
ENVIRONMENT
PROGRAMMING IN MAS

WITH CArtAgO
Alessandro Ricci

aliCE group at DEIS, Università di Bologna, Cesena
a.ricci@unibo.it

SISMA 2009/2010 - Seminar

mailto:a.ricci@unibo.it
mailto:a.ricci@unibo.it

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

OUTLINE

• Environment Programming in (Programming) MAS
- the road to artifacts and CArtAgO

• A&A model and CArtAgO platform
- programming model and technology

- integration with existing agent languages / platforms

• Ongoing work & available projects/theses

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

PART I
ENVIRONMENT PROGRAMMING

IN (PROGRAMMING) MAS
- The ROAD to CArtAgO -

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

THE ROLE OF ENVIRONMENT IN MAS

ENVIRONMENT

AGENT(s)

actionspercepts

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

THE ROLE OF ENVIRONMENT IN MAS

• “Traditional” (D)AI / agent / MAS view
- the target of agent actions and source of agents

perception

- something out of MAS design / engineering

ENVIRONMENT

AGENT(s)

actionspercepts

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

THE ROLE OF ENVIRONMENT IN MAS

• “Traditional” (D)AI / agent / MAS view
- the target of agent actions and source of agents

perception

- something out of MAS design / engineering

• New perspective in recent works
- environment as first-class aspect in engineering MAS

• mediating interaction among agents

‣ encapsulating functionalities for managing such interactions

- coordination, organisation, security,...

ENVIRONMENT

AGENT(s)

actionspercepts

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

FROM MAS TO MAS PROGRAMMING

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

FROM MAS TO MAS PROGRAMMING

• Specific perspective on “MAS programming” adopted here
- agents (and MAS) as a paradigm to design and program

software systems

• computer programming perspective

- computational models, languages,...

• software engineering perspective

- architectures, methodologies, specification, verification,...

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

FROM MAS TO MAS PROGRAMMING

• Specific perspective on “MAS programming” adopted here
- agents (and MAS) as a paradigm to design and program

software systems

• computer programming perspective

- computational models, languages,...

• software engineering perspective

- architectures, methodologies, specification, verification,...

• Underlying objective in the long term
- using agent-orientation as general-purpose post-OO paradigm

for computer programming

• concurrent / multi-core / distributed programming in particular

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

THE ROLE OF SW ENVIRONMENT
IN MAS PROGRAMMING (SO FAR)

actions

percepts

SIMULATED

WORLD

OR

INTERFACE

OR

WRAPPER TO

EXISTING

TECHNOLOGY

EXTERNAL

WORLD
(PHYSICAL OR

COMPUTATIONAL)

MAS ENVIRONMENT

REAL WORLD
(PHYSICAL OR

COMPUTATIONAL)

mimicking

Example:

JAVA

PLATFORMAGENTS

MAS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ENVIRONMENT MODEL
IN MAS PROGRAMMING

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ENVIRONMENT MODEL
IN MAS PROGRAMMING

• Environment as monolithic / centralised block
- defining agent (external) actions

• typically a static list of actions, shared by all the agents

- generator of percepts

• establishing which percepts for which agents

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ENVIRONMENT MODEL
IN MAS PROGRAMMING

• Environment as monolithic / centralised block
- defining agent (external) actions

• typically a static list of actions, shared by all the agents

- generator of percepts

• establishing which percepts for which agents

• No specific programming model for defining
structure and behaviour
- including concurrency management

- relying on lower-level language feature

• e.g. Java

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ENVIRONMENT MODEL
IN MAS PROGRAMMING

• Environment as monolithic / centralised block
- defining agent (external) actions

• typically a static list of actions, shared by all the agents

- generator of percepts

• establishing which percepts for which agents

• No specific programming model for defining
structure and behaviour
- including concurrency management

- relying on lower-level language feature

• e.g. Java

• Typically enough for building simulated world

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

JASON EXAMPLE
- GOLD-MINER DEMO -

public class MiningPlanet extends jason.environment.Environment {
 ...
 public void init(String[] args) {...}

 public boolean executeAction(String ag, Structure action) {
 boolean result = false;
 int agId = getAgIdBasedOnName(ag);
 if (action.equals(up)) {
 result = model.move(Move.UP, agId);
 } else if (action.equals(down)) {
 result = model.move(Move.DOWN, agId);
 } else if (action.equals(right)) {
 ...
 }
 return result;
 }

 private void updateAgPercept(String agName, int ag) {clearPercepts(agName);
 // its location
 Location l = model.getAgPos(ag);
 addPercept(agName, Literal.parseLiteral("pos(" + l.x + "," + l.y + ")"));
 if (model.isCarryingGold(ag)) {
 addPercept(agName, Literal.parseLiteral("carrying_gold"));
 }
 // what's around
 updateAgPercept(agName, l.x - 1, l.y - 1);
 updateAgPercept(agName, l.x - 1, l.y);
 ...
 }
}

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ENRICHING THE VIEW:
 WORK ENVIRONMENTS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ENRICHING THE VIEW:
 WORK ENVIRONMENTS

• Perspective: designing worlds for agents’ use & work
- designing good and effective place for agents to live and work in

• environment as the context of agent activities inside the MAS

- beyond simulated worlds

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ENRICHING THE VIEW:
 WORK ENVIRONMENTS

• Perspective: designing worlds for agents’ use & work
- designing good and effective place for agents to live and work in

• environment as the context of agent activities inside the MAS

- beyond simulated worlds

‣ “Work environment” notion
- that part of the MAS that is designed and programmed so as to ease

agent activities and work

• first-class entity of the agent world

• cooperation, coordination, organisation, security... functionalities

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ENRICHING THE VIEW:
 WORK ENVIRONMENTS

• Perspective: designing worlds for agents’ use & work
- designing good and effective place for agents to live and work in

• environment as the context of agent activities inside the MAS

- beyond simulated worlds

‣ “Work environment” notion
- that part of the MAS that is designed and programmed so as to ease

agent activities and work

• first-class entity of the agent world

• cooperation, coordination, organisation, security... functionalities

‣ Work environment as part of MAS design and programming
- abstractions? computational models? languages? platforms?

methodologies?

