP ;DEKÞ and pro-
vides the re-encrypted key to ui, refer to Section 4.2.

4.2 Scheme to Grant Access to Duplicated Data

Data holder ui encrypts its secret key DEKi with
EðpkAP ;DEKiÞ and publishes it along with encrypted data
EncryptðDEKi;MÞ to CSP. If another data holder uj
uploads the same raw data encrypted using a different key,

CSP contacts AP to challenge ownership and grant DEKi

to the eligible duplicated data holder uj as described in
Algorithm 1.

Algorithm 1. Grant Access to Duplicated Data

Input: pkj, PolicyðuiÞ, PolicyðAP Þ
- CSP requests AP to challenge ownership and grant access to
duplicated data for uj by providing pkj.
- After ensuring data ownership through challenge, AP checks
PolicyðAP Þ and issues CSP rkAP!ui ¼ RG ðpkAP ; skAP ; pkjÞ if
the check is positive.
- CSP transforms EðpkAP ;DEKiÞ into Eðpkj;DEKiÞ if
PolicyðuiÞ authorizes uj to share the same data M encrypted by

DEKi: RðrkAP!ui ;EðpkAP ;DEKÞÞ ¼ Eðpkj; DEKiÞ.
Note: rkAP!ui calculation can be skipped if it has been executed
already and the value of (pkj; skj) and (pkAP ; skAP) remain

unchanged.
- Data holder uj obtains DEKi by decrypting Eðpkj; DEKiÞ
with skj:DEKi ¼ Dðskj;Eðpkj; DEKiÞÞ, and then it can access

dataM at CSP.

CSP operates as the proxy in the proposed scheme. It
indirectly distributes DEKi for data decryption to dupli-
cated data holders without learning anything about these
secrets (e.g., DEKi and M). Note that AP itself is not
allowed by the CSP to access the user’s personal data due to
business reasons.

4.3 Procedures

4.3.1 Data Deduplication

Fig. 3 illustrates the procedure of data deduplication at CSP
with the support of AP based on the proposed scheme. We
suppose that user u1 saves its sensitive data M at CSP with
protection using DEK1, while user u2 is a data holder who
tries to save the same data at CSP. The detailed procedure
of data deduplication is presented below:

Step 1 – System setup: as described in Section 3.
Step 2 – Data token generation: User u1 generates data

token of M, x1 ¼ HðHðMÞ � P Þ and sends fx1; pk1;
Certðpk1Þg to CSP.

Fig. 2. Data ownership verification.

Fig. 3. A procedure of data deduplication.

142 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 2, APRIL-JUNE 2016

Step 3 – Duplication check: CSP verifies Certðpk1Þ and
checks if the duplicated data is stored by finding
whether x1 exists. If the check is negative, it requests
data upload. User u1 encrypts dataM withDEK1 to get
CT1 and encryptdDEK1 with pkAP to get CK1. u1 sends
CT1 and CK1 to CSP, which saves them together with x1

and pk1. If the check is positive and the pre-stored data
is from the same user, it informs the user about this sit-
uation. If the same data is from a different user, refer to
Step 6 for deduplication.

Step 4 – Duplicated data upload and check: User u2 later on
tries to save the same dataM at CSP following the same
procedure of Step 2 and 3. That is, u2 sends the data
package fx2; pk2; Certðpk2Þg to CSP. Duplication hap-
pens because x2 exists, so CSP forwards fx2; pk2;
Certðpk2Þg to AP.

Step 5 – Ownership challenge: AP challenges the data owner-
ship of u2 by randomly choosing c 2Rf0; . . . ; 2s � 1g and
sending it to u2. u2 checks c to make sure that
0 � c � 2s � 1, computes y ¼ HðMÞ þ ðs2 � cÞ and sends
EðpkAP ; yÞ to AP. AP gets y, computes HðyP þ cV2Þ and
compares it with x2. IfHðyP þ cV2Þ ¼ x2, i.e., the owner-
ship challenge is successful, AP generates re-encryption
key rkAP!u2 by calling RGðpkAP ; skAP ; pk2Þ if it has not

been generated and issued toCSP.
Step 6 – Deduplication: CSP re-encrypts EðpkAP ;DEK1Þ by

calling RðrkAP!u2 ;EðpkAP ;DEK1ÞÞ ¼ Eðpk2;DEK1Þ
and provides the re-encrypted key Eðpk2; DEK1Þ to u2.
Then u2 can get DEK1 with its secret key sk2. u2 con-
firms the success of data deduplication to CSP that
records corresponding deduplication information in
the system after getting this notification.

At this moment, both u1 and u2 can access the same data
M saved at CSP. User u1 uses DEK1 directly, while u2 gets
to knowDEK1 by callingDðsk2;Eðpk2;DEK1ÞÞ.

4.3.2 Data Deletion at CSP

When data holder u2 wants to delete the data from CSP, it
sends deletion request to CSP: Certðpk2Þ, x2. CSP checks the
validity of the request, then removes deduplication record
of u2, and block u2’s later access to M. CSP further checks if

the deduplication record is empty. If yes, it deletes
encrypted data CT and related records.

