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A Survey on Artificial Intelligence-Based Modeling
Techniques for High Speed Milling Processes

Amin Jahromi Torabi, Meng Joo Er, Senior Member, IEEE, Xiang Li, Beng Siong Lim, Lianyin Zhai,
Richard J. Oentaryo, Gan Oon Peen, and Jacek M. Zurada, Fellow, IEEE

Abstract—The process of high speed milling is regarded as
one of the most sophisticated and complicated manufacturing
operations. In the past four decades, many investigations have
been conducted on this process, aiming to better understand its
nature and improve the surface quality of the products as well
as extending tool life. To achieve these goals, it is necessary to
form a general descriptive reference model of the milling process
using experimental data, thermomechanical analysis, statistical or
artificial intelligence (AI) models. Moreover, increasing demands
for more efficient milling processes, qualified surface finishing,
and modeling techniques have propelled the development of more
effective modeling methods and approaches. In this paper, an
extensive literature survey of the state-of-the-art modeling tech-
niques of milling processes will be carried out, more specifi-
cally of recent advances and applications of Al-based modeling
techniques. The comparative study of the available methods as
well as the suitability of each method for corresponding types
of experiments will be presented. In addition, the weaknesses of
each method as well as open research challenges will be presented.
Therefore, a comprehensive comparison of recent developments in
the field will be a guideline for choosing the most suitable modeling
technique for this process regarding its goals, conditions, and
specifications.

Index Terms—Artificial intelligence (AI), high speed machining
(HSM), milling process, modeling techniques.

NOMENCLATURE
AISI American Iron and Steel Institute.
AFPN Adaptive fuzzy Petri net.
ANFIS Adaptive neuro-fuzzy inference system.
ANN Artificial neural network.
BCCD Best cutting condition determination.
BN Bayesian network.
BP Back propagation.
CFFBP Cascaded feedforward back propagation.
Dc Depth of cut.
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Fig. 1. Tool condition monitoring and surface roughness prediction [7].

I. INTRODUCTION

ODAY, high speed machining (HSM) is widely applied to

fulfill the overwhelming and increasing demands for pro-
ducing vital pieces for various industrial sectors, particularly in
aerospace industries. The throughput of the machining process
is a critical parameter for determining the quality of a produc-
tion process. Large throughput, as well as the surface quality
of the product, is directly related to the change in the total
production rate and the overall gain. Early research in this area
started in the late 1970s and early 1980s [1]. Afterward, many
approaches have been proposed for the production process to
improve performance and achieve the desired quality and final
mass production.

A literature survey of the most popular information extrac-
tion and modeling techniques in this area is beneficial for
clarifying the research issues and illustrating their weaknesses
and achievements. The main goal of this paper is to con-
solidate the available knowledge on modeling techniques of
milling processes. It facilitates the extraction of the inherent
relationship between all the effective cutting parameters, sensor
signals, and process results by choosing the most appropri-
ate modeling technique [2]-[6]. As a result, it will be eas-
ier to choose the proper approach to a descriptive reference
model.

There are numerous modeling methods to provide a reference
model for milling processes. The classical methods in this field,
as well as experiment setups and feature-extraction methods,
were covered in our last paper [3]. Many of the state-of-the-
art methodologies will be covered in the present paper. These
methods are distinguished by their applied feature extraction
and data preprocessing approaches. Another important factor
for grouping modeling methods is the algorithm which they
use. Numerous modeling methods are applied to provide a
nonintrusive monitoring of the process. In this paper, artificial
intelligence (Al)-based techniques are focused. Fig. 1 illustrates
the different aspects of tool condition monitoring and surface
roughness prediction on HSM processes.

Probabilistic modeling methods such as Bayesian networks
(BNs) and hidden Markov models (HMMs) will be summa-
rized in Section II-A and D. They apply probability rules and
relations to form a model for milling process monitoring and
prediction. However, these methods are not as common as the
methods based on neural networks, fuzzy logic (FL), and their
combinations, which are covered in Section II-B. Evolutionary
approaches, such as genetic algorithms (GAs) and particle
swarm optimization (PSO), are also applied in this field. As
Section II-C presents, they are mostly used in combination with
other methods for optimization purposes.

Different types of clustering methods and algorithms are
also applied to the signal features as the first layer for signal
interpretation. Categorization and grouping of distinct signal
features and associating them with different cutting phenom-
ena are also the goals of the research works summarized in
Section II-E.

Finally, in Section III, discussions of available techniques
and research issues and some suggestions for future studies will
be presented. Conclusions will be drawn in Section I'V.

II. AI-BASED ANALYSIS OF HIGH SPEED
MILLING PROCESSES

To provide an acceptable infrastructure for representing a
general descriptive model, we have to note that milling pro-
cesses have a nonlinear time-varying multivariable nature and
the sensor signals and signal features are applied to represent
roughly the state of the process. The following sections present
the most commonly used Al techniques.

A. BNs

1) Methodologies and Applications: A BN is a probabilistic
graphical model which represents a set of random variables and
their probabilistic dependences. It is one of the most famous
decision-making methods based on the statistical behavior of
the process [8], [12], [36]-[38]. A BN was used in [9] to present
the surface-finishing results of a milling process. Naive and
tree-augmented naive (TAN) classifiers were used as the learn-
ing paradigm. After validation and comparing the confusion
matrices, it was shown that, in many cases, TAN-trained BNs
are superior to naive-trained BN [9]. Another similar report
applies both naive and TAN and compares their performances
with artificial neural network (ANN). Since the complex struc-
ture of ANN is not opaque comprehensive, Correa et al. [10]
suggest a BN over ANN. They propose a model for the surface
roughness prediction where the correlations between the vari-
ables are clearly visualized.