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

A HUMAN WORK ENVIRONMENT
(~BAKERY)

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

BACKGROUND LITERATURE
• In human science

- Activity Theory, Distributed Cognition

• importance of the environment, mediation, interaction for
human activity development

- CSCW and HCI

• importance of artifacts and tools for coordination and
collaboration in human work

- Active Externalism / extended mind (Clark, Chalmer)

• environment’s obejcts role in aiding cognitive processes

• Distributed Artificial Intelligence
- Agre & Horswil work ("Lifeworld"...)

- Kirsch ("The Intelligent Use of Space"...)

- ...

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DESIDERATA FOR A WORK ENV.
PROGRAMMING MODEL (1/2)

?

actions

percepts

AGENTS

MAS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DESIDERATA FOR A WORK ENV.
PROGRAMMING MODEL (1/2)

• Abstraction
- keeping the agent abstraction level

• e.g. no agents sharing and calling OO objects

- effective programming models

• for controllable and observable computational entities ?

actions

percepts

AGENTS

MAS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DESIDERATA FOR A WORK ENV.
PROGRAMMING MODEL (1/2)

• Abstraction
- keeping the agent abstraction level

• e.g. no agents sharing and calling OO objects

- effective programming models

• for controllable and observable computational entities

• Modularity
- away from the monolithic and centralised view

?

actions

percepts

AGENTS

MAS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DESIDERATA FOR A WORK ENV.
PROGRAMMING MODEL (1/2)

• Abstraction
- keeping the agent abstraction level

• e.g. no agents sharing and calling OO objects

- effective programming models

• for controllable and observable computational entities

• Modularity
- away from the monolithic and centralised view

• Orthogonality
- wrt agent models, architectures, platforms

- support for heterogeneous systems

?

actions

percepts

AGENTS

MAS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DESIDERATA FOR A WORK ENV.
PROGRAMMING MODEL (2/2)

?

actions

percepts

AGENTS

MAS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DESIDERATA FOR A WORK ENV.
PROGRAMMING MODEL (2/2)

• (Dynamic) extendibility
- dynamic construction, replacement, extension of

environment parts

- support for open systems ?

actions

percepts

AGENTS

MAS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DESIDERATA FOR A WORK ENV.
PROGRAMMING MODEL (2/2)

• (Dynamic) extendibility
- dynamic construction, replacement, extension of

environment parts

- support for open systems

• Reusability
- reuse of environment parts in different

application contexts / domains

?

actions

percepts

AGENTS

MAS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

PART II
A&A MODEL and CArtAgO

PROGRAMMING MODEL & PLATFORM

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

AGENTS & ARTIFACTS (A&A) MODEL:
BASIC IDEA IN A PICTURE

WHITEBOARD
artifact

ARCHIVE
artifact

COM. CHANNEL
artifact

TASK SCHEDULER
artifact

RESOURCE
artifact

CLOCK
artifact

BAKERY

workspace

agents can join
dynamically the workspace

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

A&A BASIC CONCEPTS
• Agents

- autonomous, goal-oriented pro-active entities

- create and co-use artifacts for supporting their activities

• besides direct communication

• Artifacts
- non-autonomous, function-oriented entities

• controllable and observable (from the agent viewpoint)

- modelling the tools and resources used by agents

• designed by MAS programmers

• Workspaces
- grouping agents & artifacts

- defining the topology of the computational environment

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ARTIFACTS
ARE IN THE
MAINSTREAM
...not really, actually...

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

agent

agent
agent

ARTIFACTS
ARE IN THE
MAINSTREAM
...not really, actually...

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

agent

agent
agent

an artifact

artifacts

ARTIFACTS
ARE IN THE
MAINSTREAM
...not really, actually...

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

WORK ENVIRONMENT IN A&A

?

actions

percepts

AGENTS

MAS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

WORK ENVIRONMENT IN A&A
MAS

AGENTS

wsp

wsp

• Abstraction

- encapsulation

- information hiding

• Modularization

- extendibility

- reuse

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

WORK ENVIRONMENT IN A&A

EXTERNAL

WORLD
(PHYSICAL OR

COMPUTATIONAL)

HUMAN

USERS

MAS

AGENTS

wsp

wsp

gui

printer

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

WORK ENVIRONMENT IN A&A
MAS

AGENTS

wsp

wsp

blackboard

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

WORK ENVIRONMENT IN A&A
MAS

AGENTS

GUI

wsp

wsp

personal agenda (ext. memory)

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ARTIFACT COMPUTATIONAL MODEL
- “COFFEE MACHINE METAPHOR” -

OpControlName(Params)

OpControlName(Params)

...