4.3.3 Data Owner Management

In case that real data owner u1 uploads the data later than
data holder u2, CSP can manage to save the data encrypted
by the real data owner at the cloud and allow it to share the
storage. The real data ownership can be verified after chal-
lenging, e.g., the data owner should provide a specific certif-
icate to show its ownership. The procedure of data owner
management is shown in Fig. 4. In this case, CSP contacts
AP by providing all data holders’ pki (e.g., pk2) if CSP does
not know its corresponding re-encryption key rkAP!ui (e.g.,

rkAP!u2). AP issues rkAP!ui to CSP if ownership challenge

is positive. CSP re-encrypts CK1, gets re-encrypted DEK1

(e.g., Eðpk2; DEK1Þ), sends it to all related data holders
(e.g., u2), deletes CT2 and CK2 by replacing it with u1’s
encrypted copy CT1 and CK1, and finally updates corre-
sponding deduplication records.

4.3.4 Encrypted Data Update

In some cases, a data holder could update encrypted data
stored at CSP by generating a new DEK0 and upload the
newly encrypted data with DEK0 to CSP. As illustrated in
Fig. 5, u1 wants to update encrypted data stored at CSP
with new symmetric key DEK01. User u1 sends an update
request: fx1; CT

0
1; CK

0
1; update CT1g. CSP saves CT 01; CK

0
1

together with x1 and pk1. CSP contacts AP for deduplication
for other data holders if their re-encryption keys are not
known. AP checks its policy for generating and sending cor-
responding re-encryption keys (e.g., rkAP!u2), which are
used by CSP to perform re-encryption on CK01 for generat-
ing re-encrypted keys that can be decrypted by all eligible
data holders (e.g., Eðpk2; DEK01Þ). The re-encrypted keys
are then sent to the eligible data holders for future access on
data M. Any data holder can perform the encrypted data
update. Based on storage policy and service agreement
between the data holder and CSP, CSP decides if such an
update can be performed.

4.3.5 Valid Data Replication

As stated above, the savings through deduplication can be
passed back directly or indirectly to cloud users, which can
help them save storage costs. But sometimes data holders or
owners do not care about the storage costs, but want to hold

Fig. 4. A procedure of data owner management.

Fig. 5. A procedure of encrypted data update.

YAN ET AL.: DEDUPLICATION ON ENCRYPTED BIG DATA IN CLOUD 143

the full control over their data. Hence, they upload and
store their own data at CSP, even when it has been
uploaded by other entities. As illustrated in Fig. 6, the user
ui generates a token with secret key si for deduplication
check of its own uploaded data. If it has not been stored by
ui, then ui encrypts its data with DEKi and encrypts DEKi

with pki. Different from the operation in deduplication, ui

generates CKi with pki rather than pkAP . Thus ui can control
its own data fully, such as data sharing, data deletion and
data update. For example, ui can generate rkui!uj for shar-

ing the data with uj.

5 SECURITY ANALYSIS AND PERFORMANCE

EVALUATION

5.1 Security Analysis

Our scheme provides a secure approach to protect and
deduplicate the data stored in cloud by concealing plaintext
from both CSP and AP. The security of the proposed
scheme is ensured by PRE theory, symmetric key encryp-
tion and ECC theory.

Proposition 1. The cooperation of CSP and AP without collu-
sion guarantees that only eligible users can access plain dataM
and the data can be deduplicated in a secure way.

Proof. CSP has no way to know M since it is always in an
encrypted form. CSP knows CK encrypted with pkAP ,
but AP does not share its own secret key skAP with CSP.
Thus CSP cannot knowDEK and thenM. AP has no way
to access M since its access is blocked by CSP although
AP could obtainDEK. In addition, we apply proper man-
agement protocols to support data storage management
and data owner management to achieve deduplication at
the same time. tu
Data confidentiality is achieved by symmetric key

encryption (e.g., AES) and PRE. Data M could be disclosed
in two different ways. One is to obtain it from HðH
ðMÞ � P Þ. The hash function is assumed to be secure, i.e., it
is difficult to find collision attack. Therefore, M is impossi-
ble to be obtained through the hash code. Another is to dis-
close M by breaking the ciphertext of symmetric key
encryption CT ¼ EncryptðDEK;MÞ. Assuming that the
symmetric key encryption is secure, DEK becomes the key
point of data security. In the proposed scheme, DEK is
encrypted with pkAP through PRE as EðpkAP ;DEKÞ.
Because CSP and AP would not collude with each other,

CSP cannot gain DEK to get M because it knows nothing
about skAP although it stores CK and CT . The re-encryption
with pkAP!ui transforms the cipherkey under pkAP into the

cipherkey under pki. Similarly, CSP can get nothing from
the cipherkey for knowing nothing about ski. The autho-
rized user ui can obtain the data M by decrypting
Eðpki;DEKÞ with its own secret key ski, which can guaran-
tee that M is secure and can be only accessed by eligible
users. About a security proof on PRE, refer to [27].

In data replication, data are encrypted with the secret key
of data holder ui. Thus it can only be obtained with ski. The
re-encryption key for anyone can only be issued by ui rather
than AP, which guarantees its full control over the data. In
addition, only ui can generate the token xi

0 with its own
secret key si. Thus no one can guess its content and produce
the same xi

0 even though it holds the same data. Thus,
applying xi

0 for deduplication check can support valid data
replication for an individual user. Similar to the analysis
above, the data confidentiality is also achieved by symmet-
ric key encryption and PRE.

Proposition 2. HðMÞthat is the key to pass the duplication
check cannot be obtained by malicious cloud users.