Combined with support vector regression (SVR), BN was
applied in [12] to detect tool wear, and its performance is
compared to another BN—-multilayer perceptron combination.
Force features are used as the inputs to both the networks, and
they were compared in terms of their prediction accuracy. It
is shown that the former model is more accurate [12]. Also,
in [8], a BN was used for studying acoustic emission and
spindle power metrics. Face milling and drilling processes were
investigated, and the applicability of BN to the prediction of
their surface-finishing results was compared. As a result, the
root causes of many changes in the signal during the process
were correlated to the available cutting conditions.
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TABLE 1

BNS AND HIDDEN MARKOV MODELING APPROACHES TO MILLING PROCESSES
Papers Material Condition Cutting Conditions Center Signals Analysis Target Preprocessing Technique
Baycsian nctworks
[B3] ATIST 4140 NM* NM NM AE*, Spindle power Tool wear, WH™ Feature extraction
91 F114 steel NM Ve Fe De Cn Fz Flutes Td™* Kondia HS1000 NA* Ra* K-means discretizer
[10] Aluminium Cutting conditions, Geometry Kondia HS1000 Force Ra TAN™ algorithm
11 Steel St 52-3 NM Dc Ve Fe Spinner VC 560 NA Ra NA
[12] ASSAB718HH NM NA Makino CNC Force Tool wear Support vector machine
Hidden Markov models
[13] Inconel 718 Dry Fc Dc Ve Ruder HSM Vibration, Force, AE Tool wear Continious wavelet transform
[14] NM NM NM NM Vibration Failure detection Modulus maxima wavelet
[15] Aluminium NM Ve Cn Fe De Td HS-1000 Kondia AE, Force, Vibration Tool life DFT*
[16] NM NM NA NM Vibration Tool monitoring Spectral feature extraction
[17] AISI 4340 steel Water-soluble Dc Ve Fe MAZAK H800 Vibration, AE Tool wear Classification

* See the Abbreviation Appendix

2) Pros and Cons: Table I consolidates the recent research
works applying BNs for high speed milling processes. BNs
have been extensively used in the best cutting condition de-
termination problem. Using proper signal features as inputs,
there are many applications where BN is used for modeling.
Compared to other Al techniques, statistical models need more
data for training to achieve the same level of accuracy which is
considered a negative aspect. However, since it is graphically
representable, using a transition probability matrix makes all
the significant and insignificant parameters in the process easily
recognizable for the researcher.

B. FL, Neural, and FNN-Based Methods

1) Methodologies and Applications: ANNs, FL, and their
combinations such as fuzzy nets (FNs) are widely used in
modeling HSM processes. They have also been shown to be
capable of modeling not only end milling but also other kinds of
machining processes, providing an accurate approximation of
the surface finishing [39]-[45]. Each report applies ANN with
a different algorithm. However, choosing the best structure is
still an open problem. In order to model the machining process,
the feedforward-back-propagation algorithm has been used ex-
tensively in many articles. The details of the structure and
connections between inputs/outputs, e.g., the number of hidden
layers and their neurons, are also considered as an important
issue. Some discussions on the optimum modeling structure
can be found in [18], [21], and [22].

In [31], tool wear and surface roughness are correlated with
cutting conditions and force features using a back propaga-
tion neural network structure. However, since there are many
choices for ANN modeling, there is still an issue in choosing
the best method and structure. For example, in [25]-[27], the
radial basis functions (RBFs), back-propagation methods, and
dynamic models are compared to find the best structure. Using
only one hidden layer and proper design of experiment, a model
was presented that had the ability to capture the character-
istics of the force signal given the cutting conditions. Then,
Lu [26] obtained an approximation to the surface profile while
Briceno et al. [25] showed that RBF is superior in the sense of
a presented cost function in the prediction of force features.

Given the fact that the wavelet coefficients of the force signal
carry different patterns in normal and a broken tool, an ART2-
type self-learning neural network was designed to detect signs
of tool failure from the force signal [23].

In addition to the cutting conditions and vibration signal,
to predict the output surface profile, the fractal geometry and

self-similarity properties of the surface were used as a reference
building block for all surface patterns and for determining
fractal parameters in [24].

Overfitting and slow learning are also important challenges
in applying ANN models. The support vector machine (SVM)
method has been developed to overcome such issues by min-
imizing the generalization error as well as by maximizing the
separation margin rather than the training error.

As described in [46], there are comparatively few parameters
to be set in SVM methods. With their benefits, SVM and SVR
have been used for force, power, and spindle displacement
signals to classify broken tools [11], [32]-[35].

FL-based tool wear monitoring was suggested in [47]. To
predict flank wear, it utilizes the maximum cutting force with
other cutting conditions. Forming its rule base according to
experimental and expert knowledge, it is able to estimate the ex-
isting flank wear. In [48], an FL-based controller was applied on
feed current signal to increase the metal removal rate (and lessen
the production time) while maintaining a constant cutting force.