Value

ARTIFACT

MANUAL

OBSERVABLE

EVENTS

GENERATION
<EvName,Params>

OPERATION X

LINK

INTERFACE

OPERATION Y

OBSERVABLE

PROPERTIES

USAGE

INTERFACE

ObsPropName

ValueObsPropName

......

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

INTERACTION MODEL:
USE & OBSERVATION

myOpControl(X)

ValueObsPropName

ValueObsPropName

......

AGENT

use
myOpControl(x)

• use action
- acting on op. controls to trigger op execution

- synchronisation point with artifact time/state

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

INTERACTION MODEL:
USE & OBSERVATION

myOpControl(X)

ValueObsPropName

ValueObsPropName

......

AGENT
OPERATION EXECUTION

• artifact operation execution
- asynchronous wrt agent

- possibly a process structured in multiple atomic steps

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

myOpControl(X)

ValueObsPropName

AGENT

EVENTS
OBS PROPERTIES

CHANGE

INTERACTION MODEL:
USE & OBSERVATION

• observable effects
- observable events & changes in obs property

- perceived by agents either as (external) events

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

myOpControl(X)

ValuePName

AGENT

observe

property
(+PName,?Value)

• observeProperty action
- value of an obs. property as action feedback

- no interaction

INTERACTION MODEL:
USE & OBSERVATION

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

INTERACTION MODEL:
USE & OBSERVATION

myOpControl(X)

ValueObsPropName

ValueObsPropName

......

AGENT

focus

Belief base

(or alike)

ObsPropName(Value).
ObsPropName(Value).
...

• focus / stopFocus action
- start / stop a continuous observation of an artifact

• possibly specifying filters

- observable properties mapped into percepts

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

myOpControl(X)

ValueObsPropName

Value

AGENT

USE

Belief base

(or alike)

ObsPropName(Value).
ObsPropName(Value).
...

ObsPropName

INTERACTION MODEL:
USE & OBSERVATION

• continuous observation
- observable events (=> agent events)

- observable properties (=> belief base update)

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ARTIFACT COMPUTATIONAL MODEL
HIGHLIGHTS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ARTIFACT COMPUTATIONAL MODEL
HIGHLIGHTS

• Artifacts as controllable and observable devices
- operation execution as a controllable process

• possibly long-term, articulated

- two observable levels

• properties, events

- transparent management of concurrency issues

• synchronisation, mutual-exclusion, etc

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ARTIFACT COMPUTATIONAL MODEL
HIGHLIGHTS

• Artifacts as controllable and observable devices
- operation execution as a controllable process

• possibly long-term, articulated

- two observable levels

• properties, events

- transparent management of concurrency issues

• synchronisation, mutual-exclusion, etc

• Composability through linking
- also across workspaces

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ARTIFACT COMPUTATIONAL MODEL
HIGHLIGHTS

• Artifacts as controllable and observable devices
- operation execution as a controllable process

• possibly long-term, articulated

- two observable levels

• properties, events

- transparent management of concurrency issues

• synchronisation, mutual-exclusion, etc

• Composability through linking
- also across workspaces

• Cognitive use of artifacts through the manual
- function description, operating instructions

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

EXAMPLES OF ARTIFACTS

• Common tools and resources in MAS
• blackboards, tuple centres, synchronisers,...

• maps, calendars, shared agenda,...

• data-base, shared knowledge base,...

• hardware res. wrappers

• GUI artifacts

• Web Services

• ...

- principled way to design / program / use them inside
MAS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

CArtAgO

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

CArtAgO
• CArtAgO computational model + platform / infrastructure

- concrete computational & programming model for artifacts

• API available in Java

• to be integrated with agent programming platforms

- runtime environment for executing (possibly distributed) artifact-
based environments

- Java-based programming model for defining artifacts

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

CArtAgO
• CArtAgO computational model + platform / infrastructure

- concrete computational & programming model for artifacts

• API available in Java

• to be integrated with agent programming platforms

- runtime environment for executing (possibly distributed) artifact-
based environments

- Java-based programming model for defining artifacts

• Distributed and open MAS
- workspaces distributed on Internet nodes

• agents can join and work in multiple workspace at a time

- Role-Based Access Control (RBAC) security model

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

CArtAgO
• CArtAgO computational model + platform / infrastructure

- concrete computational & programming model for artifacts

• API available in Java

• to be integrated with agent programming platforms

- runtime environment for executing (possibly distributed) artifact-
based environments

- Java-based programming model for defining artifacts

• Distributed and open MAS
- workspaces distributed on Internet nodes

• agents can join and work in multiple workspace at a time

- Role-Based Access Control (RBAC) security model

• Open-source technology
- available at http://cartago.sourceforge.net

http://cartago.sourceforge.net
http://cartago.sourceforge.net

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

...AND FRIENDS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

...AND FRIENDS

• Integration with existing agent languages & platforms
- available bridges: Jason, Jadex, simpA

• ongoing: 2APL

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

...AND FRIENDS

• Integration with existing agent languages & platforms
- available bridges: Jason, Jadex, simpA

• ongoing: 2APL

• Outcome
- developing open and heterogenous MAS

- different perspective on interoperability

• sharing and working in a common work environment

• common data-model based on Object-Oriented or XML-based data structures

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

CArtAgO ARCHITECTURE

Agent Framworks /
Middlewares

CARTAGO

M
A

S

A
p
p
lic

a
ti
o
n

Artifact-based working environmentsApplication Agents

E
x
e
c
u
ti
o
n

P
la

tf
o
rm

MAS
Middleware

Layer

Application
Specific
Logic

workflow
engine

blackboard

shared
kb

map

Any

OS

JVM

OS

JVM

workspaces

artifacts

agent
bodies

JASON

3APL

JADE

workspaces

JADEX

...