Proof. HðHðMÞ � P Þ that plays as the token for data dupli-
cation check cannot reveal the value of HðMÞ � P , espe-
cially HðMÞ due to Elliptic curve discrete logarithm
problem. Hence, even when the token is intercepted by
some malicious users, HðMÞ is still protected. CSP cannot
get any information except the token. Though AP can get
to know the value y ¼ HðMÞ þ ðsi � cÞ and the challenge
c, it cannot obtain si andHðMÞ. Thus, neither CSP nor AP
can obtainHðMÞ. tu
Based on the above security analysis, HðMÞ is not trans-

mitted between the involved parties and cannot be obtained
by any other parties. Even when CSP colludes with a mali-
cious cloud user, the malicious user can only obtain the
token HðHðMÞ � P Þ, not HðMÞ, thus impossible to access
M stored at cloud by passing the ownership challenge
raised by AP.

Proposition 3. To pass the ownership verification of AP, a cloud
user must indeed have dataM.

Proof. With real data M, user ui can generate correct HðMÞ,
compute right y ¼ HðMÞ þ ðsi � cÞ with si and the chal-
lenge c provided by AP, thus AP can successfully com-
pare that HðyP þ cViÞ ¼ HðHðMÞ � P þ ðsi � cÞ � P �
c� si � P Þ ¼ HðHðMÞ � PÞ ¼ xi is equal to xi, i.e., pass-
ing the ownership verification of AP. tu

5.2 Computation Complexity

The proposed scheme involves four kinds of system roles:
data owner, data holder, CSP and AP. To present the com-
putation complexity in details, we adopt AES for symmetric
encryption, ECC and PRE proposed in [8]. We analyze the
complexity of uploading one data file as below.

Data Owner. Regarded as the first data uploader, it is in
charge of four operations: system setup, data encryption,
key encryption, and token HðHðMÞ � P Þ generation. In
setup, the key generation of PRE includes 1 exponentiation.
The ECC key generation needs one point multiplication. In

Fig. 6. A procedure of valid replicated data upload.

144 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 2, APRIL-JUNE 2016

addition, system setup takes only once for all data storage
operations. The computation complexity of encrypting
data using DEK depends on the size of data, which is
inevitable in any cryptographic methods for protecting the
data. Likewise, the computation complexity of hash
depends on the size of data, but it is very fast, which can
be ignored. The encryption of DEK using PRE need 2
exponentiations. The first step of data upload for dedupli-
cation check involves one token generation, which needs
two hashes and one point multiplication. Thus, the compu-
tation complexity of data owner is Oð1Þ at both setup and
data upload.

CSP. A user uploads its data to CSP by sending token
HðHðMÞ � P Þ. CSP should first check if the same token has
existed (by comparing the token with the records in CSP,
which is inevitable in any deduplication schemes). Then,
CSP chooses to save the data if the token does not exist. If
the data holder uploads the same data, CSP contacts AP for
gaining a re-encryption key if the ownership challenge is
positive. In this case, CSP has to finish the re-encryption
operation of PRE, which requires 1 pairing. If the same data
is uploaded by n data holders, the computational complex-
ity is OðnÞ. CSP is responsible for allowing the access to the

same data for all data holders by avoiding storing the same
data in the cloud.

Data Holder. When data holder ui uploads the same data
that has been stored in CSP, it generates token
HðHðMÞ � P Þ as the data owner has done, which needs one
point multiplication. In addition, the data holder has to
compute y ¼ HðMÞ þ ðsi � cÞ during ownership challenge,
perform EðpkAP ; yÞ in order to protect HðMÞ from disclo-
sure in case y is known by a malicious party, and conduct
one more decryption for accessing the data, which involves
2 exponentiations in EðpkAP ; yÞ and 1 exponentiation in
Dðpki;DEKÞ. Note: the data holder has no need to encrypt
the original data for data upload. The computational com-
plexity of a data holder is Oð1Þ.

AP. AP is responsible for the re-encryption key manage-
ment. It challenges data ownership by randomly selecting c,
decrypting y and comparing HðyP þ cViÞ with xi. It checks
the policy and issues the re-encryption key for authorized
user by conducting two point multiplications. The decryp-
tion of y needs 1 exponentiation. The re-encryption key gen-
eration needs 1 exponentiation. AP needs to issue keys for
all authorized data holders that upload the same data.
Thus, the computational complexity of AP is OðnÞ. Notably,
if the re-encryption key of a data holder has been generated
and issued already, AP will only authorize CSP to perform
re-encrytion on CK and will not re-generate the re-encryp-
tion key any more.

We should note that the computational burden of system
setup, especially the generation of key pairs, can be amor-
tized over the lifetime of entities. Thus, our scheme is very
efficient. Table 2 lists the computation operations and com-
plexity of different roles. We also compare the scheme pre-
sented in this paper with our previous work [33]. We can
see that our scheme is more efficient at the side of data own-
ers and holders than [33] regarding big data deduplication
because the point multiplication is more efficient than the
exponentiation operation, also refer to Tables 4, 5, and 6.
Especially, data holders have no need to encrypt and
upload data, which can save much time and bandwidth.
Our scheme only introduces a bit more computation com-
plexity at AP. However, AP is a powerful server full of com-
putation capability. Thus additional computation load at AP
is acceptable.