Fuzzy-neural network (FNN) can also be applied to many
machining processes as a condition monitoring system [49]. For
example, the hybrid Taguchi—genetic learning algorithm was
used in [40] to fit a nonlinear model to the R, values of a best
cutting condition determination experiment. The learning data
are identical to that used in [50]. The aim is to compare the
results of different choices for membership functions which are
used in the adaptive neuro-fuzzy inference system. As a com-
plete example of a combined monitoring and control system,
fuzzy-neuro adaptive surface roughness control (FN-ASRC)
was applied in [39], where FN-ASRC is divided into two dis-
tinct parts. One is the fuzzy-neuro in-process surface roughness
recognition, which predicts the surface roughness, and the other
subsystem is the FN adaptive feed-rate control (FN-AFRC),
which suggests appropriate modifications to the cutting condi-
tions in order to achieve a determined surface roughness set
point. Fig. 2 illustrates the framework of the FN-AFRC method
introduced [39].

In order to develop the whole monitoring and control system,
two distinct five-layer FNs were used. The layers are the input,
feature-extraction, relations, combination, and defuzzification
layers. The fuzzy rules for identification and control are de-
fined, and conflicting rules are moved out of the rule base.
The process is stopped halfway for the fuzzy neuro-in process
surface roughness prediction (FN-IPSRP) system to predict
the surface roughness for the rest of the path. Then, in order
to improve the surface roughness, a feed-rate modification is
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Fig. 2. FN system proposed by [39] to adaptively control the surface roughness according the predicted values for surface finishing.

TABLE 1I
ANNS AND SVM MODELING APPROACHES TO MACHINING PROCESSES

Papers Material ‘ Condition | Cutting conditions Centre Signals Analysis target Preprocessing technique
Artificial neural network

[18] Titanium NM* Ve Fc Dc* NM NA* Ra* NA

1191 Stainless steel 304L Dry Ve Fe De CNC lathe NA Surfacc profile NA

[20] Steel NM Dc Ve Fe VDF lathe Flank wear Tool lile PSO*

110] Aluminium NM Cutting conditions, Geometry Kondia HS1000 Force Ra NA

[15] Aluminium NM Ve Cn Fe De Td HS-1000 Kondia AE™, Force, Vibration Tool life DFT*

121] Steel NM V¢ Fe Dc Cn Fz Td CNC lathe, AE, Force, Vibration Ra NA

[18] Titanium NM Ve Fe Rake angel NM NA Ra NA

[22] AISI 1030 steel Dry Dc Ve Fe CNC lathe NA Ra NA

23] Kistler 9257A NM NA NM Force Tool failure Wavelet transformation
[24] NM NM Ve Cn Fe De Td Initial tool wear NM Vibration Surface profile Fractal geometry approach
125] NM NM Dc Ve Fe VMC-3016L Force Force features Feature extraction

[26] Stainless steel 304L Dry Dc Ve Fe NM AE, Vibration Surface profile FFT*

1271 NM NM Dc Ve Fe NM Force Flank wear Normalization

28] AISI 1020 steel NM Dc Ve Fe NM NA Tool wear Comparison to MRM™
[29] 1040 carbon steel Dry NA Bridgeport Vibration Tool wear FFT features

[30] 16MnCrSiS XM steel NM Geometry Ve Fc Material Heller force force Actual Value

[31] AIST 1040 dry Ve Fe De Taksan force Tool Wear, Ra ANOVA

Support vector machine

[32] 6061 Aluminium NM Dc Ve Fe Fadal CNC NA Ra PSO

[n Steel St 52-3 NM Dc Ve Fe Spinner VC 560 NA Ra NA

[33] Cast-Iron Aluminium NM Ve Cn Fe De Td Fadal VMC-40 Force Tool breakage Low pass filter

[34] steel AISI-1018 NM D¢ Ve Fe Okuma ES-V3016) Force, Power Tool breakage Support vector regression
[35] 7075 Aluminium NM NA NM Displacement, Power Tool breakage NA

* See the Abbreviation Appendix

suggested by FN-ASRC based on the predicted results of the
FN-IPSRP [39].

FNs have also been applied to model the milling process [42],
[51], [52]. In this method, a number of membership functions
are assigned to the input space and are fine-tuned in order to
obtain the most accurate input/output model. Then, combina-
tions of these membership functions are considered as possible
associative rules in the model’s rule base. After all, only the
rules with more occurrences and no conflicts will remain. For
performance verification, several designs have been tested, and
the FN method performs acceptably in its surface roughness
predictions. The previously discussed papers are summarized
in Tables IT and I'V.

2) Pros and Cons: This section has mentioned methods
that have been applied due to their ability to model nonlinear

processes which are applicable to experiments to determine the
best cutting conditions as well as destructive tests. Since the
literature has been established on these techniques, there have
been plenty of different implementations of these methods con-
cerning prediction and control of milling processes. There are
also reports that claim the repeatability of the models. However,
none have claimed to be a universal reference model for milling
processes, and there is no consistency with regard to their
requirements for inputs and outputs which opens the doors for
more investigations. Also, many types of models have yet to be
developed and tested, such as the combination of neuro-fuzzy
algorithms with other AI methods and dynamic fuzzy mod-
els [53] for offline and online monitoring systems. However,
the capability of these models to capture the nonlinear time-
varying nature of the process is an advantage of such methods,
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TABLE 1II
GAS, Fuzzy PETRI NET, PSO MODELING APPROACHES TO MACHINING PROCESSES

Papers Material ‘ Condition | Cutting conditions Center Signals Analysis target Preprocessing technique
Genetic algorithm