JASON

shared

task

scheduler

shared

KB

blackboard

map

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DEFINING ARTIFACTS IN CArtAgO

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DEFINING ARTIFACTS IN CArtAgO

• Single class extending alice.cartago.Artifact

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DEFINING ARTIFACTS IN CArtAgO

• Single class extending alice.cartago.Artifact

• Specifying the operations
- atomic: @OPERATION methods

• name+params -> usage interface control

• no return value

- structured

• linear composition of atomic operation steps composed
dynamically

- init operation

• automatically executed when the artifact is created

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DEFINING ARTIFACTS IN CArtAgO

• Single class extending alice.cartago.Artifact

• Specifying the operations
- atomic: @OPERATION methods

• name+params -> usage interface control

• no return value

- structured

• linear composition of atomic operation steps composed
dynamically

- init operation

• automatically executed when the artifact is created

• Specifying artifact state
- instance fields of the class

Environment Programming in CArtAgOSISMA 2009/2010 Seminar, Dec. 2009

SIMPLE EXAMPLE #1

public class Count extends Artifact {
 int count;

 @OPERATION void init(){
 count = 0;
 }

 @OPERATION void inc(){
 count++;
 }
}

inc
USAGE INTERFACE:

inc: [op_exec_completed]

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ARTIFACT OBSERVABLE EVENTS

• Observable events
- generated by signal primitive

- represented as labelled tuples

• event_name(Arg0,Arg1,...)

• Automatically made observable to...
- the agent who executed the operation

- all the agents observing the artifact

Environment Programming in CArtAgOSISMA 2009/2010 Seminar, Dec. 2009

SIMPLE EXAMPLE #2

public class Count extends Artifact {
 int count;

 @OPERATION void init(){
 count = 0;
 }

 @OPERATION void inc(){
 count++;
 signal("new_count_value", count);
 }
}

inc

USAGE INTERFACE:

inc: [new_count_value,

 op_exec_completed]

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ARTIFACT OBSERVABLE PROPERTIES

• Observable properties
- declared by defineObsProperty primitive

• characterized by a property name and a property value

- internal primitives to read / update property value

• updateObsProperty

• getObsProperty

• Automatically made observable to all the agents
observing the artifact

Environment Programming in CArtAgOSISMA 2009/2010 Seminar, Dec. 2009

SIMPLE EXAMPLE #3

public class Count extends Artifact {

 @OPERATION void init(){
 defineObsProperty("count", 0);
 }

 @OPERATION void inc(){
 int count = getObsProperty("count");
 updateObsProperty("count", count + 1);
 }
}

inc

count 5
OBSERVABLE PROPERTIES:

count: int

USAGE INTERFACE:

inc: [op_exec_completed]

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

OPERATION CONTROLS WITH
GUARDS

• Specifying guards in operation controls
- guards as boolean functions defining a condition over artifact

(observable) state

- the operation control is enabled if the condition is evaluated to true

• otherwise the operation control is disabled

• use actions acting upon disabled controls are suspended
- blocking behaviour for the use action

 @OPERATION(guard=”myGuard”) void myOp(Param p){
...

 }

 @GUARD boolean myGuard(Param p){
 /* evaluating the condition */
 }

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

EXAMPLE: BOUNDED-BUFFER FOR P/C SCENARIOS
public class BBuffer extends Artifact {
 private LinkedList<Item> items;

 @OPERATION void init(int nmax){
 items = new LinkedList<Item>();
 defineObsProperty("maxNItems",nmax);
 defineObsProperty("nItems",0);
 }

 @OPERATION(guard="bufferNotFull") void put(Item obj){
 items.add(obj);
 updateObsProperty("nItems",items.size()+1);
 }!
 @GUARD boolean bufferNotFull(Item obj){
 int maxItems = getObsProperty("maxNItems").intValue();
 return items.size() < maxItems;
 }
!
 @OPERATION(guard="itemAvailable") void get(){
 Item item = items.removeFirst();
 updateObsProperty("nItems",items.size()-1);
 signal("new_item",item);
 }!
 @GUARD boolean itemAvailable(){
 return items.size() > 0;
 }
}

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

EXAMPLE: BOUNDED-BUFFER FOR P/C SCENARIOS
public class BBuffer extends Artifact {
 private LinkedList<Item> items;

 @OPERATION void init(int nmax){
 items = new LinkedList<Item>();
 defineObsProperty("maxNItems",nmax);
 defineObsProperty("nItems",0);
 }

 @OPERATION(guard="bufferNotFull") void put(Item obj){
 items.add(obj);
 updateObsProperty("nItems",items.size()+1);
 }!
 @GUARD boolean bufferNotFull(Item obj){
 int maxItems = getObsProperty("maxNItems").intValue();
 return items.size() < maxItems;
 }
!
 @OPERATION(guard="itemAvailable") void get(){
 Item item = items.removeFirst();
 updateObsProperty("nItems",items.size()-1);
 signal("new_item",item);
 }!
 @GUARD boolean itemAvailable(){
 return items.size() > 0;
 }
}

OBSERVABLE PROPERTIES:

n_items: int+

max_items: int

Invariants:

n_items <= max_items

USAGE INTERFACE:

put(item:Item) / (n_items < max_items):