TABLE 2
Computation Complexity of System Entities

by Comparing with [33]

Entity Algorithm Computations

[our scheme]

Computations

[33]

Complexity

Data

Owner

Setup 1�PointMulti þ
1� Exp

1�ModInv þ
1�Exp

Oð1Þ

Data upload 2 �Exp þ
1�PointMulti

3�Exp

CSP Re-encryption 1 �Pair 1�Pair OðnÞ

Data

Holder

System Setup 1�PointMulti þ
1�Exp

1�ModInv þ
1� Exp

Oð1Þ

Challenge

Response

2�Exp þ
1�PointMulti

–

Data upload – 3�Exp
Decryption for

access

1�Exp 1�Exp

AP

System Setup 1�Exp 1�Exp OðnÞ
Ownership

challenge and

re-encryption

key generation

2�Exp þ 2�Point
Multi

1�Exp

Notes: Pair: Bilinear Pairing; Exp: Exponentiation; ModInv: Modular Inver-
sion; n: Number of data holders who share the same data; PointMulti: Point
multiplication in ECC.

TABLE 3
Test Environments

Hardware
Environment

CPU: Intel Core 2 Quad CPU Q9400 2.66 GHZ
Memory: 4 GB SDRAM

Software
Environment

Operating System: Ubuntu v14.04, Windows
Home Ultimate editions 64 bit
Programming Environment: Eclipse Luna
CDT, Java
Secure Protocol: OpenSSL
Library: Pairing Based Cryptography
(http://crypto.stanford.edu/pbc/)
Database: MySQL v5.5.41

TABLE 4
Operation Time of Each Step in Data Ownership Challenge

Operation Time (millisecond)

Cloud
User

Credential initiation 0.5
Data token generation 0.6
Data upload (10 MB data) 149.8
Challenge response 4.31

AP Ownership challenge verification 1.2

TABLE 5
Operation Time of Each Basic Operation

in Our Proposed Scheme and [33]

BasicOperation Pair Exp(G1) Exp(GT) ModInv PointMulti

Time
(millisecond)

5.07 3.66 0.55 0.003 0.6

YAN ET AL.: DEDUPLICATION ON ENCRYPTED BIG DATA IN CLOUD 145

5.3 Communication Cost

The extra communication cost introduced by the proposed
scheme is trivial. Refer to Fig. 3, extra cost introduced by
our scheme is f2xi; pkig during data uploading and storage.
Its size is 1344 bits if using SHA-1 hash function. Data dedu-
plication also introduces some extra communication cost:
2fxi; pkig, c, EðpkAP ; yÞ, rkAP!ui , Eðpki;DEKÞ and Vi. The

size is 5984 bits if DEK size is 256 bits and challenge num-
ber c is 160 bits. We can see that the communication cost of
our scheme is very light and it is not influenced by the size
of uploaded data. Thus, the proposed scheme is suitable for
supporting big data deduplication with regard to communi-
cation cost.

5.4 Performance Evaluation

5.4.1 Implementation and Testing Environment

We implemented the proposed scheme and tested its per-
formance. Table 3 describes our implementation and testing
environments. We applied a MySQL database to store data
files and related information. In our test, we did not take
into account the time of data uploading and downloading.
We focused on testing the performance of the deduplication
procedure and algorithms designed in our scheme.

5.4.2 Efficiency Test

Test 1: Efficiency of data encryption and decryption
In this experiment, we tested the operation time of data

encryption and decryption with AES by applying different
AES key sizes (128 bits, 196 bits and 256 bits) and different
data size (from 10 megabytes to 600 megabytes). The testing
environment was Intel Core i5-3337U CPU 1.80 GHz 4.00
GB RAM, Ubuntu v13.10 2.0 GB RAM, Dual-Core processor,
25.0G Hard disk. As shown in Fig. 7, we observed that even
when the data is as big as 600 MB, the encryption/decryp-
tion time is less than 13 seconds if applying 256-bit AES
key. Applying symmetric encryption for data protection is a
reasonable and practical choice. The time spent on AES
encryption and decryption is increased with the size of
data. This is inevitable in any encryption schemes. Since
AES is very efficient on data encryption and decryption,
thus it is practical to be applied for big data.

Test 2: Efficiency of PRE
We tested the efficiency of each operation of 1024-bit PRE

with different sizes of AES symmetric keys (128 bits, 196 bits
and 256 bits). Fig. 8 shows the operation time that is the
average time of 500 tests. We observe that our scheme is
very efficient. The time spent for PRE key pair generation
(KeyGen), re-encryption key generation (ReKeyGen),
encryption (Enc), re-encryption (ReEnc) and decryption
(Dec) is not related to the length of an input key. For the
tested three AES key sizes, the encryption time is less than 5
milliseconds. The decryption time is about 1 millisecond,

which implies that our scheme does not introduce heavy
processing load to data owners and holders. We also
observe that the computation time of each operation does
not vary too much with the different length of AES key size.
Therefore, our scheme can be efficiently adapted to various
security requirements in various scenarios. Obviously, our
scheme used for deduplication does not introduce much
computation cost. In particular, the PRE related operations
for deduplication are not influenced by the size of stored
data. This fact implies that the proposed scheme is similarly
efficient with regard to different sizes of big data deduplica-
tion. This result shows the significance and practical poten-
tial of our scheme to support big data storage and
deduplication.

Test 3: Data Ownership Challenge
In this experiment, we selected 192-bit field of elliptic

curve (160-bit ECC has a security level comparable to 1024-
bit RSA), 256-bit AES, 1024-bit PRE and 10M uploaded data.
We tested the operation time of each step of data ownership
verification as presented in Fig. 2. Obviously, the duplica-
tion check operated by CSP depends on the size of the stor-
age. AP initiates the ownership challenge with a randomly
chosen number. Hence, we neglect these two steps and

Fig. 7. Operation time of file encryption and decryption with AES.

