
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Information
Systems School of Information Systems

9-2016

PADA: Power-aware development assistant for mobile sensing PADA: Power-aware development assistant for mobile sensing

applications applications

Chulhong MIN
KAIST

Seungchul LEE
KAIST

Changhun LEE
KAIST

Youngki LEE
Singapore Management University, YOUNGKILEE@smu.edu.sg

Seungwoo KANG
KoreaTech

See next page for additional authors Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
MIN, Chulhong; LEE, Seungchul; LEE, Changhun; LEE, Youngki; KANG, Seungwoo; CHOI, Seungpyo; KIM,
Wonjung; and SONG, Junehwa. PADA: Power-aware development assistant for mobile sensing
applications. (2016). UbiComp 2016: Proceedings of the ACM International Joint Conference on
Pervasive and Ubiquitous Computing, September 12-16, Heidelberg, Germany. 946-957. Research
Collection School Of Information Systems.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3275

This Conference Proceeding Article is brought to you for free and open access by the School of Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Information Systems by an authorized administrator of Institutional Knowledge at
Singapore Management University. For more information, please email library@smu.edu.sg.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/111751328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3275&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3275&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@smu.edu.sg

Author Author
Chulhong MIN, Seungchul LEE, Changhun LEE, Youngki LEE, Seungwoo KANG, Seungpyo CHOI, Wonjung
KIM, and Junehwa SONG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/3275

https://ink.library.smu.edu.sg/sis_research/3275

PADA: Power-aware Development Assistant for Mobile
Sensing Applications

Chulhong Min1, Seungchul Lee1, Changhun Lee1, Youngki Lee2, Seungwoo Kang3,
Seungpyo Choi1, Wonjung Kim1, Junehwa Song1

1School of Computing, KAIST, 2School of Information Systems, Singapore Management University,
3School of Computer Science and Engineering, KOREATECH

1{chulhong, seungchul, changhun, spchoi, wjkim, junesong}@nclab.kaist.ac.kr,
2youngkilee@smu.edu.sg, 3swkang@koreatech.ac.kr

ABSTRACT
We propose PADA, a new power evaluation tool to measure
and optimize power use of mobile sensing applications. Our
motivational study with 53 professional developers shows
they face huge challenges in meeting power requirements.
The key challenges are from the significant time and effort
for repetitive power measurements since the power use of
sensing applications needs to be evaluated under various
real-world usage scenarios and sensing parameters. PADA
enables developers to obtain enriched power information
under diverse usage scenarios in development environments
without deploying and testing applications on real phones in
real-life situations. We conducted two user studies with 19
developers to evaluate the usability of PADA. We show that
developers benefit from using PADA in the implementation
and power tuning of mobile sensing applications.

Author Keywords
Power-aware development; Mobile sensing applications

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous

INTRODUCTION
Mobile sensing applications (MSAs) bring developers
unprecedented challenges for power-aware development.
Due to their power-intensive nature, it is inevitable for
developers to optimize the power use of MSAs through
multiple iterations of power evaluation: measuring power,
identifying power-intensive code blocks, and changing logic
or tuning relevant parameters. Such iterations are extremely
burdensome because MSAs need to be tested repetitively
under diverse real-life situations as a result of their highly
variable power use in different user contexts [21,22,23].
Moreover, even a single evaluation of an MSA’s power use
is highly cumbersome and time consuming; developers

should be in a real usage scenario for realistic power testing,
e.g., being in a bus for a transportation mode detector or
being near people for an interaction monitor.

Our exploratory study shows that, even in the industry,
mobile developers do not seriously take power requirements
into accounts, or deal with them in an ad-hoc manner, due to
a lack of supporting tools. We surveyed 46 professional
developers (78% of whom have more than two years of
development experiences). 73% of them noted that energy
efficiency is an important aspect, but 35% did not put explicit
efforts into measuring and optimizing energy use during the
development process. 35% of them evaluate the power use
of applications only after they are fully developed, which
often causes huge changes in their logic. We also interviewed
7 MSA developers and showed that the current practices for
power evaluation are laborious, inconvenient, and inaccurate.

We present PADA, a novel tool to assist developers with
power-aware development of MSAs. Its key idea is to equip
developers with power emulation environments upon which
they can instantaneously replay their codes. It has three
unique features: (1) accurate power estimation of an MSA in
a development environment, without executing it on a phone
nor measuring its power, (2) power estimation under diverse
input workloads reflecting real-world usage scenarios, and (3)
provision of enriched power information, e.g., per hardware
components and over a timeline, to help developers obtain a
holistic understanding of the power behavior of MSAs.

It is important to note that easy and repetitive power
evaluation is not yet feasible with the tools that are currently
available. In practice, developers use either battery profilers
provided by mobile OSes [3,8] or an external power
monitoring device like Monsoon. Battery profilers are too
coarse-grained to identify and narrow down causes of energy
issues, and require executing applications on actual devices.
Also, power monitoring devices significantly limit real-
world testing because they are not very portable and need to
be attached to a phone to be tested; note that real-world
testing is critical because power consumption for MSAs
varies significantly based on users’ physical contexts [21,23].

Our user studies with the PADA prototype show that PADA
is useful for power-aware implementation and tuning of
MSAs. Thirteen participants out of 14 (strongly) agreed that
PADA was useful after they used it to develop an example

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UbiComp '16, September 12-16, 2016, Heidelberg, Germany
© 2016 ACM. ISBN 978-1-4503-4461-6/16/09…$15.00
DOI: http://dx.doi.org/10.1145/2971648.2971676

946

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2971648.2971676

MSA given power requirements. They highlighted three key
benefits of PADA as follows: (1) lowering the burden of
repetitive power measurements in real usage scenarios, (2)
providing rich, in-depth power use breakdown over a
timeline, and (3) guaranteeing the repeatability of the power
evaluation on the same scenarios. Moreover, the other 5
participants used PADA to tuned the power use of another
MSA and stated that it greatly accelerates the tuning process
compared to current practices. They tested 10 potential
settings (2 scenarios × 5 duty cycles) with PADA to quickly
determine the right duty cycle, which would otherwise have
likely taken several days with current practices.

The contribution of this paper can be summarized as follows.
● We show that, even in the industry, power use of an MSA
is hardly considered despite its importance based on an
online survey of 46 mobile developers and interviews with 7
MSA developers. Even if it was the case, the power was often
considered at the last stage of the application development
cycle, not throughout the whole development process.
● We propose PADA, a novel developer support tool to
enable quick provision of detailed power information in a
development environment, which is essential for power-
aware implementation and optimization of MSAs.
● We demonstrate the usefulness and benefits of PADA in
the power-aware implementation and power tuning of MSAs
by conducting two user studies with 19 developers.

RELATED WORK
Much effort has been given to estimate the power use of
mobile applications and to identify power bugs without a
separate hardware. Mobile OSes provide tools such as iOS
Instruments [8] and BatteryStats [3] to monitor hardware use
and power consumption of applications. Also, many research
prototypes have been proposed to estimate the power use of
applications based on pre-built power models [14,19,26,32].
Some works provide more detailed power use information,
e.g., at the system-service level [13], method level [26], and
source line level [19]. These tools help developers measure
power and avoid complications from using separate power
monitors. However, they commonly require execution of
applications on real phones, incurring significant time and
efforts from developers. Unlike such tools, PADA provides
the MSA’s power use in development environments without
executing it on a real phone nor using a separate monitor,
thereby greatly reducing the burden of the developers.

