Econometria Applicata per l'Impresa 22 Settembre 2009

Nome e Cognome: Matricola:

Esercizio 1

È stata condotta un'analisi sul salario medio degli studenti laureati in Economia provenienti da diverse Università europee. Tali Università sono classificate secondo un opportuno criterio di prestigio o ranking. Un'ateneo prestigioso avrà un indice rank basso. Inoltre gli studenti per entrare nelle varie Università hanno dovuto sostenere un esame di ammissione il cui voto medio è espresso dalla variabile $voto_ammissione$.

Sono state raccolte le seguenti variabili:

- *salario*, che rappresenta il salario medio percepito da un laureato dell'Università *i*-esima;
- voto_medio che contiene il voto medio dei laureati in una certa Università;
- voto_ammissione che descrive il voto medio con cui gli studenti sono stati ammessi;
- libri che contiene il numero di libri posseduti dalla biblioteca in migliaia;
- spesa_iscr descrive l'importo delle tasse d'iscrizione;
- rank indica la graduatoria di merito dell'Università, più basso è l'indice migliore è l'Ateneo.

Si consideri il seguente modello

```
log(salario) = \beta_0 + \beta_1voto_medio + \beta_2voto_ammissione + \beta_3 log(libri)
+\beta_4 log(spesa_iscr) + \beta_5rank + \epsilon,
```

le cui stime OLS sono riportate di seguito:

OLS, usando le osservazioni 1-156 (n = 136) Variabile dipendente: l_salario Errori standard robusti rispetto all'eteroschedasticita', variante HC1

	coeff	errore std.	rapp. t	p-value
const	8.34323	0.521461	16.00	1.62e-032
voto_medio	0.00469647	0.00457858	1.026	0.3069
voto_ammissione	0.247524	0.0906370	2.731	0.0072
l_libri	0.0949932	0.0276554	3.435	0.0008
l_spesa_iscr	0.0375539	0.0333328	1.127	0.2620
rank	-0.00332459	0.000308133	-10.79	8.95e-020

E.S. della regressione 0.112412

Domande:

1. Sulla base dei risultati ottenuti al punto precedente, si dica se è ragionevole pensare che il parametro β_5 sia negativo ad un livello di significatività del 5% (Si ricordi che P(t > 1.96) = 0.025 e che P(t < -1.64) = 0.05).

Risposta: La statistica t osservata risulta essere -10.79 se H_0 : $\beta_5 = 0$. L'alternativa in questo caso risulta H_1 : $\beta_5 < 0$ per cui la regione di accettazione, se $\alpha = 0.05$ diventa la semiretta $[-1, 64, +\infty]$. Si nota quindi che t^{oss} cade nella regione per cui è più plausibile H_1 .

2. Si proponga un sistema di ipotesi (nulla ed alternativa) per verificare se la variabile *voto_medio* ha un effetto doppio rispetto alla variabile *voto_ammissione*, nello spiegare le variazioni della dipendente.

Risposta: Il sistema di ipotesi in questo caso risulta essere H_0 : $\beta_1 = 2\beta_2$ contro l'alternativa che H_1 : $\beta_1 \neq 2\beta_2$. La statistica test adatta per verificare questo sistema di ipotesi è di tipo F.

3. Si costruisca un opportuno test per verificare se l'incremento delle tasse di iscrizione del 3% induce un incremento della variabile dipendente inferiore allo 0.5%. Si calcoli la statistica t opportuna e si dica se si accetta l'ipotesi nulla oppure l'alternativa.

Risposta: Vale che

$$\frac{\Delta salario}{salario} = \beta_4 \frac{\Delta spesa_iscr}{spesa_iscr}.$$

Un incremento delle tasse di iscrizione del 3% induce quindi un'incremento del salario pari a $3\beta_4$ %. Ci si chiede quindi se H_0 : $3\beta_4 = 0.5$ contro l'alternativa che H_0 : $3\beta_4 < 0.5$ e quindi in maniera equivalente H_0 :

 $\beta_4=0.5/3=1/6$ contro l'alternativa che $H_0: \beta_4<0.5/3=1/6$. La $t^{oss}=-3.87$ per cui si accetta l'alternativa ad un livello del 5 o del 10% e quindi possiamo affermare che un incremento delle tasse d'iscrizione del 3% induce un aumento del salario che comunque risulta inferiore dello 0.5%.