154] 6061 Aluminium NM™ Ve Cn D¢ Fe NM Vibration Ra™ Genetic programming

[55] AIST 1018 steel NM Fc NM Cutting force, Feed force Tool wear Fuzzification

156] Aluminium 6061-T8 NM Dc Ve Fe VMC550 NA* Ra NA

[57] NM NM Fc Ve Power NM NA Fc Ve Power Simulated annealing

58] NM NM Dc Ve Fe NA NA Dc V¢ Fe NA

[591 T20 Grey cast NM Dc Ve NM NA Fc NA

[60] X20Crl3 Steel NM Dc Ve Fe Cutter engagement Fil Fresatrici Flank wear Ra ANN™, Compared with PSO*
Particle swarm optimization

[61] Aluminium Dry Dc Ve Fe Fadal VMC NA Ra NA

[32] 6061 Aluminium NM Dc Ve Fe Fadal CNC NA Ra SVM*

[20] Steel NM Dc Ve Fe VDF lathe Flank wear Tool life ANN

[60] X20Cr13 Steel NM Dc Ve Fe Cutter engagement Fil Fresatrici Flank wear Ra ANN, Compared with GA*

* See the Abbreviation Appendix

and their inflexible and complex structure is a disadvantage.
In addition, there are very few online prediction and control
research works available in this field, which leaves space for
more investigations on universal online models.

C. Evolutionary Algorithms, GAs, GP, and PSO

1) Methodologies and Applications: The method of GAs is
an optimization method based on evolutionary searching of the
solution space. The idea was based on the works introduced in
[62]. GA is used in the machining technology field for modeling
issues wherever optimization is concerned. In [58] and [59] for
example, it was used for best cutting condition determination.
With proper economic justifications for the cost of the process
and modified limitations on the variables, many cost functions
are defined for the process with some cutting conditions as opti-
mization variables [58], [59]. The same problem is solved with
a combination of simulated annealing (SA) and GA in [57].
However, since GA training requires random measurements on
surface roughness and tool wear, it is not easy to be generalized
in the available form or to be used for online analysis and
prediction.

The genetic programming (GP) method was first introduced
in the early 1990s by Koza [63]. Basically, it is an evolu-
tionary algorithm that makes the program perform better in
evolving and producing an optimal model that matches the data.
Theoretically, they are represented in the form of recursively
evaluated and evolved tree structures. Every tree node has an
operator function, and every terminal node has an operand,
making mathematical expressions easy to evolve. There are
several implementations of this method for milling process
modeling [54], [55], [64]. A general review of these methods
can be found in [64]. The method was used in [54] and [56]
to represent the surface roughness in its dependence on the
cutting conditions and the vibration signal. According to this
method, an evolutionary algorithm investigates the best match
for the experimental data by evolving the tree of operators
and operands as modeling functions for the milling process
using simple function genes and terminal genes. In [60], a GA-
optimized neural network was applied to tool condition mon-
itoring where GA was applied to fine-tune the neural network
parameters. The performance of this model was also compared
with that of PSO-based neural network. In both the GA- and
PSO-based approaches, these optimization methods are applied
for determining the neural network parameters.

The PSO method is a famous optimization procedure based
on a direct search method which imitates social behavior in the
presence of objectives. It was first introduced by Kennedy et al.
[65] and was used in several applications. It uses an iterative
formula for the swarms to approach global maxima

V4,5 = CoVsj +c1r (globalbestj — ... ZL’Z‘J)
+ cora(localbest; ; — x; ;)
+ ... cars(neighbourhoodbest; — x; ;)
ZL’i’j = IL'Z'J' + Ui,j~ (1)

Due to its ability to search for the global optimum, globalbest,
proportional to the local optimum, localbest, and nearest
optimum, neighbourhoodbest, it has been mostly applied in
milling processes to optimize the cutting conditions. PSO was
used for the first time in the machining literature where, to find
the best matching parameters for a proposed surface roughness
model [61], [66]

_ 10aDYF¢

a = )

where R, is the surface roughness, D.. is the radial depth of the
cut, I, represents the feed factor, V. is the spindle speed, and
a, b, ¢, and d are unknown parameters.

In [32] and [61], PSO was applied to the results of an
SVM. The SVM determines the unknown parameters of the
model in (2). Then, PSO was used to find the optimal cutting
conditions [32].

Because of its ability to find the optimal solution for most
nonlinear objective functions, there is no specific limitation
on using any predefined model for the process. For example,
Cus et al. [66] use an ANN model for the force versus surface
roughness, and a PSO algorithm was applied to find the opti-
mum cutting conditions. In [20], an ANN was applied to model
the tool life dependent on the cutting conditions and flank wear.
PSO is also utilized to optimize the ANN parameters.

2) Pros and Cons: Table III present the papers on these
methods. Since GAs were not developed for dynamic training
until recently, they were just used for offline best cutting condi-
tion determination. Since the basic idea is to reach an optimum
point for an objective function, it can be properly used for build-
ing a best fitting model on offline raw data. However, there is no
report that this method is capable of online adaptation. There
are some studies that suggest merging dynamic learning with
this method [67], so it might be applied in the future studies.
Another issue that exists with GP is the complex formulations