Recently, a few works have proposed the emulation of the
power behavior of mobile applications [21,22,24]. Mittal et
al. presented WattsOn, an energy emulation tool that allows
developers to explore power behaviors of applications under
multiple operating conditions in development environments
[24]. It mainly targets interactive foreground applications
and thus focuses on power modeling and resource scaling of
the display, network, and CPU. Thus, it hardly supports the
power emulation of MSAs due to a lack of power emulation
of the sensor components. In this work, we propose a novel
tool enabling developers to examine the power behaviors of

MSAs under diverse emulated usage environments. Also, we
evaluate the effectiveness of the proposed tool through user
studies, which has not been explored in existing works.

In our previous work, we presented PowerForecaster, a
system that provides users with the personalized power
impact of MSAs at the pre-installation time [21,22]. Its core
component is the power emulator that emulates the power
behavior of MSAs. PADA is developed based on the power
emulator of PowerForecaster; however, the contributions of
the two works are greatly different because the goals, target
users, and usages are different. More specifically, PADA is
designed to assist MSA developers with power-aware
development, whereas PowerForecaster targets end users. In
this work, we newly discovered that repetitive power
evaluation is key for the power-aware development of MSAs
and explored the challenges of laborious power evaluation.
Based on the findings, PADA extends the power emulator of
PowerForecaster to help developers (1) facilitate such costly
power evaluation and (2) understand the detailed power
behavior of MSAs with enriched power information. We
further conducted user studies to evaluate its effectiveness.

A few works have addressed energy bug detection through
static analysis at compile time, e.g., the misuse of wakelock
[27]. However, it is well known that such static analysis-
based methods are limited in capturing dynamic application
behavior at execution time, which is very important for
MSAs because their power use varies significantly
depending on the physical behavior of users [21,22,23].

Several works developed automatic testing frameworks for
mobile applications using mobile emulators [6,20,29]
recently. They execute an application on the emulator with a
monkey tool, feed streams of user interaction such as touch
events, and analyze runtime properties such as application
exceptions. PADA is distinguished from those in three
aspects. First, PADA targets MSAs and thus replays the
stream of sensor data in the emulation environment. Second,
it focuses on analyzing the power-related behaviors of MSAs.
Last, PADA provides broad support to facilitate repetitive,
burdensome power evaluation of MSAs, thereby allowing
convenient power tuning, energy bug detection, and so on.

A variety of MSAs have been actively proposed in the
literature [7,10,12,17,25]. In common, they provide
situational services based on continuous monitoring of user
contexts. To manage their power use at runtime, there has
been extensive effort on mobile platforms for MSAs
[4,9,15,16,18]. PADA complements such runtime systems
by helping developers develop energy-efficient MSAs.

EXPLORATORY STUDY WITH DEVELOPERS

Survey of Mobile Developers
We conducted an online survey with 46 participants who
currently work at mobile software companies. Table 1 shows
their demographics; we did not collect company names due
to privacy concerns. We recruited the participants through

947

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

online community sites for mobile developers. Each
participant was provided a gift card equivalent to USD 1.4.

Awareness of energy efficiency and current practices
Q1: Do you think energy efficiency is important in
developing mobile applications? Figure 1 shows the results;
each distribution is centered at “neutral” and the width of the
segment is the frequency of each response. Twenty
participants (43%) reported very important and 14 important
(30%). We further examined whether developers who have
experience with building MSAs considered energy more
important. We split the participants into two groups: one with
MSA development experience and the other without such
experience. The answers show that the former (M=4.4,
SD=0.6) considers energy efficiency more important than the
latter (M=3.8, SD=0.9): the difference was statistically
significant (p-value=0.005). This is mainly due to the unique
characteristics of MSAs which continuously drain the battery
in the background. Thus, developers need to be more careful
about energy efficiency not to degrade user experience.

Q2: From which stage do you (desire to) start considering
energy efficiency? We asked if the participants actually
consider energy efficiency when developing their
applications, and 30 participants (65%) reported that they did
so. This was lower than expected, considering their concern
about energy efficiency. Then, we asked from which stage
they actually start considering energy efficiency. Figure 2
shows that 16 (53%) of 30 participants start evaluating power
use only after their applications are fully implemented. We
further asked from which stage they want to start if possible.
We classified these 30 participants into two groups: one who
starts considering energy efficiency before the full
implementation (14 participants) and the other after the full
implementation (16 participants). Interestingly, only 2 in the
former group wants to start power evaluation in an earlier
stage, whereas 8 in the latter group wants to do it before full
implementation. This shows that power evaluation from an
early stage in the development is preferable. The reasons

why they were not able to start earlier were that it requires
too much time and effort (7 participants) and their companies
have specific policies about this matter (3 participants).
Interestingly, 3 of the former group reported that they prefer
the later stage, whereas none of the latter group did so.

Q3: Do you or anyone in your team measure power use of
an application during the development process? We first
asked whether the participant’s company has quality
assurance (QA) teams and how the QA teams measure the
power use. Twenty-eight participants (61%) answered that
they have QA teams and the rest of them (18 participants,
39%) answered that they do not. Interestingly, despite their
high interest in energy efficiency, 15 (54%) out of the 28 are
not aware of how their QA teams evaluate power use of
applications (See Figure 3). Additionally, we noticed that
most QA teams measure the power in a coarse-grained way,
i.e., battery level monitoring and hardware usage observation
using BatteryStats or custom logs. Only one team uses power
monitoring equipment for fine-granule power measurements.
For the participants who do not have the QA teams, we asked
if developers themselves measure the power and if so, how
they do it. The most common way of measuring the power
by developers is also based on battery levels and hardware
usage (14 participants out of 18, 78%). Interestingly, the ratio
of using power monitoring equipment by developers (22%)
is higher than that by the QA teams (4%).

Knowledge on battery use of smartphones
We further investigated MSA developers about their level of
understanding on the battery use of smartphones. For this
purpose, we asked the MSA developers to rank the average
power consumption of frequently-used power-hungry
hardware components, i.e., GPS, accelerometer, storage, and
screen. The expected ranking is (1) screen, (2) GPS, (3)
storage, and (4) accelerometer. Surprisingly, 12 (75%) of the

Figure 2. Stage of development when energy efficiency is

considered: S1: project planning, S2: early stage of development,
S3: middle stage of development, S4: alpha/beta testing, S5: after
release, S6: upon user feedback (Question: From which stage do

you start considering energy efficiency?)

Figure 3. How to measure the power; Level: long-term

observation of battery level decrease, HW: observation of h/w
usage, Monitor: power measurement equipment, Unknown: I

don’t know, No: do not measure power
(Direction: please select how you (or QA team) measure the

power of mobile applications. You may choose more than one)

0% 20% 40% 60% 80% 100%

S1 S2 S3 S4 S5 S6

Full implementation

0

5

10

15

Level HW Monitor Unknown No Other

of

 p
ar

tic
ip

an
ts QA Developer

Age 20s (19), 30s (22), 40s (5)
Development
experiences (years)

0-2 (12), 2-4 (6), 4-6 (14),
6-8 (7), >8 (7)

MSA development
experience yes (16), no (30)

Occupation developers (42), QA/tester (1),
manager (2), other (1)

Self-reported
development skills

expert (13), intermediate (23),
beginners (10)

Table 1. Participant demographics of the online survey; the
parenthesized numbers are the number of the participants

Figure 1. Awareness of energy efficiency

100 80 60 40 20 0 20 40 60 80 100

Percent

not important, at all not important neutral
important very important

MSA

Other

948

SESSION: POWER SAVING TECHNIQUES FOR MOBILE COMPUTING

16 MSA developers did not give the correct answer; 11
developers ranked correctly only for a subset of the options
and the other one marked “I don’t know” without ranking.
This is against our expectation that MSA developers in the
industry are aware of battery use of smartphones. Moreover,
this may imply that even commercial MSAs could be
developed without careful consideration of the power use of
various hardware components triggered by the applications.