Fig. 8. The execution time of PRE operations.

TABLE 6
Total Operation Time of Cloud Users in Our Proposed

Scheme and [33] (Unit: millisecond)

Entity Total time [our scheme] Total time [33]

Data Owner 150.4 151.2
Data Holder 4.91 151.2

146 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 2, APRIL-JUNE 2016

mainly focus on the computations operated by cloud users
and AP, which are presented in Table 4.

We can observe that data upload is the most time-con-
suming if the file is big, but it is inevitable in all schemes.
Compared with [33], the users do not need to process data
encryption if another user has uploaded the data already.
Therefore, our scheme can save a lot of computation load
and communication cost for cloud users. In addition, the
data ownership challenge in the proposed scheme is very
lightweight, which does not involve much burden to cloud
users. This implies that our scheme is very efficient and
very suitable for deduplication check on big data.

Test 4: Comparison with [33]
We have analyzed the computation complexity of our

scheme in Section 5.2. Here, we further compare its efficieny
with [33] by presenting the basic operation time in Table 5.
For ease presentation and comparison, the notations are
inherited from Table 2.

We can observe that the point multiplication is much
more efficient than exponentiation over the group G1 and
approximate to that over GT , which further proves that our
scheme is efficient and does not introduce new overhead.

As the time to setup system can be amortized over the
lifetime of cloud users, we only compare their time to
upload and store data. Based on the implementation results
and analysis (1024-bit PRE, 1024-bit RSA [46], and 256-bit
AES), we present the time for cloud users to upload 10 MB
data in this proposed scheme and [33] respecitively, which
is shown in Table 6. We can observe that our scheme has
great advantage. This scheme saves much time for those
data holders who upload duplicated data.

5.4.3 Functional Test

We set up two users (User 1: zhq; User 2: cyl) in the system
for testing purpose in order to illustrate that the designed
scheme works well with correct functional implementation.

Case 1: User zhq uploads a new file named chandelier.
txt.

User zhq encrypts the encryption key DEK with pkAP
and generates key file named as key_zhq_chandelier.txt, As
the cloud has not yet stored this data file, the data file is
encrypted and successfully uploaded to the cloud as an

encrypted file C_chandelier.txt, shown in Fig. 9. When user
zhq tried to access the data, it obtains the plaintext file
M_chandelier.txt. Fig. 10 shows the transformation between
plaintext and ciphertext.

Case 2: User cyl uploads the same file chandelier.txt.
As shown in Fig. 11, CSP found that the file has been

uploaded by user zhq through duplication check. Note that
no matther what the file name is, CSP can detect duplication
if the file content is the same as a file saved already. The CSP
would not save the file but ask AP to challenge ownership
and issue a re-encryption key to user cyl for accessing the
same file. Finally, the AP issues a re-encryption key rk1!2 to
allow user cyl to share the file chandelier.txt that has been
stored already.

Case 3: User cyl accesses the shared file chandelier.txt
User zhq uploaded chandelier.txt and denoted as data

owner. User cyl uploaded the same file. Now it tried to
access this shared file. As shown in Fig. 12, CSP and AP
allow cyl to access the pre-uploaded file. Usr cyl can down-
load the file and obtain the data.

Case 4: Data owner management
User cyl has uploaded file summertime.txt as a data

holder. When the data owner zhq uploads this file, CSP

Fig. 9. New file upload process.

Fig. 11. Reject duplicated saving and issue a re-encryption key.

Fig. 10. The transformation between plaintext and ciphertext of a file.

YAN ET AL.: DEDUPLICATION ON ENCRYPTED BIG DATA IN CLOUD 147

removes the data record of cyl and replaces it with the cor-
responding record of zhq, as shown in Fig. 13.

Case 5: Data deletion
User zhq is the data owner of the file chandelier.txt. If

user cyl as a data holder wants to delete the file, CSP just
blocks the access of cyl, as shown in Fig. 14. But if the data
owner zhq wants to delete the file, CSP needs to delete the
record of zhq but keep the record of cyl. CSP blocks the
access of zhq to the file, as shown in Fig. 15.

5.5 Further Discussions

The proposed scheme has the following additional
advantages.

Flexibility. The proposed scheme can flexibly support
access control on encrypted data with deduplication. One
data holder can flexibly update DEK. The new key can be
easily issued to other data holders or eligible data users by
CSP with a low cost, especially when AP has issued the re-
encyption key already. Data revocation can be realized by
blocking data access at CSP and rejecting key re-encryption
on a newly applied key DEK0. The detailed process of data
revocation is described in [34]

Low Cost of Storage. The scheme can obviously save the
storage space of CSP since it only stores one copy of the
same data that is shared by data owner and data holders.
Storing deduplication records occupies some storage or
memory for saving token pki and xi (only 1024 þ 160 bits).
But comparing with the big volume of duplicated data, this
storage cost can be ignored.

Big Data Support. The proposed scheme can efficiently
perform big data deduplication. First, duplicated big data
upload is efficient because only xi and pki are sent to CSP.
CSP performs hash comparison and then contacts AP to
challenge ownership for issuing a re-encryption key. The
computation and communication cost of this process
(involving ownership challenge, re-encryption key genera-
tion, CK re-encryption and re-encrypted key decryption) is
not influenced by the size of big data. Second, uploading
ciphertext CT is inevitable in almost all schemes for dedu-
plication. The proposed scheme only introduces a bit extra
communication load (i.e., CK) and a little bit additional
communication cost for ownership challenge. Compared

with big data upload cost and storage cost, they are very
trivial and efficient.