1074

IEEE SYSTEMS JOURNAL, VOL. 9, NO. 3, SEPTEMBER 2015

TABLE 1V
FNN MODELING APPROACHES TO MACHINING PROCESS

Papers Material ‘ Condition ‘ Cutting conditions Center Signals Analysis target Preprocessing technique
Fuzzy neural network
[40] NM™ NM Ve De Fe™ NAF NA Ra* NA
[42] 6061-T6511 Dry Ve Fe De Storm CNC A50 Force, vibration Ra Fuzzification
Aluminium
[72] Aluminium NM Dc Fe Ve Beaver CNC AE™, Force, spindle acceleration TCM™ Taguchi’s signal/sensor selection
[731 Steel #45 Dry Ve Cn Fe De Td Makino-FNC74-A20 Feed current, Spindle current TCM Wavelet analysis
[40] 6061 Aluminium NM Ve De Fe NA Ra Hybrid Taguchi-genctic learning
algorithm
144] Alumic-79 NM Ve Fe De flutes Td NM NA Ra Fuzzification
145] NM NM NA NM Force, vibration, AE Tool wear Sensor fusion
150] 6061 Aluminium NM Ve De Fe NM NA Ra NA
151] 6061 Aluminium NM Ve De Fe Fa dal CNC Vibration, proximity Ra Fuzzification
152] 6061 Aluminium NM Ve De Fe Fadal VMC-40 Vibration, Proximity Ra Fuzzification
[74. Inconel 718 semi-dry NA Roder Vibration, force, acoustic Tool wear time domain features
75)
[47] Steel AISI-1018 NM D¢ Fe Fadal VMC Vibration, proximity Tool wear Fuzzification
[76] Inconel 718 semi-dry NA Roder Vibration, force, acoustic Tool wear Wavelet analysis
[48] Aluminium NM Geomelry Ve Fe material ACE-V30 Spindle and feed current Force control Actual value
[47] Steel NM Dc Fc Material Fadal Force Flank wear (Vb) Actual value
* See the Abbreviation Appendix
TABLE V

CLUSTERING MODELING APPROACHES TO MACHINING PROCESSES

Papers Material Condition Cutting conditions Centre Signals Analysis target Preprocessing technique
Clustering and classification methods

[79] Steel NM Cutting conditions, geometry Makino FNC 74-A20 AE* Tool wear Wavelet packet transform
[80] ENIA Dry Fc Dc Ve™* Cincinnati Sabre 500 Power, force Flank wear Signal feature extraction
17 AISI 4340 steel Water-soluble Dc Ve Fe MAZAK H800 Vibration, AE Tool wear HMM* modeling

[81] Inconel 718 semi-dry NA™* Roder Vibration, AE, force Tool wear Wavelet analysis

Self organizing maps

[16] NM NM NA NM Vibration Tool monitoring Spectral feature extraction
182] Inconcl 718 HRC52 dry Roder Vibration, force, AE Tool wear Fuzzy regression model

* See the Abbreviation Appendix

and functions in the output. To make the modeling more mean-
ingful, the output model has to reflect the mechanical nature
of the process. This makes the model process more computa-
tionally intensive.

As an optimization method similar to GAs, PSO is also
used to facilitate nonlinear model identification and parameter
determination. Also, it can be used as a training method for
other Al techniques to find the best fitting model for the milling
process. Since it requires an existing nonlinear function, it
might not be suitable for online data analysis and prediction.
Perhaps with some modifications in the variable definitions, it
might be able to work in real time as well as GA.

D. HMM:s

1) Methodologies and Applications: HMMs were first in-
troduced in [68] as “probabilistic functions of Markov chains.”
Afterward, several methods were introduced for modeling, and
their application was summarized in [69]. To formulate an
HMM model A = (7, A, B), usually, N distinct (hidden) states
q; for the system are considered. The Markov chain is defined
by the connecting transitions between ¢; states. These con-
nections are completely defined by the state transition matrix
A = [a;;] where each element a;; represents the probability of
the corresponding transition

aij = P(q: = jlge—1 = 1),1 <4, Jj<N. 3)

Since the a;;’s are probability values, the following axiomatic

constraints are applied [70]:

N
Q5 Z 0, Zaij =1 V1. (4)
j=1

We may assume without loss of generality that the start time
of the model is 0, at which point the model will have an initial
condition. It is represented by the probability of each individual
state at the initial time or the initial condition probability
distribution, 7; = P(go = i), which is the ith element of 7.
Then, the probability of any chain of states will be

)

P(q|A7 7T) = 7r110(1%41 te afIT—qu'

Since the states of the system are not always observable, the
only thing that is available about the system is the observation
O, which is according to the changes in the system states. The
relation between these observations and the states is declared by
another probability matrix which is called the emission matrix

B = {b:(0)};L1 ,6:(0r) = P(Oslar = ). (©)

There are three major issues to be faced for developing an
HMM structure to model a system. The first one is to compute
the probability of an output event’s happening in the availa-
ble model A\ (Evaluation). The second issue is to find the un-
known parameters of the HMM model which best match the
observations O (Estimation). The last problem is to find out the
most probable sequence of states ¢, regarding the observations
O (Decoding). Further details of the available solutions to
these three problems and many other applications of HMM are
discussed in [17], [69], and [71].

HMM has rarely been used in the literature to present a
dynamical model of a process. Each paper has its own way
to provide sequential data to HMM training algorithms such
as Baum—Welch, known also as the expectation—maximization
method. It is a maximum-likelihood-based method that finds
the parameters of the state transition matrix and the output
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emission matrix from the internal states [15], [70]. Originally,
it seemed that HMM is not as accurate as other models for a
nonlinear system. However, its aggregation with classification
and nonlinear methods can lead to better results [16].

To provide data for training an HMM model for a milling
process, some papers applied the vector quantization (VQ)
method based on the discrete wavelet decomposition of sensor
signals which is briefly described in [3]. Applying the codebook
of the worn or sharp tool, its status is predicted by applying the
current state and emission matrix. There are classification meth-
ods other than VQ that have been used to generate the input/
output sequence for an HMM to model. For example, Fish et al.
[17] suggest a modified classifier for HMM training the status
of the tool in probabilistic terms rather than in binary output,
for example, worn/sharp states.