Interview of MSA Developers
We conducted in-depth interviews of 7 MSA developers
(denoted D1 to D7) to deeply understand the challenges in
power evaluation in developing MSAs. We performed a half-
hour semi-structured interview with each of them. They
belong to different teams in different companies. Each one
was provided with a gift card equivalent to USD 9. Our key
questions consisted of “What process do you go through to
evaluate power use of an MSA?”, “Which tools do you use to
measure the power of an MSA?”, “Do you find any
difficulties in using those tools?”, “How do you optimize
power use of your MSA after the power measurement?”

Complying with our survey results, they all agree that energy
efficiency is very important to consider. They are even under
pressure from their manager and companies to reduce the
power consumption of their MSAs. D1 stated, “My company
has been focusing on energy efficiency for several years.” D2
mentioned, “It depends on the type of application. We put
much effort into applications running in the background.”

However, they find it challenging to optimize the power
consumption of their MSAs. One major issue was that
repetitive power measurements were required. D5 who has
been developing beacon-based advertisement applications
talked about his efforts in the power evaluation process. He
stated, “(Even for a lab-setting test) We installed ten beacons
at 50 m intervals indoor, had to move 500 m for a single
energy measurement, and repeated this many times. […] For
on-site testing, we installed beacons inside Gangnam station,
tested for two days with our prototype. […] It was still not
easy. It takes too much time to do all the preparation and
actual measurements.” D7 described their power evaluation
method, “We install our MSA on several smartphones,
monitor their battery levels for a day, find issues, and repeat
this for several more days.” Their experiences show that it
takes from several hours to several days even for a single
measurement, and this needs to be repeated, making the
power evaluation very time consuming and laborious. These
sometimes lead developers to make undesirable choices. D3
said, “Our team sometimes fails to address power issues
before a deadline. We had to leave the issues unresolved.”

They pointed out the necessity of anticipating various
situations that their MSAs might encounter. D6 stated, “Our
team uses a service to profile the general performance of
applications in various usage scenarios. It plays a crucial
role in our production process. But sadly, I haven’t heard
about a similar tool for power use.” D5 also stated “To test
whether the application consumes the energy as intended in

various situations, we have to put ourselves into the situation.
For example, we manually repeat the following actions, ‘stay
near the beacon for 10 seconds and walk away’, ‘stay near
the beacon for 20 seconds away’ and so on.”

Due to a lack of supporting tools, developers commonly have
difficulties in considering the energy efficiency during
development. D1 stated, “I first implement the functional
requirements without considering power. When our QA team
gets back with power issues, there isn’t much I can do. I just
try simple tuning such as increasing the duty cycle.” D5
stated, “To determine whether sensors operate as intended
without causing energy issues, I manually log and analyze
sensor activities and related information. It is very tiresome.”
D6 said, “My team members commonly make mistakes due to
lack of (sensor usage) information. […] For example, they
request the GPS sensor more frequently compared to what’s
necessary. The effect of frequent GPS use on the battery is
not noticeable from short observations.”

Key Takeaways
• Developers perceive that the energy efficiency of their

mobile applications is an important concern.
• Developers often fail to consider power due to limited time

and efforts for repetitive and costly power evaluations.
• The current practices for power evaluations are laborious,

inconvenient, and inaccurate, and developers thought
supporting tools are lacking.

• For the power evaluation of MSAs, it is desirable but
difficult to consider various real-world usage scenarios.

PADA: POWER-AWARE DEVELOPMENT ASSISTANT

Design Goals
PADA is a system tool to assist developers with the power
evaluation of MSAs by addressing the above-described
difficulties in power evaluations. For its design, we elicited
three key requirements from the survey and interviews, along
with our intuitions and experiences with MSA development.

Facilitating repetitive power evaluation: PADA enables
developers to quickly and repetitively perform power
evaluations of MSAs in the development environment,
thereby significantly improving development productivity.

Supporting various real-life situations: MSAs often operate
differently depending on the user behavior and thus their
power use varies largely depending on user contexts [21,23].
PADA supports developers in evaluating the power use of
MSAs under various real-life scenarios of the target users.

Providing enriched power information: A single power value
(mW) is the most representative, commonly-used metric for
power analysis. However, it is insufficient for developers to
understand the detailed power behavior of MSAs to optimize
their power use and detect causes of power-related problems.
PADA provides enriched power information.

PADA Overview
We take a context-driven record-and-replay as our key
design approach to meet the design requirements. The idea is

949

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

to equip developers with power emulation environments
upon which they can instantaneously replay their codes. The
emulation is performed with pre-recorded sensor data taken
from the real contexts of users. The environment replays a
target MSA over the sensor data and emulates its power
behavior, allowing developers to analyze the power use
without field trials and repetitive measurements. Compared
to the current practice, i.e., to actually run the codes on a
phone, our emulation-based approach has the following
benefits. First, it lowers the burden of developer by removing
the hassles of executing and observing the application for a
long period of time under real-world usage scenarios. Second,
it enables the repeatability of the power evaluation, i.e.,
comparing the power behavior of different application logics
in the same situations. Note that even seemingly similar trials
may generate different sensor data, which in turn change the
power use of an MSA. Third, it enables fast and scalable
power evaluation, leveraging cloud resources.

Figure 4 shows an overview of PADA. It consists of the
following components. First, the PADA front end provides a
web-based interface with which developers request a power
evaluation and view the analysis report. Second, the
emulation manager governs the power emulation process
which involves accepting power evaluation requests from the
front-end and distributing the requests to multiple power
emulator instances. Each power emulator emulates the
power behavior of the target MSA using selected sensor
traces and then passes the emulation results to the power
analyzer. The power analyzer turns the raw emulation results
into informative power analysis reports. PADA also provides
auxiliary APIs that enable developers to take full advantage
of the features of PADA such as configuration changes and
custom logging. Note that, prior to the power evaluation
request, the sensor traces are collected on the mobile-side
sensor trace collector once and reused for various requests.

PADA User Interface
PADA currently provides a web-based interface that consists
of two major sections: evaluation request and power analysis.

Evaluation request: Figure 5 shows the interface to issue a
new power evaluation request. Its primary purpose is to
facilitate power evaluation requests of developers for various
execution scenarios with minimal effort. The evaluation
request process is as follows. First, the developer uploads an

application executable to be evaluated with drag-and-drop
(See Figure 5 (a)). Second, the developer chooses a set of
sensor traces on where the application would run (See Figure
5 (b)). Last, the developer uploads the setting file if she wants
to test her MSA under diverse application configurations. If
specified, PADA generates multiple application executables
automatically and runs them with different configurations
specified. PADA also enables the submission of multiple
requests in parallel to ease the evaluation.