6 CONCLUSION

Managing encrypted data with deduplication is important
and significant in practice for achieving a successful cloud
storage service, especailly for big data storage. In this paper,
we proposed a practical scheme to manage the encrypted big
data in cloud with deduplication based on ownership chal-
lenge and PRE. Our scheme can flexibly support data update
and sharing with deduplication even when the data holders
are offline. Encrypted data can be securely accessed because
only authorized data holders can obtain the symmetric keys
used for data decryption. Extensive performance analysis and
test showed that our scheme is secure and efficient under the
described security model and very suitable for big data dedu-
plication. The results of our computer simulations further
showed the practicability of our scheme. Futurework includes
optimizing our design and implementation for practical
deployment and studying verifiable computation to ensure
that CSP behaves as expected in deduplicationmanagement.

ACKNOWLEDGMENTS

This work is sponsored by the National Key Foundational
Research and Development on Network and Space Security,
China (grant 2016YFB0800704), the NSFC (grant U1536202),
the 111 project (grant B08038), the PhD grant of the Chinese
Educational Ministry (grant JY0300130104), the Project Sup-
ported by Natural Science Basic Research Plan in Shaanxi
Province of China (Program No. 2016ZDJC-06), and Aalto
University.

REFERENCES

[1] M. Bellare, S. Keelveedhi, and T. Ristenpart, “DupLESS: Server
aided encryption for deduplicated storage,” in Proc. 22nd USENIX
Conf. Secur., 2013, pp. 179–194.

[2] Dropbox, A file-storage and sharing service. (2016). [Online].
Available: http://www.dropbox.com

Fig. 13. Data owner management.

Fig. 14. Data deletion by a data holder.

Fig. 15. Data deletion by a data owner.

Fig. 12. Access shared duplicated data.

148 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 2, APRIL-JUNE 2016

[3] Google Drive. (2016). [Online]. Available: http://drive.google.com
[4] Mozy, Mozy: A File-storage and Sharing Service. (2016). [Online].

Available: http://mozy.com/
[5] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,

“Reclaiming space from duplicate files in a serverless distributed
file system,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst., 2002,
pp. 617–624, doi:10.1109/ICDCS.2002.1022312.

[6] G. Wallace, et al., “Characteristics of backup workloads in produc-
tion systems,” in Proc. USENIX Conf. File Storage Technol., 2012,
pp. 1–16.

[7] Z. O. Wilcox, “Convergent encryption reconsidered,” 2011.
[Online]. Available: http://www.mailarchive.com/cryptogra-
phy@metzdowd.com/msg08949.html

[8] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved
proxy re-encryption schemes with applications to secure distrib-
uted storage,” ACM Trans. Inform. Syst. Secur., vol. 9, no. 1, pp. 1–
30, 2006, doi:10.1145/1127345.1127346.

[9] Opendedup. (2016). [Online]. Available: http://opendedup.org/
[10] D. T. Meyer and W. J Bolosky, “A study of practical

deduplication,” ACM Trans. Storage, vol. 7, no. 4, pp. 1–20, 2012,
doi:10.1145/2078861.2078864.

[11] J. Pettitt, “Hash of plaintext as key?” (2016). [Online]. Available:
http://cypherpunks.venona.com/date/1996/02/msg02013.html

[12] The Freenet Project, Freenet. (2016). [Online]. Available: https://
freenetproject.org/

[13] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked
encryption and secure deduplication,” in Proc. Cryptology—EURO-
CRYPT, 2013, pp. 296–312, doi:10.1007/978-3-642-38348-9_18.

[14] D. Perttula, B. Warner, and Z. Wilcox-O’Hearn, “Attacks on con-
vergent encryption.” (2016). [Online]. Available: http://bit.ly/
yQxyvl

[15] C. Y. Liu, X. J. Liu, and L. Wan, “Policy-based deduplication in
secure cloud storage,” in Proc. Trustworthy Comput. Serv., 2013,
pp. 250–262, doi:10.1007/978-3-642-35795-4_32.

[16] P. Puzio, R. Molva, M. Onen, and S. Loureiro, “ClouDedup:
Secure deduplication with encrypted data for cloud storage,” in
Proc. IEEE Int. Cof. Cloud Comput. Technol. Sci., 2013, pp. 363–370,
doi:10.1109/CloudCom.2013.54.

[17] Z. Sun, J. Shen, and J. M. Yong, “DeDu: Building a deduplication
storage system over cloud computing,” in Proc. IEEE Int. Conf.
Comput. Supported Cooperative Work Des., 2011, pp. 348–355,
doi:10.1109/CSCWD.2011.5960097.

[18] Z. C. Wen, J. M. Luo, H. J. Chen, J. X. Meng, X. Li, and J. Li, “A ver-
ifiable data deduplication scheme in cloud computing,” in Proc.
Int. Conf. Intell. Netw. Collaborative Syst., 2014, pp. 85–90,
doi:10.1109/INCoS.2014.111.

[19] J. Li, Y. K. Li, X. F. Chen, P. P. C. Lee, and W. J. Lou, “A hybrid
cloud approach for secure authorized deduplication,” IEEE Trans.
Parallel Distrib. Syst., vol. 26, no. 5, pp. 1206–1216, May 2015,
doi:10.1109/TPDS.2014.2318320.