 [op_exec_completed]

get / (n_items >= 0) :

 [new_item(item:Item), op_exec_completed]

put

n_items 0

max_items 100

get

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

MORE ON ARTIFACTS

• Structured operations
- specifying operations composed by chains of atomic operation steps

- to support the concurrent execution of multiple operations on the
same artifact

• by interleaving steps

• Linkability
- dynamically composing / linking multiple artifacts together

• Artifact manual
- machine-readable description of artifact functionality and operating

instructions

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

STRUCTURED OPERATIONS

• Complex operations as chains of guarded atomic
operation step execution
- @OPSTEP methods

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

STRUCTURED OPERATIONS

• Complex operations as chains of guarded atomic
operation step execution
- @OPSTEP methods

USAGE

INTERFACE

UI CONTROL TO TRIGGER

OP EXECUTION

...

OP STEP OP STEP OP STEP

STRUCTURED OPERATION

G G

GUARDS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

STRUCTURED OPERATIONS

• Complex operations as chains of guarded atomic
operation step execution
- @OPSTEP methods

• Guards
- boolean expression over the artifact state

• once enabled, the operation step is executed as soon as the
guard is evaluated to true

> Multiple structured operations can be executed
concurrently on the same artifact by interleaving
their steps

- with only one step executed at a time

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

EXAMPLE: A (CENTRALIZED) TUPLE SPACE
public class SimpleTupleSpace extends Artifact {
 TupleSet tset;

 @OPERATION void init(){ tset = new TupleSet(); }

 @OPERATION void out(Tuple t){ tset.add(t);}

 @OPERATION void in(TupleTemplate tt){
 Tuple t = tset.removeMatching(tt);
 if (t!=null){
 signal("tuple",t);
 } else {
 nextStep("completeIN",tt);
 }
 }
 @OPSTEP(guard="foundMatch") void completeIN(TupleTemplate tt){
 Tuple t = tset.removeMatching(tt);
 signal("tuple",t);
 }
 @GUARD boolean foundMatch(TupleTemplate tt){
 return tset.hasTupleMatching(tt);
 }

 @OPERATION void inp(TupleTemplate tt){
 Tuple t = tset.removeMatching(tt);
 if (t!=null){
 signal("tuple_available",t);
 } else {
 signal("tuple_not_available");
 }
 }
 @OPERATION void rd(TupleTemplate tt){...}
 @OPERATION void rdp(TupleTemplate tt){...}
}

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

ON THE AGENT SIDE:
AGENT ACTIONS

• Extending agent actions with a basic set to work within
artifact-based environments

workspace
management

joinWsp(Name,?WspId,+Node,+Role,+Cred)
quitWsp(Wid)

artifact use
use(Aid,OpCntrName(Params),+Sensor,+Timeout,+Filter)
sense(Sensor,?Perception,+Filter,+Timeout)

artifact pure
observation

observeProperty(Aid,PName,?PValue)
focus(Aid,+Sensor,+Filter)
stopFocus(Aid)

artifact instantiation,
discovery,

management

makeArtifact(Name,Template,+ArtifactConfig,?Aid)
lookupArtifact(Name,?Aid)
disposeArtifact(Aid)

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

RAW AGENT API

joinWsp

use
sense
focus
stopFocus

grab
release

+
basic set of artifacts available
in each workspace

- factory
- registry
- security-registry
- console

implementing non primitive actions:
makeArtifact => use factory
lookupArtifact => use registry
...

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

JASON API EXAMPLE
• C4Jason bridge

- enabling Jason agents to work in CArtAgO workspaces

- alice.c4jason.CEnvStandalone / alice.c4jason.CEnv Jason environment
classes (for standalone / distributed artifact based environments)

- alice.c4jason.CAgentArch as agent architecture class

• cartago.* internal actions library
- cartago.joinWSP / cartago.quitWSP

- cartago.use / cartago.sense

- cartago.focus / cartago.stopFocus /cartago.observeProperty

- cartago.makeArtifact / cartago.lookupArtifact

- ...

• Included also basic set of internal actions to manipulate Java
objects as basic data type
- cartago.newObject / cartago.callObj

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

A FIRST SIMPLE EXAMPLE

package test;

public class Counter1 extends Artifact {
 @OPERATION void init(){
 defineObsProperty("count",0);
 }
	
 @OPERATION void inc(){
 int count = getObsProperty("count").intValue();
 updateObsProperty("count",count+1);
 }
}

inc

count 5
OBSERVABLE PROPERTIES:

count: int

USAGE INTERFACE:

inc: [op_exec_completed]

• Counter

// user
!use_count.

+!use_count : true
 <- ?counter_to_use(Counter) ;
 +cycle(0) ;
 !use_count(Counter).

+?counter_to_use(Counter) : true
 <- cartago.lookupArtifact("my_counter",Counter).

-?counter_to_use(Counter) : true
 <- .wait(100);
 ?counter_to_use(Counter).

+!use_count(C) : cycle(N) & N < 10
 <- -cycle(N);
 cartago.use(C,inc,mySensor0);
 cartago.sense(mySensor0,"operation_completed");
 !have_a_rest ;
 +cycle(N+1) ;
 !use_count(C).

+!use_count(C) : cycle(10).

+!have_a_rest : true
 <- .wait(10).

// observer
!observe.

+!observe : true
 <- cartago.makeArtifact("my_counter","test.Counter1", Count);
 cartago.focus(Count).

+count(V) : true
<- cartago.use(console,println("current count observed: ",V)).