Power analysis reports: PADA features two types of power
analysis reports: in-depth analysis and comparative analysis.
The in-depth analysis report provides detailed power
information for a single request shown in Figure 6. It consists
of the following four sections. First, PADA shows the power
use overview (Figure 6 (a)) with the average power
consumption (mW), the total wakelock time, the total alarm
count, and the total activation time of individual hardware
components. Second, it provides an area chart to visualize
the estimated power consumption over time (Figure 6 (b))
along with the hardware use pattern on a timeline, indicating
activations of hardware components including CPU, GPS,
sensors, microphone, and Bluetooth with colored bar
segments (Figure 6 (c)). The information helps developers
get a holistic understanding of the power characteristics of
their MSA and gives them a fine-grained view of power
behavior from the perspective of hardware and system.

PADA additionally displays the labeled context information
and custom log messages above shown in Figure 6 (d). Such
information helps developers determine under which user
contexts the application consumes high power and which
part of the application logic contributes more to the overall
energy use. Note that the power consumption of an MSA
varies significantly depending on user contexts [21,22,23].

The second is the comparative analysis. PADA provides an
interface to compare important metrics, e.g., average power
consumption and hardware usages, across multiple power
emulation requests. Figure 7 shows an example of the
comparative analysis; ‘avg. power’, ‘wakelock time’ and
‘GPS time’ are compared. Developers can customize the
reports by selecting the metrics of interest. The comparative
analysis is a unique advantage of PADA because it can repeat
power evaluations over exactly the same sensor traces. If a
developer was to manually carry out such comparative power
evaluations, it would be extremely challenging. Not only
would it take much more time and efforts, the developer
would need to replicate the exact same situations, which
might be almost physically infeasible in many cases.

Figure 4. PADA overview

PADA
front end

Emulation
manager

Power
emulator

Power
emulatorPower
emulatorPower
emulator

Context-labeled
sensor trace

App executables

Evaluation settings

Sensor Trace
Collector

Power
analyzer

APIs for power
emulation

Request

Power
analysis

result

Developer
Figure 5. Power emulation request on PADA;

(a) apk upload and (b) trace selection

(a) (b)

Job for iTrack 1.12

950

SESSION: POWER SAVING TECHNIQUES FOR MOBILE COMPUTING

Comparative analysis is useful in several cases. To optimize
the power consumption even under worst-case scenarios, a
developer needs to find a particular user situation with higher
power use. Moreover, after the addition of new features or
changes in the parameters, the developer might examine the
power impact of the revision. PADA allows the developer to
make more informed decisions about important changes.
While the current prototype provides an aggregate summary
for the comparison, we will add an in-depth comparison
feature to compare two requests in a detailed timeline view
of the power and hardware use pattern.

Auxiliary APIs
Adjusting MSA configurations: Developers often need to
frequently compare the power use of an MSA while varying
application configurations. For example, assume a developer
tests an MSA for 10 different cases, e.g., different sensor
sampling rates and monitoring intervals to find the most
desirable parameters. However, it is extremely burdensome
to manually build the application executables for every time
and compare their power behaviors. PADA provides APIs to
facilitate such a process. Developers first specify a set of
parameter types and candidate values in a configuration file.
Upon a request, PADA automatically generates the
executables for all combinations of parameter values and
runs them. Figure 8 shows an example code snippet. In the
‘parameter.xml’, three values are specified for the parameter
type, ‘location_interval’. Then, the executables are made and
getParameterValue() returns one of the values for each
executable at runtime.

Tagging runtime information: To help developers match
the hardware usage of an MSA to relevant source codes,

PADA provides two types of logging APIs, Log.p(tag, msg)
and Log.p(tag, msg, isOn). The former is to display a power-
related log message at a specific point and the latter is to
display a message as a range. tag is to identify the source of
a log message, msg is the message that developers would like
logged, and isOn indicates the start and stop of the range. The
log messages are collected during the power emulation of the
MSA and later displayed along with hardware usage and
power use information shown in Figure 6 (d). Assume a
developer finds a location in the source code where an
acquired wakelock is not released properly. The developer
can put a log with the custom message whenever his/her
application acquires a wakelock. This later can tell the
developer where in the code the problematic wakelock is
acquired and what application logic is responsible.
Sensor Trace Collection
Developers collect the sensor traces under real-world usage
scenarios before they use PADA. The trace consists of a time
series of sensor values and events. The context information
can be labeled additionally if necessary. The scenarios under
which the traces are collected are carefully crafted by
reflecting the goal of the power testing for the MSAs. For
example, assume a location tracking MSA that activates GPS
only when a user is moving. Developers might want to test
their MSA under scenarios such as 'standing for a while' and
'stopping after walking for 5 minutes'. For power tuning of
their MSA, they also can consider one day-long scenarios of
target users, e.g., 20's undergraduate student's weekend date
and 30's office worker's weekday. Then, they can observe the
power use of the MSA by varying the sensing parameters.

We develop a mobile-side sensor trace collector with which
developers can collect the sensor traces of interest.
Developers specify the types and sampling rates of sensors

Figure 7. Comparative analysis of power behavior on PADA

Figure 8. Code snippet for the application configuration

<parameter.xml>
<parameter type=“location_interval”>

<value>10</value>
<value>20</value>
<value>30</value>

</parameter>

<application code>
interval = PADA.getParameterValue(

“location_interval”, “parameter.xml”);
requestLocation(GPS_PROVIDER, interval, 0, this);

Figure 6. In-depth analysis of the power behavior on PADA

(a) overview

(b) power consumption over time

(c) hardware use pattern

(d) context and custom logs

951

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

required for the execution of their MSA. The collected traces
are reusable throughout the development process. Moreover,
the developers can generate traces that can be commonly
used for different MSAs by collecting sensor data from all
available sensors on the phone at the highest sampling rate.
Note that PADA is already equipped with a pool of sensor
traces for various common user scenarios which enables
basic power evaluation even without data collection.

Power Emulation
For the power emulation of MSAs, we implemented the
PADA emulation manager with Java Spring framework on a
server machine. As an input, the power emulator takes a
sensor trace and an application executable. It then executes
the application while replaying the trace and monitors the
hardware usage. It outputs a time series of system call events
by the application and estimated power consumption.

Existing mobile emulators are not feasible to emulate the
power behavior of MSAs due to a lack of physical sensor
devices and power monitoring functionality. For power
emulation, we adopt and modify the power emulator
proposed in [21,22]; the emulator is built on the Android
framework. To enable the target MSA to run on the emulator,
the power emulator hooks system calls made by the
SensorManager in the Android framework and feeds sensor
values from the pre-collected sensor trace as target
application requests. While the target MSA is running, the
power emulator records system calls related to the power
behavior of the MSA at the same time, e.g., gps_on() and
gps_off() for GPS. After the emulation is finished, the power
analyzer computes the power consumption of the application
with a system call-based power estimation [26].

We evaluated the power estimation accuracy of PADA under
diverse types of MSAs. We used three commercial MSAs
(Accupedo, Pedometer2.0, SleepBot), one open source MSA
(Android-pedometer), and one research MSA we developed
(iTrack which is described in the evaluation section). The
ground truth is obtained by using a Nexus 5 (Android 4.4)
phone with a Monsoon power monitor under a one-hour real-
world usage scenario. As shown in Figure 9, PADA achieves
95.9% accuracy on average.
EVALUATION
We evaluate PADA with Android developers: (a) power-
aware implementation and (b) power tuning of MSAs.