[20] P. Meye, P. Raipin, F. Tronel, and E. Anceaume, “A secure two-
phase data deduplication scheme,” in Proc. HPCC/CSS/ICESS,
2014, pp. 802–809, doi:10.1109/HPCC.2014.134.

[21] J. Paulo and J. Pereira, “A survey and classification of storage
deduplication systems,” ACM Comput. Surveys, vol. 47, no. 1,
pp. 1–30, 2014, doi:10.1109/HPCC.2014.134.

[22] Y.-K. Li, M. Xu, C.-H. Ng, and P. P. C. Lee, “Efficient hybrid inline
and out-of-line deduplication for backup storage,” ACM Trans.
Storage, vol. 11, no. 1, pp. 2:1-2:21, 2014, doi:10.1145/2641572.

[23] M. Fu, et al., “Accelerating restore and garbage collection in dedupli-
cation-based backup systems via exploiting historical information,”
inProc. USENIXAnnu. Tech. Conf., 2014, pp. 181–192.

[24] M. Kaczmarczyk, M. Barczynski, W. Kilian, and C. Dubnicki,
“Reducing impact of data fragmentation caused by in-line
deduplication,” in Proc. 5th Annu. Int. Syst. Storage Conf., 2012,
pp. 15:1–15:12, doi:10.1145/2367589.2367600.

[25] M. Lillibridge, K. Eshghi, andD. Bhagwat, “Improving restore speed
for backup systems that use inline chunk-based deduplication,” in
Proc. USENIXConf. File Storage Technol., 2013, pp. 183–198.

[26] L. J. Gao, “Game theoretic analysis on acceptance of a cloud data
access control scheme based on reputation,” M.S. thesis, Xidian
University, State Key Lab of ISN, School of Telecommunications
Engineering, Xi’an, China, 2015.

[27] Z. Yan, X. Y. Li, M. J. Wang, and A. V. Vasilakos, “Flexible data
access control based on trust and reputation in cloud computing,”
IEEE Trans. Cloud Comput., vol. PP, no. 99, Aug. 2015, doi:10.1109/
TCC.2015.2469662, Art. no. 1.

[28] C. Yang, J. Ren, and J. F. Ma, “Provable ownership of file in de-
duplication cloud storage,” in Proc. IEEE Global Commun. Conf.,
2013, pp. 695–700, doi:10.1109/GLOCOM.2013.6831153.

[29] T. Y. Wu, J. S. Pan, and C. F. Lin, “Improving accessing efficiency
of cloud storage using de-duplication and feedback schemes,”
IEEE Syst. J., vol. 8, no. 1, pp. 208–218, Mar. 2014, doi:10.1109/
JSYST.2013.2256715.

[30] C. Fan, S. Y. Huang, and W. C. Hsu, “Hybrid data deduplication
in cloud environment,” in Proc. Int. Conf. Inf. Secur. Intell. Control,
2012, pp. 174–177, doi:10.1109/ISIC.2012.6449734.

[31] J.W. Yuan and S. C. Yu, “Secure and constant cost public cloud stor-
age auditing with deduplication,” in Proc. IEEE Int. Conf. Communic.
Netw. Secur., 2013, pp. 145–153, doi:10.1109/CNS.2013.6682702.

[32] N. Kaaniche and M. Laurent, “A secure client side deduplication
scheme in cloud storage environments,” in Proc. 6th Int. Conf.
New Technol. Mobility Secur., 2014, pp. 1–7, doi:10.1109/
NTMS.2014.6814002.

[33] Z. Yan, W. X. Ding, and H. Q. Zhu, “A scheme to manage
encrypted data storage with deduplication in cloud,” in Proc.
ICA3PP2015, Zhangjiajie, China, Nov. 2015, pp. 547–561.

[34] Z. Yan, X. Y. Li, and R. Kantola, “Controlling cloud data access
based on reputation,” Mobile Netw. Appl., vol. 20, no. 6, 2015,
pp. 828–839, doi:10.1007/s11036-015-0591-6.

[35] T. T. Wu, W. C. Dou, C. H. Hu, and J. J. Chen, “Service mining for
trusted service composition in cross-cloud environment,” IEEE
Systems Syst. J., vol. PP, no. 99, pp. 1–12, 2014, doi:10.1109/
JSYST.2014.2361841.

[36] C. Liu, C. Yang, X. Y. Zhang, and J. J. Chen, “External integrity
verification for outsourced big data in cloud and iot: A big
picture,” Future Generation Comput. Syst., vol. 49, pp. 58–67, 2015.

[37] N. X. Xiong, et al., “Comparative analysis of quality of service and
memory usage for adaptive failure detectors in healthcare sys-
tems,” IEEE J. Select. Areas Commun., vol. 27, no. 4, pp. 495–509,
2009, doi:10.1109/JSAC.2009.090512.

[38] Y. Z. Zhou, Y. X. Zhang, H. Liu, N. X. Xiong, and A. V. Vasilakos,
“A bare-metal and asymmetric partitioning approach to client
virtualization,” IEEE Trans. Serv. Comput., vol. 7, no. 1, pp. 40–53,
Jan.-Mar. 2014, doi:10.1109/TSC.2012.32.

[39] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proc. 18th ACM Conf.
Comput. Commun. Secur., 2011, pp. 491–500, doi:10.1145/
2046707.2046765.