HMM was also used to correlate the observable changes in
the energy content of different continious wavelet transform
(CWT) scales of vibration signals with tool wear. Vibration
signals are analyzed for some of their details, and for each
detail, the changes in the energy are observed for a certain pe-
riod of time [13]. After proper training, two distinct codebooks
for the sharp/worn tool are developed. Simulations show that
HMM models can successfully monitor and detect the internal
status of a milling tool. Wavelet modulus maxima information
was used in [14] to build a combined HMM model. It was
shown that this feature has meaningful changes according to
tool wear progress and it was applied to provide an accurate
representation of machining condition. Therefore, three models
for different states of the tool, i.e., normal, warning, and failure
condition, were presented. The probability of each sequence of
the data was estimated according to these models and the sensor
signals, and finally, the highest probability is chosen as the real
state of the system.

2) Pros and Cons: HMM has only been applied in a few
studies in the literature (see Table I). Compared to BN, it has the
benefit of being able to reflect the behavior of milling processes
in the form of dynamic models rather than static models. It
facilitates an estimation of the internal states of the system,
needing only system outputs. As an essential issue, finding
the probability distribution structure that fully describes the
sequence of the signal features has been investigated in many
research works. However, since it requires a large amount of
data for training, it seems less appropriate for the modeling
of the best cutting condition determination experiments. For
destructive tests, however, it might be used the same way that
it is used in speech processing and recognition [70], [77], [78]
because of the availability of acoustic emission (AE) sensors
[13], [16]. However, among the reports on the performance
of HMM in milling processes, there are very few predictive
accuracy comparisons with other Al techniques in the field.

E. Clustering and Classification Methods

1) Methodology and Applications: Clustering methods are
meant to keep similar data together in clusters to facilitate a
proper overview of the domain. There are two types of cluster-
ing which are commonly applied in milling process: hard/crisp
clustering and fuzzy clustering. In the former, a datum can only
belong to one cluster, but in fuzzy clustering methods, a datum
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can be a member of several clusters with a certain membership
value. The process of assigning a datum to a cluster or some
clusters depends on its distance, similarity, or connectivity to
other data in that specific cluster [83], [84].

Fuzzy C-means clustering is a famous clustering technique
[85]. It classifies the finite information into several classes
based on some criteria. Given a finite set of data, the algorithm
returns a list of cluster centers and a partition matrix. Each of
its elements is a membership value of a datum that belongs to a
specific cluster [85].

On the other hand, each datum is assigned to only one cluster
in hard/crisp clustering, as in the k-means algorithm, where a
datum is attributed to the cluster with the nearest center. The
center of each cluster is the arithmetic mean of all its members.
Crisp clustering, such as k-means and k-medoids, is applied in
[86] to illustrate the applicability of such methods to modeling
approaches.

The fuzzy C-means clustering method was used in [79] on
wavelet packet features of AE sensor signals and in [81] and
[86] on the energy contents of different scales of CWT of the
force and vibration signals. Power consumption and vertical
force are also clustered in [80]. Since the rms value of each
frequency band in an AE signal changes with different tool
conditions [82], this signal feature is indicative of tool wear and
surface roughness. As reported in [79], four states for the tool
wear, with seven features each, compose the codebook of the
clustering method. Fuzzy clustering on continuous and discrete
wavelet analysis of ac servomotor current signals of the spindle
and feeder was used in [73] for tool breakage detection and tool
wear monitoring.

Classification methods have also been applied for milling
condition detection purposes. From the experimental knowl-
edge, Elbestawi et al. [87] suppose five different classes for
feature patterns of sensor signals, applying this knowledge with
linear discrimination classification techniques.

Self-organizing maps (SOMs) can be considered as another
clustering technique to reduce the dimensionality of the data.
The new dimension depends on how the new sets of vectors
are ordered. For example, for 2-D SOM, the code vectors are
ordered in 2-D and referred to by a code vector index. To train
the SOM, each training sample of the high-dimensional space
is mapped to its nearest code vector member and hence belongs
to the corresponding class. Then, the code vector is updated by
moving toward the training vector. Therefore, in the learning
procedure, all code vectors move toward the training vector
depending on the iteration number and distance from the vector
under which the last training vector was classified. SOM was
used in [16] to reduce the dimension of the feature space of
the time—frequency blueprint of time windowed signals. It was
also applied as a part of the rule generation procedure in [82] in
combination with a dynamic fuzzy regression modeling system.

2) Pros and Cons: The clustering of the available data of
the process will lead to the generalization of the model as the
clusters are easier to associate with the tool status than were
the pure signals (see Table V). This issue mostly appears when
there are different cutters involved. In addition, there are many
uninvestigated and unclassified features to be studied, which
leaves space for more research. Among them, time—frequency
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analysis features can be mentioned. These features can be
applied in a more methodical way when clustering methods are
involved. Moreover, there are quite a number of classification
methods that have not been applied to the field of intelligent
machining. Also, the combination of clustering methods with
Al techniques remains to be investigated more extensively in
the field so that the contribution of clustering methods can be
clarified. Clustering methods can also be used to investigate
the similarities between different signal features. Finding these
similarities, other Al techniques can be applied to map different
classes to the different respective conditions of the tool and
milling process. However, the number of classes and the struc-
ture of the classification method may determine its accuracy,
and they are open issues for further investigations.