Power-aware Implementation of MSAs with PADA
To evaluate the usability of PADA in the implementation of
MSAs, we conducted a user study with 14 programmers: 10

undergraduate students (P1 to P10), 2 graduate students (P11,
P12), and 2 research engineers (P13, P14). We asked them to
implement an MSA and to meet power requirements. During
the implementation, they were allowed to use PADA freely.
Then, we investigated the usability of PADA in an actual
implementation process. In particular, we focused on how
PADA helped developers fulfill the power requirements. All
participants majored in computer science and had 0.5 to 5
years (M=2.0,SD=1.6) of Android programming experiences.
None of them had any prior knowledge of PADA. They were
rewarded with a gift card equivalent to USD 40. The study
was conducted across five sessions, with two to four
participants in each. We provided a Nexus 5 phone for testing
and debugging purposes. We pre-collected six five-minute-
long sensor traces shown in Table 2 to be used in PADA.

Development requirement: We asked the participants to
develop iTrack, an Android MSA for energy-efficient
location tracking. Its main functionality is to continuously
record the location of a user. To save energy, it monitors the
location only when a user is moving. It detects the movement
of the user through periodic accelerometer sensing. The
location is monitored with Bluetooth scan (indoor) or GPS
(outdoor); we assume that a user is indoor when a designated
beacon is detected. In addition to the functional requirements,
the participants were asked to fulfill the power requirements
in Table 2. To put them succinctly, the hardware components
should be activated only when the relevant operation needs
to be executed. For example, after movement detection,
wakelock should be released until the next detection.
Similarly, GPS should not be activated when a user is indoor.

According to our preliminary study, even experienced
developers took quite a long time to develop iTrack from
scratch. To focus on the impact of PADA on the power-
related implementation activities, we provided the
participants with the skeleton code of iTrack. It contains
basic boilerplates and implementations of modules such as
the movement detection algorithm. The participants were
asked to implement power-related application logics, e.g.,
registering alarms, activating/deactivating sensors, and using
wakelocks on top of the given skeleton code.

Procedures: The study consisted of three parts. First, we
gave the participants a one-hour tutorial about the
specification and requirements of iTrack and how to use
PADA. Second, three hours were given for developing
iTrack with PADA at their disposal. At the end, we
conducted a one-hour long semi-structured interview about

Table 2. Traces and corresponding power requirements

Traces [minutes, context] Power requirements

1

O
ut

do
or

[5, staying] DutyCPU ≤ 20%, # of BT/GPS calls = 0, …

2 [5, walking] # of BT calls = 1, # of GPS calls = 5, …

3 [3, walking], [2, staying] DutyACC ≤ 15%, # of alarm calls ≤ 50, …

4

In
do

or

[5, staying] DutyCPU ≤ 20%, # of BT/GPS calls = 0, …

5 [5, walking] TimeBT ≤ 120s, # of GPS calls = 0, …

6 [3, walking], [2, staying] DutyCPU ≤ 40%, # of BT calls = 3, …

Figure 9. Power estimation; App1: Accupedo, App2: Pedometer

2.0, App3: SleepBot, App4: Android-pedometer, App5: iTrack

0
50

100
150
200

App1 App2 App3 App4 App5

Po
w

er
 (m

W
) Groundtruth

Estimation

952

SESSION: POWER SAVING TECHNIQUES FOR MOBILE COMPUTING

their use of PADA during the development. Two researchers
analyzed the transcripts individually and reached consensus
for high-level themes by discussing together [5].

Usefulness of PADA
Overall, all the participants were satisfied with the usefulness
of PADA. As shown in Figure 10 (a), eight participants
reported PADA was useful for the power-aware
implementation and 5 very useful.

Lowering the burden of power evaluation: According to
the interviews, 11 participants were surprised about the ease
of the power evaluation. The common reason was that they
measured the power consumption within the development
environment without actually moving around. P7 stated,
comparing with his past experiences, "I implemented a GPS-
based mobile application before. To test the application in
the office, I had to put my hand out of window and keep
shaking. When using PADA, I didn't need to go out for testing
and I really liked it." P1 described a similar experience,
"When I was testing a fall detector application, I had to fall
down tens of times to collect data and measure the
performance. I might have had to go through a similar
situation today, without PADA." Some participants
highlighted the ease of the power evaluation in PADA
compared with existing tools such as Android BatteryStats
and iOS energy instrument. P10 said, "Without any effort, I
was able to examine multiple scenarios (with PADA) in
parallel." P5 added, “BatteryStats just provides continuous
power logs after I clear the log using ADB. To minimize the
number of ADB connection, I had to log several scenarios
sequentially. But analysis was not easy.”

Five participants complained that they had to wait for a while
to receive the result. The main reason was that the progress
of the evaluation was hidden to the developers. P7 mentioned,
“I just kept gazing at the screen and refreshed the job list
several times until the job was finished.” We realize that the
future version of PADA needs improvements in the
emulation speed and real time feedback about the progress.

Usefulness of the power information: Most participants
were satisfied with the detailed, enriched information on
power behavior provided by PADA. P5 stated, "I thought that
obtaining some system information, such as the GPS
activation time, is really hard on the application side. I was
happy to see a graph provided by PADA. The graph seemed
to be telling me that I was doing well.” P11 and P12, who
experienced a Monsoon power monitor to develop an MSA,

mentioned that PADA provides more detailed information
regarding the power behavior of the application than
Monsoon. P12 said, "Monsoon shows the overall power, but
I can't get the amount of power consumed by an application
or a hardware component. (With PADA), I can figure out
how my application uses sensor devices. (In the experiment,)
I could easily catch the misbehavior of my application."

Repeatability of the power evaluation: Five participants
found that repeating the evaluation for the exact same
situation is useful because they easily caught how changes in
the source code affect the power use of iTrack. P9 recalled,
“When I saw the power report of my modified application, I
realized that my modification was really bad. Without PADA,
it could be harder to notice this mistake.” They also reported
that the repetitive evaluation has an advantage in testing
MSAs in certain scenarios where developers need to spend a
significant amount of time and effort. P5 stated, “I pictured
myself developing a transportation mode detector. Then, my
application should be able to recognize ‘taking a train’. You
know, it would be quite expensive and time consuming to test
out. If I don’t have PADA, whenever I update the code, I
might have to take a train several times to test. If the app
crashes during the test… Oh, no… I don’t want to imagine.”

Logical bug detection: We observed that the participants
utilized PADA to find logical bugs as well as testing power-
related requirements. They examined activation intervals and
duration of hardware usages to find logical flaws in their
applications. P6 stated, “I intended the accelerometer
activation interval to be 10 seconds, but was 4 seconds. It
also remained activated while a user is walking. I thought I
made a mistake in managing movement detection.”

Here is one of the interesting use cases that we found during
the experiment. P12 used two alarm services for periodic
sensing of the accelerometer and Bluetooth. He mistakenly
managed these services with the same identifier. It led to a
malfunction of turning them on and off together. On the first
use of PADA, he easily spotted the bug. This bug might be
overlooked without PADA, because no functional failure or
crash would be caused in most execution scenarios. Defects
in background services such as this bug might not have an
immediate impact on the UI and require long observations to
find, so even detecting their existence can be challenging.