MAS mas1 {

 environment:

 alice.c4jason.CEnvStandalone

 agents:

 observer agentArchClass alice.c4jason.CAgentArch;

 user agentArchClass alice.c4jason.CAgentArch #2;

}

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

BOUNDED-BUFFER EXAMPLE:
PRODUCERS & CONSUMERS IN JASON

!produce.

+!produce: true <-
 !setupTools(Buffer);
 !produceItems.
!
+!produceItems : true <-
 ?nextItemToProduce(Item);
 cartago.use(myBuffer,put(Item),5000);
 !produceItems.

+?nextItemToProduce(Item) : true <- ...

+!setupTools(Buffer) : true <- !
 cartago.makeArtifact("myBuffer",
 "test.BBuffer",[10],Buffer).
-!setupTools(Buffer) : true <- !
 cartago.lookupArtifact("myBuffer",Buffer).

PRODUCERS
!consume.

+!consume: true <-
 ?bufferToUse(Buffer);
 .print("Going to use ",Buffer);
 !consumeItems.

+!consumeItems : true <-
 cartago.use(myBuffer,get,s0,5000);
 cartago.sense(s0,new_item(Item),5000);
 !consumeItem(Item);
 !consumeItems.

+!consumeItem(Item) : true <- ...

+?bufferToUse(BufferId) : true <-
 cartago.lookupArtifact("myBuffer",BufferId).
-?bufferToUse(BufferId) : true <-!
 .wait(50);
 ?bufferToUse(BufferId).

CONSUMERS

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

EXAMPLE: GOOD OLD
DINING PHILOSOPHERS

• Dining philosopher problem
- N philosophers sharing and using N forks

• philosophers repeatedly thinking and eating

• to eat philosophers need 2 forks

• a fork can be used by 1 philosopher at a time

- avoiding interferences, deadlock, starvation

• Two classic solutions
- centralized coordination

• single Table coordination artifact

- decentralized coordination

• N Fork resource artifacts

• proper usage protocol

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DINING PHILO: SOLUTION #1

• Two basic type of artifacts
- Table artifact coordination artifact

• coordinating access to shared resources

- ForkDispenser artifact

• to allocate at the beginning forks number to philosophers

• Strategy for philosophers
- after obtaining two fork numbers by interacting with the

ForkDispenser, each philosopher agent repeatedly use
the table artifact to get the forks and to release them
after eating

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DININING PHILO SOLUTION #1:
THE MAS

MAS philosophers {
 environment:
 !alice.c4jason.CEnvStandalone
!
 agents:
 waiter waiter.asl agentArchClass alice.c4jason.CAgentArch;
 philo philo.asl agentArchClass alice.c4jason.CAgentArch #5;
}

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DININING PHILO SOLUTION #1:
ARTIFACTS

public class ForkDispenser extends Artifact {

 private int nForks;
 private int forkIndex = 0;

 @OPERATION void init(int nforks){
 nForks = nforks;
 forkIndex = 0;
 }

 @OPERATION void getForkAssignment(){
 int next = (forkIndex+1)%nForks;
 signal("fork_assignment",forkIndex,next);
 forkIndex = next;
 }
}

public class Table extends Artifact {

 private boolean[] forks;

 @OPERATION void init(int nforks){
 forks = new boolean[nforks];
 for (int i = 0; i<forks.length; i++){
 forks[i]=true;
 }
 }

 @OPERATION(guard = "forksAvailable")
 void getForks(int firstFork, int secondFork){
 forks[firstFork] = forks[secondFork] = false;
 signal("forks_acquired");
 }

 @GUARD boolean forksAvailable(int firstFork,int secondFork){
 return forks[firstFork] && forks[secondFork];
 }

 @OPERATION void releaseForks(int firstFork, int secondFork){
 forks[firstFork] = forks[secondFork] = true;
 }

}

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DININING PHILO SOLUTION #1:
WAITER AGENT

!prepare_table.

+!prepare_table : true
 <- cartago.use(console,println("Preparing the environment..."));
 cartago.makeArtifact("fork_disp","philo.ForkDispenser",[3]) ;
 cartago.makeArtifact("table","philo.Table",[3]) ;
 cartago.use(console,println("The environment is ready.")).

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DININING PHILO SOLUTION #1:
PHILOSOPHER AGENT

// initial goal
!go.

+!go
 <- !discover_table(Table);
 +table(Table);
 !get_fork_assignment(F1,F2);
 +my_forks(F1,F2);
 !!do_my_job.

+!do_my_job
 <- !think;
 !acquire_forks;
 !eat;
 !release_forks;
 !!do_my_job.

+!acquire_forks: my_forks(F1,F2) & table(T)
 <- cartago.use(T,getForks(F1,F2),s0);
 cartago.sense(s0,forks_acquired).

+!release_forks: my_forks(F1,F2) & table(T)
 <- cartago.use(T,releaseForks(F1,F2)).

+!think
 <- .my_name(Name);
 cartago.use(console,println(Name," is thinking."));
 .wait(10+20*math.random).

+!eat
 <- .my_name(Name);
 cartago.use(console,println(Name," is eating."));
 .wait(10+10*math.random).

+!discover_table(Table) : true
 <- cartago.lookupArtifact("table",Table).
-!discover_table(Table) : true
 <- .wait(10);
 !discover_table(Table).