[40] R. D. Pietro and A. Sorniotti, “Boosting efficiency and security in
proof of ownership for deduplication,” in Proc. 7th ACM Symp.
Inf. Comput. Commun. Secur., 2012, pp. 81–82, doi:10.1145/
2414456.2414504.

[41] W. K. Ng, Y. Wen, and H. Zhu, “Private data deduplication proto-
cols in cloud storage,” in Proc 27th Annu. ACM Symp. Appl. Com-
put., 2012, pp. 441–446.

[42] C. W. Tsai, C. F. Lai, H. C. Chao, and A. V. Vasilakos, “Big data
analytics: A survey,” J. Big Data, vol. 2, no. 1, pp. 1–32, 2015,
doi:10.1186/s40537-015-0030-3.

[43] L. F. Wei, et al., “Security and privacy for storage and computa-
tion in cloud computing,” Inf. Sci., vol. 258, pp. 371–386, 2014,
doi:10.1016/j.ins.2013.04.028.

[44] M. Ali, S. U. Khan, and A. V. Vasilakos, “Security in cloud com-
puting: Opportunities and challenges,” Inf. Sci., vol. 305, pp. 357–
383, 2015, doi:10.1016/j.ins.2015.01.025.

[45] M. Ali, et al., “SeDaSC: Secure data sharing in clouds,” IEEE Syst.
J., vol. PP, no. 99, pp. 1–10, 2015, doi: 10.1109/JSYST.2014.2379646.

[46] Z. Yan, W. X. Ding, V. Niemi, and A. V. Vasilakos, “Two schemes
of privacy-preserving trust evaluation,” Future Generation Comput.
Syst., vol. 62, pp. 175–189, Dec. 2015, doi:10.1016/j.future.2015.
11.006.

[47] M. O’Neill and M. J. B. Robshaw, “Low-cost digital signature
architecture suitable for radio frequency identification tags,” IET
Comput. Digital Techn., vol. 4, no. 1, pp. 14–26, 2010, doi: 10.1049/
iet-cdt.2008.0165.

YAN ET AL.: DEDUPLICATION ON ENCRYPTED BIG DATA IN CLOUD 149

Zheng Yan (M’06, SM’14) received the BEng
degree in electrical engineering and the MEng
degree in computer science and engineering
from the Xi’an Jiaotong University, Xi’an, China,
in 1994 and 1997, respectively, the second MEng
degree in information security from the National
University of Singapore, Singapore, in 2000, and
the licentiate of science and the doctor of science
in technology in electrical engineering from
Helsinki University of Technology, Helsinki,
Finland, in 2005 and 2007, respectively. She is

currently a professor with the Xidian University, Xi’an, China and a visit-
ing professor with the Aalto University, Espoo, Finland. She authored
more than 140 publications and solely authored two books. She is the
inventor and co-inventor of 47 patents and patent applications. Her
research interests include trust, security and privacy, social networking,
cloud computing, networking systems, and data mining. She is currently
an associate edtor of the IEEE Internet of Things Journal, IEEE Access
Journal, Security and Communication Networks (John Wiley), and the
KIIS Transactions on Internet and Information Systems. She serves as a
leading guest editor for more than 10 reputable journals, including Infor-
mation Sciences, ACM Multimedia Computing, Communications, and
Applications, IEEE Systems Journal, Information Fusion, Future Gener-
ation Computer Systems, etc. She is an organization and program com-
mittee member for more than 70 international conferences and
workshops. She is a senior member of the IEEE.

Wenxiu Ding received the BEng degree in infor-
mation security from Xidian University, Xi’an,
China, in 2012. She is currently working toward
the PhD degree in information security from the
School of Telecommunications Engineering,
Xidian University, and also a visiting research
student in the School of Information Systems,
Singapore Management University. Her research
interests include privacy preservation, data min-
ing and trust management.

Xixun Yu received the BEng degree in telecom-
munications engineering from Xidian University,
Xi’an, China, in 2015. He is currently working
toward the PhD degree in information security
from the School of Cyber Engineering, Xidian
University. His research interests include cloud
security and verifiable computing.

Haiqi Zhu received the BEng degree in telecom-
munication from Xidian University, Xi’an, China, in
2015. He is currently working in Online Manage-
ment in the Baidu.Inc, Beijing China. His research
interests include big data, and datamining.

Robert H. Deng has been a professor in the
School of Information Systems, Singapore Man-
agement University since 2004. His research
interests include data security and privacy, multi-
media security, network and system security. He
was an associate editor of the IEEE Transactions
on Information Forensics and Security from 2009
to 2012. He is currently an associate editor of the
IEEE Transactions on Dependable and Secure
Computing, an associate editor of Security and
Communication Networks (John Wiley). He is the

cochair of the Steering Committee of the ACM Symposium on Informa-
tion, Computer and Communications Security. He received the Univer-
sity Outstanding Researcher Award from the National University of
Singapore in 1999 and the Lee Kuan Yew fellow for Research Excel-
lence from the Singapore Management University in 2006. He was
named Community Service Star and Showcased Senior Information
Security Professional by (ISC)2 under its Asia-Pacific Information Secu-
rity Leadership Achievements program in 2010. He is a fellow member
of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

150 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 2, APRIL-JUNE 2016

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2016

	Deduplication on encrypted big data in cloud
	Zheng YAN
	Wenxiu DING
	Xixun YU
	Haiqi ZHU
	DENG, Robert H.
	Citation

	Deduplication on Encrypted Big Data in Cloud

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