Usability of PADA
The participants were very positive about their user
experience with PADA (see Figure 10 (b)). All participants
liked that they need only a few clicks to perform power
evaluations of their applications. P14 emphasized, "(It was)
really convenient! All I had to do was to drag and drop the
apk file (for upload) and wait some time. I’m willing to use
PADA if it is released." Some participants complimented the
intuitive interface of PADA. P6 said, "It was very easy to use
PADA. The interface mostly operates as expected."

Many participants reported that they could see a variety of
power information at a glance. P8 stated with awe, “It’s really

Figure 10. Participants' responses distributions;
 (a) “Do you think PADA is useful?”
 (b) “Do you think PADA is easy to use?”

100 80 60 40 20 0 20 40 60 80 100
Percent

(a)

(b)

strongly disagree disagree neutral
agree strongly agree

953

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

beautiful! I think anyone can understand how the application
consumes the energy.” P11 stated, "I saw my application
reduces the energy more, it was really exciting. I had
pleasure seeing it." However, P3 and P12 were concerned
about the difficulty in understanding the in-depth analysis
page. P12 stated, "The result page was less intuitive than
other pages. (…) But, ironically, I like that page the most."

Use patterns of PADA in the development
During the development, the participants requested power
evaluations 2.9 times on average (min: 0, max: 6. SD: 1.8),
which means that they performed power emulations 17.4
times on average (six scenarios per evaluation request).
Table 3 shows the usage frequency of PADA over time. The
results show that 66% of PADA uses occurred after 90
minutes. This is because, in the beginning, the participants
spent time on filling in the skeleton code. Then, after they
made the code to be executable, they tried to test and debug
the power use of iTrack using PADA. P4 said, “I used a real
phone to find any runtime error. Then I tried to measure the
power with PADA.” The average interval between successive
PADA uses was 21.4 minutes. In the interview, the
participants commonly stated that they would perform the
power evaluation less frequently if they could not use PADA.
P2 stated, “If PADA is not provided, I might skip several
outdoor scenarios because going outside is burdensome.”

Suggestions
The participants suggested additional features to improve
PADA. P1 and P9 suggested to display the interim results in
real time. They stated that real time results could enable
faster bug detection if a bug occurs at the earlier part of the
emulation. P5 wanted to compare the hardware usage traces
of two application versions. He stated, “I opened PADA in
two Chrome browser tabs side by side to identify whether I
correctly modify the power bug in the previous version. It
would be great if PADA displays two traces at once and
emphasizes on the different parts like code diff.”

Power Tuning of MSAs with PADA
We further conducted a case study with developers to
examine the usefulness of PADA in the power tuning of
MSAs. For this study, we prepared SocioHotspot, an MSA
that tracks a user’s social hotspots where the user meets her
friends frequently by periodic Bluetooth scans for nearby
friends’ phones. It has two configurable parameters that
affect the power and accuracy: the Bluetooth scanning
interval while a user is either (1) moving or (2) stationary.

We recruited five participants: four graduate students (PA, PB,
PC, and PD) and one undergraduate student (PE). The study
consisted of two phases: balancing the accuracy and the
power consumption of SocioHotspot (1) with the current
practices of power turning and (2) with PADA. At the first

phase, two Nexus 5 phones were provided to each participant,
one for running SocioHotspot and the other for ground truth
collection. The ground truth was logged by performing
Bluetooth scan every 30 seconds. They were asked to carry
two phones at least nine hours a day in daily life. For five
days, they were asked to select and change the parameter
values every day. We provided them with the accuracy and
the power consumption for the selected values each day.

After five days, the second phase started. The participants
visited our laboratory and tried power tuning with PADA.
They selected five more sets of parameter values that they
wanted to further test. Then, we provided the power results
obtained from PADA with two pre-collected sensor traces.
At the end of each phase, we conducted a half-hour semi-
structured interview with each of them and obtained their
power tuning practices. Each one was compensated with a
gift card equivalent to USD 30. To promote the participation,
we provided a gift card equivalent to USD 10 more to a
winner of each session, i.e., who achieved the best balance.

Drawbacks of current practices
As shown in the exploratory study, a common practice for
power tuning of an MSA in real-life situations is to observe
the battery levels while running the MSA for a long time.
However, our study revealed that it has several drawbacks.

Inconsistency of daily behavior: All participants reported
that the most difficult part was the inconsistency of their
daily behavior. This is surprising because we did not divulge
the unique power characteristics of MSAs, i.e., user behavior
dependent power use, to the participants. Four participants
applied the same parameter values for two different days to
confirm the impact of their daily behavior on the power
consumption of SocioHotspot. PB stated, “I tried to move
around similar to yesterday, but it was practically infeasible.”
PA stated, “Developers should not do this if the application
is for commercial release. It will be biased to their life.”

Nontrivial burden: The participants reported that power
tuning with current practices took all day to test one set of
parameter values. In this regard, all participants pointed out
that even five days are not enough to achieve satisfactory
balancing even though SocioHotspot has just two parameters
to be configured. PD mentioned, “I may need ten more days
to find satisfactory values.” PC stated, “If I am the startup
company president, I will test SocioHotspot for one month.”

Elapsed
time (min)

0-
30

30-
60

60-
90

90-
120

120-
150

150-
180

of uses 1 1 5 8 13 13

Table 3. PADA usage counts over time

Figure 11. Power tuning with current practices

0

20

40

60

80

100

0 0.25 0.5 0.75 1

Ex
pe

ct
ed

 b
at

te
ry

 li
fe

 (h
)

F1 score

PA PB PC PD PE

954

SESSION: POWER SAVING TECHNIQUES FOR MOBILE COMPUTING

PE stated his experience, “On Sunday, I was told that the
accuracy was zero, and realized I was at home all day. So
I’m supposed to do this for one more day.” They all agreed
that, it would be almost infeasible to perform power tuning
with a number of configurable parameters in this manner.

Limited results: Figure 11 shows the expected battery life
and F1-score of the hotspot detection, which the participants
achieved during the first session. The results show that the
performance, i.e., balancing the power and accuracy, largely
varies depending on the individual. While PA achieved 64
hours of expected battery life and 94% of F1-score, PD only
achieved 37 hours and 52%. This is mainly due to the
developers’ own intuition and a limited number of trials.

Power tuning using PADA
All participants agreed that PADA brings unprecedented
productivity compared with current practices. They were
commonly surprised that they were able to produce
comparable results with PADA in a day, whereas it took five
days without PADA; actually, they achieved better results
due to their prior knowledge on the impact of the parameter
values obtained from the first session. They said that, for the
same amount of time, they could test their MSA much more
frequently with PADA, compared to that without PADA.
Then, they reported that it is obvious that they could achieve
better accuracy and energy efficiency with more trials using
PADA. Especially, they liked seeing the power results
without the laborious burden of manual measurement. Some
participants found PADA very useful for power tuning
because it can compare the results under the same scenarios.
We omitted a detailed analysis in this respect because the
responses were similar to those in the previous study.

New tuning practices with PADA: All participants agreed
that, with the results from PADA (Figure 7), they obtained
better understanding on the impact of the parameter values.
PC reported that he easily determined the power behaviors of
SocioHotspot with the hardware use pattern (Figure 6). The
participants also felt positive about the automated repetition
of power tuning without laborious measurements.
Interestingly, after using PADA, PA and PD wanted to try it
more to find satisfactory performance. PD stated, “(Without
PADA,) I increased the interval by minutes. Now I want to
change the interval by 15 seconds.” PA said, “I want to find
optimal values by changing one parameter at a time.”