+!get_fork_assignment(F1,F2) : true
 <- cartago.lookupArtifact("fork_disp",FD);
 cartago.use(FD,getForkAssignment,s0);
 cartago.sense(s0,fork_assignment(F1,F2)).
-!get_fork_assignment(F1,F2) : true
 <- .wait(10);
 !get_fork_assignment(F1,F2).

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DINING PHILOSOPHERS:
SOLUTION #2

• Fully decentralized solution
- again a ForkDispenser artifact

• to allocate at the beginning forks number to philosophers

- Fork artifact representing the resource to acquire and
release

• 5 instances

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DININING PHILO SOLUTION #2:
ARTIFACTS

public class ForkDispenser extends Artifact {

 private int nForks;
 private int forkIndex = 0;

 @OPERATION void init(int nforks){
 nForks = nforks;
 forkIndex = 0;
 }

 @OPERATION void getForkAssignment(){
 int next = (forkIndex+1)%nForks;
 signal("fork_assignment",forkIndex,next);
 forkIndex = next;
 }
}

public class Fork extends Artifact {

 @OPERATION void init(int id){
 defineObsProperty("available",true);
 defineObsProperty("id",id);
 }

 @OPERATION(guard="isAvailable") void acquire(){
 updateObsProperty("available", false);
 signal("fork_acquired");
 }

 @GUARD boolean isAvailable(){
 return getObsProperty("available").booleanValue();
 }

 @OPERATION void release(){
 updateObsProperty("available", true);
 }
}

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DININING PHILO SOLUTION #2:
WAITER AGENT

!prepare_table.

+!prepare_table : true
 <- cartago.use(console,println("Preparing the environment..."));
 !create_forks(0,3);
 cartago.makeArtifact("fork_disp","tools.ForkDispenser",[3]) ;
 cartago.use(console,println("The environment is ready.")).

+!create_forks(I,N) : I < N
 <- .concat("fork",I,FN);
 cartago.makeArtifact(FN,"tools.Fork",[I]);
 !create_forks(I+1,N).

+!create_forks(N,N).

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

DININING PHILO SOLUTION #2:
PHILOSOPHER AGENT

!go.

+!go
 <- !get_fork_assignment(F1,F2);
 !sort_forks(F1,F2);
 !!do_my_job.

+!do_my_job
 <- !think;
 !acquire_forks;
 !eat;
 !release_forks;
 !!do_my_job.

+!acquire_forks : my_forks(F1,F2)
 <- cartago.use(F1,acquire,s0);
 cartago.use(F2,acquire,s0);
 cartago.sense(s0,fork_acquired);
 cartago.sense(s0,fork_acquired).

+!release_forks : my_forks(F1,F2)
 <- cartago.use(F1,release);
 cartago.use(F2,release).

+!think
 <- .my_name(Name);
 cartago.use(console,println(Name," is thinking."));
 .wait(10+20*math.random).

+!eat
 <- .my_name(Name);
 cartago.use(console,println(Name," is eating."));
 .wait(10+10*math.random).

+!get_fork_assignment(F1,F2) : true
 <- cartago.lookupArtifact("fork_disp",FD);
 cartago.use(FD,getForkAssignment,s0);
 cartago.sense(s0,fork_assignment(F1,F2)).

-!get_fork_assignment(F1,F2) : true
 <- .wait(10);
 !get_fork_assignment(F1,F2).

+!sort_forks(F1,F2) : true
 <- cartago.observeProperty(F1,id(Id1));
 cartago.observeProperty(F2,id(Id2));
 if (Id1 < Id2){
 +my_forks(F1,F2)
 } {
 +my_forks(F2,F1)
 }.

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

OPEN WORKSPACES & DISTRIBUTION

• Agents can dynamically join and quit workspaces
- heterogeneous & “remote” agents

• Jason, JADEX, simpA, etc.

- in Jason MAS

• alice.c4jason.CEnv environment class

• RBAC model for ruling agent access & use of artifacts
- security-registry artifact to keep track of roles and role policies

• making roles & policies observable and modifiable by agents themselves

• Distribution
- agents can join and work concurrently in multiple workspaces at a

time

- workspaces can belong to different CArtAgO nodes

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

PART III
ONGOING WORK & AVAILABLE

PROJECTS/THESES

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

GOAL-DIRECTED USE OF ARTIFACTS

• Objective
- enabling intelligent agents to dynamically discover and

use (and possibly construct) artifacts according to their
individual / social objectives

- open systems

• systems with different kinds of aspects not defined a priory by
MAS designers

• Toward fully autono(mic/mous) systems
- exploring self-organizing systems based on intelligent

agents

• self-CHOP+CA

- configuring, healing, optimizing, protecting + constructing,
adapting

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

GOAL-DIRECTED USE: SOME
CORE ASPECTS

• Defining an “agent-understandable” model & semantics
for artifact manual
- how to specify artifact functionalities

- how to specify artifact operating instructions

• How to extend agent basic reasoning cycle including
reasoning about artifacts
- relating agent goals and artifact functions

- relating agent plans and artifact operating instructions and
function description

• Reference literature
- Artificial Intelligent and Distributed AI

- Semantic Web / Ontologies

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

EXTERNALIZATION &
INTERNALIZATION

• Using artifacts to improve modularisation of agent
programs
- externalizing agent functionalities into the environment

• artifacts as “external modules”

- using the manual to internalize high-level plans to use
the artifact

• minimizing the burden on the agent programming side to
explicitely implement low level usage protocols