4. Si definisca brevemente il concetto di stazionarietà di una serie storica. Si enuncino brevemente le conseguenze, nell'ambito del modello di regressione, della mancanza di questa caratteristica nei dati. Risposta:

Esercizio 2

Il modello di sulla persistenza delle abitudini di un consumatore proposto da Brown suggerisce che il consumo permanente di un individuo è legato al reddito. In particolare viene proposto un modello ad aggiustamento parziale del tipo

$$C_t^* = \beta_0 + \beta_1 W_t$$

$$C_t = C_{t-1} + \lambda (C_{t-1}^* - C_{t-1}) + u_t$$

in cui C_t^* è il livello di consumo ottimale (non osservabile), C_t è il consumo effettivo di un individuo mentre W_t è il reddito osservato. I dati sono stati osservati a cadenza mensile e sono stazionari.

5. Si scriva l'espressione per il modello in forma ridotta.

Risposta: Sostiutendo la prima equazione nella seconda si ottiene che

$$C_{t} = C_{t-1} + \lambda [\beta_{0} + \beta_{1}W_{t-1} - C_{t-1}q] + u_{t}$$

$$= \lambda \beta_{0} + (1 - \lambda)C_{t-1} + \lambda \beta_{1}W_{t-1} + u_{t}$$

$$= \gamma_{0} + \gamma_{1}C_{t-1} + \gamma_{2}W_{t-1} + u_{t}$$

6. Si derivi uno stimatore per i parametri strutturali del modello, e cioé β_0 , β_1 e λ . In particolare si interpreti il coefficiente β_1 .

Risposta: Una volta calcolati gli stimatori OLS per $\gamma_i,\ i=0,1,2$ possibile ottenere gli stimatori dei parametri strutturali del modello. In particolare vale che

$$\hat{\lambda} = 1 - \hat{\gamma}_1$$

$$\hat{\beta}_0 = \frac{\hat{\gamma}_0}{\hat{\lambda}}$$

$$\hat{\beta}_1 = \frac{\hat{\gamma}_2}{\hat{\lambda}}$$

7. Si consideri ora il modello autoregressivo

$$C_t = \alpha_0 + \alpha_1 C_{t-1} + \alpha_2 C_{t-2} + \epsilon_t,$$

le cui stime sono riportate di seguito

OLS, usando le osservazioni 1970:03-2007:02 (T = 444) Variabile dipendente: C

	coefficiente	errore std.	rapporto t	p-value
const	4.85717	0.839246	5.788	1.36e-08
C_1	0.810333	0.0479101	16.91	7.97e-050
C_2	0.0239077	0.0480172	0.4979	0.6188

E.S. della regressione 0.973413

Si verifichi tramite un opportuno test se il coefficiente autoregressivo del secondo ordine risulta pari a 0.02 (contro l'alternativa bilaterale) ad un livello di significatività del 5%. (Si ricordi che P(t>1.96)=0.025 e che P(t<-1.64)=0.05).

Risposta:

8. Si definiscano gli <u>stimatori</u> per le previsioni dinamiche fino a tre passi in avanti.

Risposta: Si noti dall'output del modello che l'ultima osservazione del campione è T=2007:2. Lo stimatore ad un passo in avanti risulta

$$C_{2007:3|2007:2} = \hat{\alpha}_0 + \hat{\alpha}_1 C_{2007:2} + \hat{\alpha}_2 C_{2007:1}.$$

In particolare si noti che $C_{2007:1}$ e $C_{2007:2}$ sono osservati. Quindi una stima si può facilmente ottenere sostituendo le quantità note nella formula. A 2 passi in avanti invece si ottiene

$$C_{2007:4|2007:2} = \hat{\alpha}_0 + \hat{\alpha}_1 C_{2007:3|2007:2} + \hat{\alpha}_2 C_{2007:2}.$$

In questo caso l'informazione relativa a $C_{2007:3}$ non è nota e quindi viene approssimata con la sua previsione al passo precedente. Infine la previsione a 3 passi in avanti risulta essere

$$C_{2008:1|2007:2} = \hat{\alpha}_0 + \hat{\alpha}_1 C_{2007:4|2007:2} + \hat{\alpha}_2 C_{2007:4|2007:2}.$$