The participants also expressed interests in performance
dependency on a user’s behavior. PC stated, “It would be
essential to consider, at least two representative types of user
behaviors.” PB suggested, “After comparing power results
from two scenarios, I was convinced that the power impact
differs even depending on the individual. […] Isn’t it possible
to use different parameter values for individual users?”

Suggestions for systematic power tuning: The participants
had the following suggestions for systematic power tuning
with PADA. PD who majors in machine learning suggested,
“I think it seems possible to model users’ behavior and then

we might make an automated power tuning system based on
PADA.” PA stated, “It will be perfect if PADA finds optimal
parameter values if I specify their range.”

DISCUSSION
Extending application coverage: PADA currently targets
MSAs that perform sensing and processing periodically.
However, some MSAs may involve user interactions or
cloud offloading [28] that PADA does not currently account
the power use for. We will extend PADA to cover the power
cost caused by such operations. For instance, PADA can
adopt monkey tools [1] to record and replay user interactions,
thereby accounting the power consumed by user interactions.
Also, network power cost can be addressed by capturing the
network usage such as the packet size and signal strength [24]
and replaying them on our power emulator.

Supporting modern hardware architecture: Recent
mobile phones adopt dedicated processors, designed to
optimize the power use of sensor-related operations. For
example, Android sensor hub [2] collects and processes
sensor data without involving the CPU. We plan to extend
our power emulator to support such recent hardware
architectures. A possible way would be to track and replay
usages of the sensor hub and build its power model as in [30].

Supporting energy debugging: We noticed that developers
often want to localize the code block that contributes the
most to the power consumption when they see unexpectedly
high power numbers. PADA currently supports logging APIs
to help developers map the hardware use (and corresponding
power) with a specific code block. We plan to extend this
feature by adopting bug localization techniques from runtime
energy diagnosis tools like Adel [31] and WakeScope [11].

Longitudinal, quantitative evaluation: We acknowledge
that our study is based on the short-term use of PADA by a
small number of developers, and the findings are mainly
derived from qualitative interviews. We will improve PADA
based on our findings (e.g., providing feedback on progress,
pinpointing problematic code lines, etc.) and conduct a
longitudinal evaluation with a larger pool of developers.

CONCLUSION
MSAs induce persistent battery drain due to continuous
sensing and processing. Nonetheless, developers have
difficulties considering energy efficiency in the development
process. We developed PADA, a tool to assist power-aware
development of MSAs. We show the usefulness of PADA by
conducting two user studies: power-aware implementation
with 14 developers and power tuning with 5 developers.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their invaluable
comments. This work was supported by the National
Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIP) (No. 2011-0018120) and Civil
Military Technology Cooperation Center (12-DU-EB-01) in
Agency for Defense Development of Republic of Korea. The
corresponding author is Seungwoo Kang.

955

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

REFERENCES
1. Android monkey tool. Retrieved June 15, 2016 from

https://developer.android.com/studio/test/monkey.html
2. Android sensor hub. Retrieved June 15, 2016 from

https://source.android.com/devices/sensors/sensor-
stack.html#sensor_hub

3. BatteryStats. Retrieved June 15, 2016 from
https://developer.android.com/studio/profile/battery-
historian.html

4. David Chu, Nicholas D. Lane, Ted Tsung-Te Lai,
Cong Pang, Xiangying Meng, Qing Guo, Fan Li, and
Feng Zhao. 2011. Balancing energy, latency and
accuracy for mobile sensor data classification. In
Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems (SenSys '11). 54-67.
http://dx.doi.org/10.1145/2070942.2070949

5. Juliet Corbin and Anselm Strauss. 2007. Basics of
Qualitative Research Techniques and Procedures for
Developing Grounded Theory. Sage Publications.

6. Shuhai Hao, Bin Liu, Suman Nath, William G.J.
Halford, and Ramesh Govindan. 2014. PUMA:
Programmable UI-Automation for Large Scale
Dynamic Analysis of Mobile Apps. In Proceedings of
the 12th annual international conference on Mobile
systems, applications, and services. (MobiSys '14),
204-217. http://doi.acm.org/10.1145/2594368.2594390

7. Inseok Hwang, Chungkuk Yoo, Chanyou Hwang,
Dongsun Yim, Youngki Lee, Chulhong Min, John
Kim, and Junehwa Song. 2014. TalkBetter: family-
driven mobile intervention care for children with
language delay. In Proceedings of the 17th ACM
conference on Computer supported cooperative work
& social computing (CSCW '14). 1283-1296.
http://dx.doi.org/10.1145/2531602.2531668

8. Energy instrument. Retrieved June 15, 2016 from
https://developer.apple.com/library/prerelease/content/
documentation/Performance/Conceptual/EnergyGuide-
iOS/MonitorEnergyWithInstruments.html

9. Younghyun Ju, Youngki Lee, Jihyun Yu, Chulhong
Min, Insik Shin, and Junehwa Song. 2012.
SymPhoney: a coordinated sensing flow execution
engine for concurrent mobile sensing applications. In
Proceedings of the 10th ACM Conference on
Embedded Network Sensor Systems (SenSys '12). 211-
224. http://dx.doi.org/10.1145/2426656.2426678

10. Seungwoo Kang, Sungjun Kwon, Chungkuk Yoo,
Sangwon Seo, Kwangsuk Park, Junehwa Song,
Youngki Lee. 2014. Sinabro: Opportunistic and
Unobtrusive Mobile Electrocardiogram Monitoring
System. In Proceedings of the 15th ACM Workshop on
Mobile Computing Systems and Applications
(HotMobile '14), Article No. 11.
http://dx.doi.org/10.1145/2565585.2565605

11. Kwanghwan Kim and Hojung Cha. 2013. WakeScope:
runtime WakeLock anomaly management scheme for
Android platform. In Proceedings of the Eleventh ACM
International Conference on Embedded Software
(EMSOFT '13). Article 27, 10 pages.

12. Nicholas D. Lane, Petko Georgiev, and Lorena Qendro.
2015. DeepEar: robust smartphone audio sensing in
unconstrained acoustic environments using deep
learning. In Proceedings of the 2015 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp '15). 283-294.
http://dx.doi.org/10.1145/2750858.2804262

13. Seokjun Lee, Wonwoo Jung, Yohan Chon, and Hojung
Cha. 2015. EnTrack: a system facility for analyzing
energy consumption of Android system services. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing
(UbiComp '15), 191-202.
http://dx.doi.org/10.1145/2750858.2807531

14. Seokjun Lee, Chanmin Yoon, and Hojung Cha. 2014.
User interaction-based profiling system for Android
application tuning. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp '14). ACM, New
York, NY, USA, 289-299.
http://dx.doi.org/10.1145/2632048.2636091

15. Youngki Lee, S. S. Iyengar, Chulhong Min,
Younghyun Ju, Seungwoo Kang, Taiwoo Park, Jinwon
Lee, Yunseok Rhee, and Junehwa Song. 2012.
MobiCon: a mobile context-monitoring platform.
Commun. ACM 55, 3 (March 2012), 54-65.
http://dx.doi.org/10.1145/2093548.2093567