III. DISCUSSION

The survey presented in the previous sections shows that
there is no lack of good ideas in modeling milling processes.
However, there are some open issues that need to be addressed
in future investigations. One of these issues is that the predic-
tions resulting from these approaches must be accurate and re-
peatable. It has been shown experimentally and mathematically
that Al-based methods are more accurate than other classical
methods. It is also clear that each one of these state-of-the-
art modeling, inference, and decision-making methods is able
to predict surface roughness and tool wear in a nonintrusive
manner. As such, any theoretical development in one of these
methods results in a more informative, accurate, and repeatable
reference model. However, from the industrial point of view,
any approach developed must be easy to implement. The learn-
ing speed and simplicity of the model structure dealing with
changes in the system are the challenges for the future. One of
the beneficial characteristics that a future research in this field
has to address is an insightful comparison between methods.
The majority of the available papers concern only one method
and its capabilities of dealing with the process. Referring to the
different sections of this paper, it is obvious that, although many
Al techniques have been utilized for tool wear detection or
modeling surface roughness, there are many methods yet to be
investigated. For example, not all of these Al techniques have
been studied as to finding the most appropriate configuration,
algorithm, and structure. Many of the proposed methods have
yet to be tuned in some of their parameters, and they vary
from one experiment design to another. Moreover, there are no
dynamic and intelligent methods in the field that can be applied
without unnecessary initializations. Other methods, such as
BN [8], [9] and Petri nets [41], have been applied to tool status
and surface-finishing predictions. However, the justification of
event-based models needs more study, and many advanced and
intelligent event-based models such as that in [88] have not yet
been investigated in this field.

To summarize the discussion, there are some obvious re-
search gaps in the field that need to be addressed.

1) One challenging area is to take better and more de-
scriptive features out of the collected signals using more
suitable signal processing schemes and feature selection
methods.

2)

3)

4)

5)

6)

7)

8)

9)
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Unavoidable frequency drift of the signals and changes in
their shape during their lifetime due to mechanical param-
eter imperfections have not been extensively investigated.
These frequency drifts are different from those due to tool
aging.

Changes in machine dynamics during long-term running,
which can lead to undesirable inaccuracy of the reference
system model, are another issue to be focused on in
monitoring systems.

The lack of proper investigation of the data preprocess-
ing methods is also obvious in the field of machining.
For example, wavelet analysis and other state-of-the-art
pattern decomposition and extraction methods have only
just recently been utilized for milling process signals, but
they seem to be appropriate approaches for the extraction
of the different properties of the signal.

There are not many reports on the interpolation of the
results from one type of cutter to another. Therefore,
no matter how the cutters differ in their diameter or
edge-preparation methods, for every new cutter, the mod-
eling must be repeated, which is expensive and time
consuming.

The effect of some production parameters of the cutters,
such as edge-preparation methods, grinding quality, ini-
tial surface roughness on the cutting edge, geometrical
cutting-edge design angles, and various coatings, has not
yet been investigated.

There is apparent lack of investigation of the use of
clustering, classification, and grouping methods in this
field. One possible reason is the direct use of cutting
conditions and signal features instead of clustering data
in Al-based models.

In the literature, there are very few papers that pay
attention to the changes in the shape of the signal due
to tool degradation, aging, or tool wear. These methods
do not quantitatively investigate such changes. Mostly,
they are limited to the use of frequency- and time-domain
features and not the cross-correlation of the shape of the
signals with corresponding tool edge phenomena.

There are many Al techniques that have not been used
in the field of modeling of machining processes. As an
example, syntactic classification and modeling can be
considered. This is a knowledge-based pattern recogni-
tion method. To model a sophisticated pattern, it provides
more simple patterns, called primitives, which are com-
posed to make that complex one. Therefore, a hierarchical
model is presented for any similar pattern, or simply, any
major pattern is decomposed to appropriate primitives
as its building blocks [89]. It has been used in some
articles to find the prespecified shapes in the signals [90].
This method was extensively used in speech processing
[91] and can be used for fault diagnostic and automatic
failure sign distillation for tool condition detection. An-
other example could be the extreme learning method [92].
This method has proved to be applicable in online se-
quential learning. Similarly, other similar state-of-the-art
techniques that have not yet been used in the field can be
applied.
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TABLE VI

ADVANTAGES AND DISADVANTAGES OF THE Al METHODS
Method Advantages Disadvantages Target variable Preprocessing methods Signals
Mathematical A less costly method, detailed Can’t deal with surface and Ra™, tool breakage, Low pass filter, Hilbert transform, finite Feed-motor current,
modeling and analysis, many simulation runs tool imperfections, Incapable of force, chip formation, clement techniques, grey relational anal- force, vibration
numerical  difference before actual running of the sys- real-time simulation and analy- temperature, strain, crack ysis
equation solution tem sis formation, surface profile
methods

Statistical and experi-
mental evaluation

Outline of similarities and dif-
ferences, easy to visualize

No mathematical model, never
can be used on-line

Flank wear, tool wear,
tool breakage, Ra, sur-
face profile, force

FFT™, time frequency analysis, power
spectrum, NM* | Grey relational analy-
sis, Taguchi design procedure, wavelet
packets, discrete wavelet transform,
force dynamical model

AE™, force, temperature,
tool wear, power, vibra-
tion

Multiple regression

Predetermined structure, not ac-
curate enough

Simple to be used, simple
and few computations, trained
model can be used on-line

Tool wear, Ra

Comparison to ANN™, wavelet trans-
form

Force, cutting conditions

Genetic algorithm and
genetic programming

Optimization of the model, Sug-
gesting new models

Time consuming, is not yet used
for on-line machining, needs a
pre-determined model to opti-
mize