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

EXISTING APPLICATIONS/
FRAMEWORKS BASED ON CArtAgO

• CArtAgO-WS
- basic set of artifacts for building SOA/WS applications

• interacting with web services

• implementing web services

• ORA4MAS
- exploiting artifacts to build MAS organisational

infrastructure

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

CArtAgO 2.0

• Revisiting use action / operation mapping and
semantics
- use-action semantics directly mapped onto executed-

operation semantics

- introduction of action feedback parameters as output
operation parameters

• Simplifying perception & observation
- no more sensors

- revisiting focus semantics

• Simplifying artifact programming API
- no more operation steps

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

TUPLE SPACE REVISITED
public class SimpleTupleSpace extends Artifact {

 TupleSet tset;

 @OPERATION void init(){
 tset = new TupleSet();
 }

 @OPERATION void out(Tuple t){
 tset.add(t);
 }

 @OPERATION void in(TupleTemplate tt, ActionFeedbackParam<Tuple> res){
 await("foundMatch",tt);
 Tuple t = tset.removeMatching(tt);
 res.set(t);
 }

 @GUARD boolean foundMatch(TupleTemplate tt){
 return tset.hasTupleMatching(tt);
 }

 @OPERATION void inp(TupleTemplate tt, ActionFeedbackParam<boolean> found, ActionFeedbackParam<Tuple> res){
 Tuple t = tset.removeMatching(tt);
 if (res.set(t)){
 found.set(true);
 res.set(t);
 } else {
 found.set(false);

}
 }

 @OPERATION void rd(TupleTemplate tt, ActionFeedbackParam<Tuple> res){...}
 @OPERATION void rdp(TupleTemplate tt, ActionFeedbackParam<boolean> found, ActionFeedbackParam<Tuple> res){...}
}

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

A CLOCK
public class Clock extends Artifact {

 private boolean stopped;
!
 @OPERATION void init(){
 defineObsProperty("nticks",0);
 stopped = false;
 }

 @OPERATION void start(){
 stopped = false;
 execOp(new Op("ticketing"));
 }

 @OPERATION void stop(){
 stopped = true;
 }

 @INTERNAL_OPERATION void ticketing(){
 while (!stopped){
 int nticks = getObsProperty("nticks").intValue();
 updateObsProperty("nticks", nticks+10);
 signal("tick");
 await_time(10);
 }
 }
}

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

AVAILABLE PROJECTS
& THESES /1

• Extending CArtAgO

- introducing a specific language for defining artifacts

• using Java only for data-types

- integration with other agent platforms

• 2APL

- working with/to CArtAgO 2.0

• kernel, IDE, tools

• Applying Jason+CArtAgO

- Jason+CArtAgO for SOA/WS

• extending CArtAgO-WS

- Jason+CArtAgO for Web-Based Computing (2.0,3.0,..)

• client+server

- MAS-based Autonomic Systems / Computing & Virtualization

• MAS for automated management of virtual machines & virtual resources

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

AVAILABLE PROJECTS
& THESES /2

• Defining JaCa

- language+platform integrating Jason + CArtAgO + Java (for data-types)

• Goal-directed use of artifacts

- models & languages for manual

- artifacts in the loop of reasoning

SISMA 2009/2010 Seminar, Dec. 2009 Environment Programming in CArtAgO

SELECTED BIBLIOGRAPHY
• A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment programming in CArtAgO. In R. H. Bordini, M. Dastani,

J. Dix, and A. El Fallah-Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and Applications,
Vol. 2, pages 259{288. Springer, 2009

• A. Ricci, M. Viroli, and A. Omicini. The A&A programming model & technology for developing agent environments
in MAS. In M. Dastani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, editors,

• Post-proceedings of the 5th International Workshop “Programming Multi-Agent Systems” (PROMAS 2007),
volume 4908 of LNAI, pages 91–109. Springer, 2007.

• A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for multi-agent systems. Autonomous Agents
and Multi-Agent Systems, 17 (3), Dec. 2008.

• D. Weyns, A. Omicini, and J. J. Odell. Environment as a first-class abstraction in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):5–30, Feb. 2007. Special Issue on Environments for Multi-
agent Systems.

• M. Piunti, A. Ricci, L. Braubach, and A. Pokahr. Goal-directed interactions in artifact-based MAS: Jadex agents
playing in CARTAGO environments. In Proc. of IAT (Intelligent Agent Technology) ’08 Conference, 2008.

• J. F. Hubner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting multi-agent organisations with organisational
artifacts and agents: “Giving the organisational power back to the agents”. Autonomous Agents and Multi-Agent
Systems, 2009. DOI-URL: http://dx.doi.org/10.1007/s10458-009-9084-y.

• Michele Piunti, Andrea Santi, Alessandro Ricci. Programming SOA/WS Systems with BDI Agents and Artifact-
Based Environments. Proceedings of AWESOME'09, International Workshop on Agents, Web Services and
Ontologies, Integrated Methodologies - part of the Multi-Agent Logics, Languages, and Organisations
(MALLOW) Federated Workshops - September 2009 - Torino

• Alessandro Ricci, Michele Piunti and Mirko Viroli. Externalisation and Internalization: A New Perspective on
Agent Modularisation in Multi-Agent Systems Programming. Proceedings of LADS'09, International Workshop on
LAnguages, methodologies and Development tools for multi-agent systemS, MALLOW’09 Torino

http://dx.doi.org/10.1007/s10458-009-9084-y
http://dx.doi.org/10.1007/s10458-009-9084-y