16. Youngki Lee, Chulhong Min, Younghyun Ju,
Seungwoo Kang, Yunseok Rhee, Junehwa Song. 2014.
An Active Resource Orchestration Framework for
PAN-scale Sensor-rich Environments. IEEE
Transactions on Mobile Computing (TMC), Vol. 13,
No. 3, 596-610.
http://dx.doi.org/10.1109/TMC.2013.68

17. Youngki Lee, Chulhong Min, Chanyou Hwang, Jaeung
Lee, Inseok Hwang, Younghyun Ju, Chungkuk Yoo,
Miri Moon, Uichin Lee, and Junehwa Song. 2013.
SocioPhone: everyday face-to-face interaction
monitoring platform using multi-phone sensor fusion.
In Proceeding of the 11th annual international
conference on Mobile systems, applications, and
services (MobiSys '13). 375-388.
http://dx.doi.org/10.1145/2462456.2465426

18. Youngki Lee, Younghyun Ju, Chulhong Min,
Seungwoo Kang, Inseok Hwang, and Junehwa Song.
2012. CoMon: cooperative ambience monitoring
platform with continuity and benefit awareness. In
Proceedings of the 10th international conference on
Mobile systems, applications, and services (MobiSys

956

SESSION: POWER SAVING TECHNIQUES FOR MOBILE COMPUTING

http://doi.acm.org/10.1145/2594368.2594390

'12). 43-56.
http://dx.doi.org/10.1145/2307636.2307641

19. Ding Li, Shuai Hao, William G. J. Halfond, and
Ramesh Govindan. 2013. Calculating source line level
energy information for Android applications. In
Proceedings of the 2013 International Symposium on
Software Testing and Analysis (ISSTA 2013), 78-89.
http://dx.doi.org/10.1145/2483760.2483780

20. Chieh-Jan Mike Liang, Nicholas D. Lane, Niels
Brouwers, Li Zhang, Börje F. Karlsson, Hao Liu, Yan
Liu, Jun Tang, Xiang Shan, Ranveer Chandra, and
Feng Zhao. 2014. Caiipa: automated large-scale mobile
app testing through contextual fuzzing. In Proceedings
of the 20th annual international conference on Mobile
computing and networking (MobiCom '14), 519-530.
http://dx.doi.org/10.1145/2639108.2639131

21. Chulhong Min, Youngki Lee, Chungkuk Yoo,
Seungwoo Kang, Sangwon Choi, Pillsoon Park, Inseok
Hwang, Younghyun Ju, Seungpyo Choi, and Junehwa
Song. 2015. PowerForecaster: predicting smartphone
power impact of continuous sensing applications at
pre-installation time. In Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems
(SenSys '15), 31-44.
http://dx.doi.org/10.1145/2809695.2809728

22. Chulhong Min, Youngki Lee, Chungkuk Yoo,
Seungwoo Kang, Inseok Hwang, Junehwa Song. 2016.
PowerForecaster: Predicting Power Impact of Mobile
Sensing Applications at Pre-Installation Time.
GetMobile: Mobile Comp. and Comm. 20, 1 (July
2016), 30-33.
http://dx.doi.org/10.1145/2972413.2972424

23. Chulhong Min, Chungkuk Yoo, Inseok Hwang,
Seungwoo Kang, Youngki Lee, Seungchul Lee,
Pillsoon Park, Changhun Lee, Seungpyo Choi, and
Junehwa Song. 2015. Sandra helps you learn: the more
you walk, the more battery your phone drains. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing
(UbiComp '15). 421-432.
http://dx.doi.org/10.1145/2750858.2807553

24. Radhika Mittal, Aman Kansal, and Ranveer Chandra.
2012. Empowering developers to estimate app energy
consumption. In Proceedings of the 18th annual
international conference on Mobile computing and
networking (Mobicom '12). 317-328.
http://dx.doi.org/10.1145/2348543.2348583

25. Jeongyeup Paek, Joongheon Kim, and Ramesh
Govindan. 2010. Energy-efficient rate-adaptive GPS-
based positioning for smartphones. In Proceedings of
the 8th international conference on Mobile systems,
applications, and services (MobiSys '10). 299-314.
http://dx.doi.org/10.1145/1814433.1814463

26. Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir
Bahl, and Yi-Min Wang. 2011. Fine-grained power
modeling for smartphones using system call tracing. In
Proceedings of the sixth conference on Computer
systems (EuroSys '11), 153-168.
http://dx.doi.org/10.1145/1966445.1966460.

27. Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and
Samuel P. Midkiff. 2012. What is keeping my phone
awake?: characterizing and detecting no-sleep energy
bugs in smartphone apps. In Proceedings of the 10th
international conference on Mobile systems,
applications, and services (MobiSys '12), 267-280.
http://dx.doi.org/10.1145/2307636.2307661

28. Kiran K. Rachuri, Cecilia Mascolo, Mirco Musolesi,
and Peter J. Rentfrow. 2011. SociableSense: exploring
the trade-offs of adaptive sampling and computation
offloading for social sensing. In Proceedings of the
17th annual international conference on Mobile
computing and networking (MobiCom '11), 73-84.
http://dx.doi.org/10.1145/2030613.2030623

29. Lenin Ravindranath, Suman Nath, Jitendra Padhye, and
Hari Balakrishnan. 2014. Automatic and scalable fault
detection for mobile applications. In Proceedings of the
12th annual international conference on Mobile
systems, applications, and services (MobiSys '14), 190-
203. http://doi.acm.org/10.1145/2594368.2594377

30. Haichen Shen, Aruna Balasubramanian, Anthony
LaMarca, and David Wetherall. 2015. Enhancing
mobile apps to use sensor hubs without programmer
effort. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp '15), 227-238.
http://dx.doi.org/10.1145/2750858.2804260

31. Lide Zhang, Mark S. Gordon, Robert P. Dick, Z.
Morley Mao, Peter Dinda, and Lei Yang. 2012. ADEL:
an automatic detector of energy leaks for smartphone
applications. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis
(CODES+ISSS '12), 363-372.
http://dx.doi.org/10.1145/2380445.2380503

32. Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang
Wang, Robert P. Dick, Zhuoqing Morley Mao, and Lei
Yang. 2010. Accurate online power estimation and
automatic battery behavior based power model
generation for smartphones. In Proceedings of the
eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis
(CODES/ISSS '10), 105-114.
http://dx.doi.org/10.1145/1878961.1878982

957

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

	PADA: Power-aware development assistant for mobile sensing applications
	Citation
	Author

	PADA: Power-aware Development Assistant for Mobile Sensing Applications
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	Introduction
	Related Work
	Exploratory Study with Developers
	Survey of Mobile Developers
	Awareness of energy efficiency and current practices
	Knowledge on battery use of smartphones

	Interview of MSA Developers
	Key Takeaways

	PADA: Power-aware Development Assistant
	Design Goals
	PADA Overview
	PADA User Interface
	Auxiliary APIs
	Sensor Trace Collection
	Power Emulation

	Evaluation
	Power-aware Implementation of MSAs with PADA
	Usefulness of PADA
	Usability of PADA
	Use patterns of PADA in the development
	Suggestions

	Power Tuning of MSAs with PADA
	Drawbacks of current practices
	Power tuning using PADA

	Discussion
	Conclusion
	Acknowledgments
	REFERENCES