Tool wear, Ra

Genetic programming, fuzzification

Vibration, cutting force,
feed force

Particle swarm  opti-
mization (PSO)

Parameter optimization of the
model, can be combined with
other methods, simple to imple-
ment

Needs a predetermined model,
slow, cannot be used on-line

Tool life, Ra

Combined with SVM™, ANN

Flank wear

Bayesian networks and
HMMs™*

Presents hidden relations, visu-
ally representable, BNN™ is su-
perior to other statistical meth-
ods, good for generalization

Needs a lot of data, slow train-
ing, HMM is not reported accu-
rate

Failure detection, work-
piece hardness, Ra, tool
wcar

Feature extraction, k-means discretizer,
TAN™ algorithm, support vector ma-
chine, discretc wavelet transform, mod-
ulus maxima wavelet, DFT™, spectral
feature extraction, classification

Spindle power, vector
quantized vibration, AE,
force, vibration, torque,
current

Fuzzy-logic and neural
network based methods

Good for nonlinear models,
well-established theory, high
accuracy, fast in evaluation,
casy to generalize

Overtraining problems, slow in
training, ANN is not easily gen-
eralized to other cutters, fixed
structure of model

Tool wear, flank wear,
surface profile, force fea-
tures, tool failure, Ra,
tool condition monitoring

Fuzzification, Taguchi’s Signal/sensor
selection, wavelet analysis, sensor fu-
sion, hybrid Taguchi-genetic learning
algorithm, PSO, fractal gecometry ap-
proach, FFT, normalization, compared to
MRM™, FFT™* features, DFT

Flank wear, AE, force,
vibration, power, spin-
dle acceleration, feed cur-
rent, spindle current, vi-
bration, proximity

Discrete-event  based
intelligent methods

Can be combined with other
AT*, visually representable,
ncw in machining ficld

Needs clear justification for
event-based model, needs rea-
sons for cvents, vague dealing
with fixed parameters, defini-
tion of states of DEVS™

Ra

Fuzzification

Force, vibration, AE,
spindle speed, feed rate

Clustering methods

Easy to generalize, lowers the
data dimensions, can be com-
bined with Al techniques, new

Low accuracy, some of the tech-
niques have fixed and huge
structure, slow training

in the machining ficld, casy
to correlate the distinct classes
with cutting phenomena

Tool wear, Flank wear,
Ra, Tool breakage

HMM modeling, Signal feature extrac-
tion, Wavelet packet transform, Support
vecetor regression, PSO, Low pass filter

Force, power, displace-
ment power, AE, vibra-
tion

* See the Abbreviation Appendix

10) In addition, many variable structure Al techniques, such
as that in [53], have not been studied yet. They might
replace the fixed structure of many of the mentioned
structures and facilitate the generalization of those meth-
ods. The fixed structures of the available methods prevent
them from being easily generalized and from being used
online.

11) Some papers provide a solution for one specific experi-

mental design in such a way that the results cannot easily

be generalized to other design issues and conditions. As a

result, many experiments are needed for modeling a new

experimental design. The ability of the models to remain
descriptive and useful in different scenarios is a critical
issue.

Monitoring and prediction cover only one part of the mis-

sion. The resulting reference models ought to be applied

in forming model-based controllers to adjust the cutting
parameters according to the demands of the end user.

13) The overall structures for generalizable monitoring and
prediction system using the available modeling methods
have not been considered in the field. This would seem
to be a big gap needing to be covered in future studies.
To cover this area, the entire structure of the monitoring
system has to be investigated for the best techniques to
be applied in each part and their interconnectivity and
reasonable places in the structure.

12)

An overview on the available techniques and their application
in milling process modeling can be found in Table VI. It

summarizes the works mentioned in this paper and presents
their advantages and disadvantages. Advances in Al, dynamic
structure modeling techniques, and clustering methods as well
as data preprocessing schemes should be considered to affect
the future of the investigations and provide better solutions for
industry, such as better quality and more productivity.

IV. CONCLUSION

This paper has investigated several commonly used methods
for surface-finishing quality modeling of high speed milling
processes. It covered many Al methods as well as classical
ones. The simpler methods are typically used for the simple
presentation of the behavior of the process while Al-based
methods are applied for modeling, online monitoring, and pre-
dictive control. Based on these two categories, we investigated
the state-of-the-art methods which are commonly used for both
modeling and control. Since the nature of the process is multi-
variable and nonlinear, most of these modeling approaches are
found to be able to model such systems. BNs, fuzzy Petri nets,
HMMs, and dynamic FNNs have proved to be the most suit-
able modeling techniques. On the other hand, there are many
research gaps that need to be addressed in this field. Moreover,
there are very few research reports on the tool-production
methods; tool attributes; and their effects and correlations with
the sensor signals, surface roughness, and tool degradation.
Also, there is an obvious research gap as to presenting a single
general model for milling processes where the available models



1078

are not expandable to other cutters (even those with similar
attributes). Before obtaining a general descriptive model for
milling processes, the field keeps being updated by new ideas
based on fresh Al techniques and different features of the sensor
signals.

In this paper, many of the available modeling methods were
discussed. Their benefits and disadvantages were presented, and
many research gaps in this field were identified. This survey
paper will facilitate the selection of an appropriate modeling
technique for different research purposes concerning milling
processes. Also, some weaknesses from the research point of
view in the field of machining technology were made clear.
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