
Tuple-based Coordination:
From Linda to ReSpecT & TuCSoN

Multiagent Systems LS
Sistemi Multiagente LS

Andrea Omicini
after Matteo Casadei, Elena Nardini, Alessandro Ricci

andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2009/2010

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 1 / 107

Outline

1 The Limits of Linda

2 ReSpecT: Programming Tuple Spaces
Hybrid Coordination Models
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics
Situated ReSpecT
Situated ReSpecT: A Case Study

3 TuCSoN: A Space-based Infrastructure
The TuCSoN Model

4 Towards a Notion of Agent Coordination Context

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 2 / 107

The Limits of Linda

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosopher agents
share N chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 3 / 107

The Limits of Linda

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosopher agents
share N chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 3 / 107

The Limits of Linda

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosopher agents
share N chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 3 / 107

The Limits of Linda

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosopher agents
share N chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 3 / 107

The Limits of Linda

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosopher agents
share N chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 3 / 107

The Limits of Linda

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosopher agents
share N chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 3 / 107

The Limits of Linda

Concurrency issues in the Dining Philosophers Problem

shared resources Two adjacent philosophers cannot eat simultaneously

starvation If one philosopher eats all the time, the two adjacent
philosophers will starve

deadlock If every philosopher picks up the same (say, the left)
chopstick at the same time, all of them may wait indefinitely
for the other (say, the right) chopstick so as to eat

fairness If a philosopher releases one chopstick before the other one,
it favours one of his adjacent philosophers over the other one

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 4 / 107

The Limits of Linda

Concurrency issues in the Dining Philosophers Problem

shared resources Two adjacent philosophers cannot eat simultaneously

starvation If one philosopher eats all the time, the two adjacent
philosophers will starve

deadlock If every philosopher picks up the same (say, the left)
chopstick at the same time, all of them may wait indefinitely
for the other (say, the right) chopstick so as to eat

fairness If a philosopher releases one chopstick before the other one,
it favours one of his adjacent philosophers over the other one

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 4 / 107

The Limits of Linda

Concurrency issues in the Dining Philosophers Problem

shared resources Two adjacent philosophers cannot eat simultaneously

starvation If one philosopher eats all the time, the two adjacent
philosophers will starve

deadlock If every philosopher picks up the same (say, the left)
chopstick at the same time, all of them may wait indefinitely
for the other (say, the right) chopstick so as to eat

fairness If a philosopher releases one chopstick before the other one,
it favours one of his adjacent philosophers over the other one

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 4 / 107

The Limits of Linda

Concurrency issues in the Dining Philosophers Problem

shared resources Two adjacent philosophers cannot eat simultaneously

starvation If one philosopher eats all the time, the two adjacent
philosophers will starve

deadlock If every philosopher picks up the same (say, the left)
chopstick at the same time, all of them may wait indefinitely
for the other (say, the right) chopstick so as to eat

fairness If a philosopher releases one chopstick before the other one,
it favours one of his adjacent philosophers over the other one

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 4 / 107

The Limits of Linda

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 5 / 107

The Limits of Linda

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 5 / 107

The Limits of Linda

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 5 / 107

The Limits of Linda

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 5 / 107

The Limits of Linda

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 5 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), in(chop(J)), % waiting to eat
eat, % eating
out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 6 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-
think, % thinking
in(chop(I)), % waiting to eat
(inp(chop(J)), % if other chop available

eat, % eating
out(chop(I)), out(chop(J)), % waiting to think
; % otherwise
out(chop(I)) % releasing unused chop

)
!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided
– starvation and unfairness still possible
– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 7 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda:
Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-
think, % thinking
in(chops(I,J)), % waiting to eat
eat, % eating
out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly
– starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 8 / 107

The Limits of Linda

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 9 / 107

The Limits of Linda

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 9 / 107

The Limits of Linda

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 9 / 107

The Limits of Linda

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 9 / 107

The Limits of Linda

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 9 / 107

The Limits of Linda

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 9 / 107

The Limits of Linda

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 9 / 107

The Limits of Linda

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 9 / 107

The Limits of Linda

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 9 / 107

The Limits of Linda

Dining Philosophers in Tuple-based Models: Solution?

The behaviour of the coordination medium should be expressive
enough to capture the issues posed by the coordination problem

the behaviour of the coordination medium should not be fixed once and
for all
all coordination problems should fit some admissible behaviour of the
coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 10 / 107

The Limits of Linda

Dining Philosophers in Tuple-based Models: Solution?

The behaviour of the coordination medium should be expressive
enough to capture the issues posed by the coordination problem

the behaviour of the coordination medium should not be fixed once and
for all
all coordination problems should fit some admissible behaviour of the
coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 10 / 107

The Limits of Linda

Dining Philosophers in Tuple-based Models: Solution?

The behaviour of the coordination medium should be expressive
enough to capture the issues posed by the coordination problem

the behaviour of the coordination medium should not be fixed once and
for all
all coordination problems should fit some admissible behaviour of the
coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 10 / 107

The Limits of Linda

Dining Philosophers in Tuple-based Models: Solution?

The behaviour of the coordination medium should be expressive
enough to capture the issues posed by the coordination problem

the behaviour of the coordination medium should not be fixed once and
for all
all coordination problems should fit some admissible behaviour of the
coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 10 / 107

The Limits of Linda

Dining Philosophers in Tuple-based Models: Solution?

The behaviour of the coordination medium should be expressive
enough to capture the issues posed by the coordination problem

the behaviour of the coordination medium should not be fixed once and
for all
all coordination problems should fit some admissible behaviour of the
coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 10 / 107

The Limits of Linda

Dining Philosophers in Tuple-based Models: Solution?

The behaviour of the coordination medium should be expressive
enough to capture the issues posed by the coordination problem

the behaviour of the coordination medium should not be fixed once and
for all
all coordination problems should fit some admissible behaviour of the
coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 10 / 107

The Limits of Linda

Dining Philosophers in Tuple-based Models: Solution?

The behaviour of the coordination medium should be expressive
enough to capture the issues posed by the coordination problem

the behaviour of the coordination medium should not be fixed once and
for all
all coordination problems should fit some admissible behaviour of the
coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 10 / 107

The Limits of Linda

Dining Philosophers in Tuple-based Models: Solution?

The behaviour of the coordination medium should be expressive
enough to capture the issues posed by the coordination problem

the behaviour of the coordination medium should not be fixed once and
for all
all coordination problems should fit some admissible behaviour of the
coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 10 / 107

The Limits of Linda

Dining Philosophers in Tuple-based Models: Solution?

The behaviour of the coordination medium should be expressive
enough to capture the issues posed by the coordination problem

the behaviour of the coordination medium should not be fixed once and
for all
all coordination problems should fit some admissible behaviour of the
coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 10 / 107

The Limits of Linda

Dining Philosophers in Tuple-based Models: Solution?

The behaviour of the coordination medium should be expressive
enough to capture the issues posed by the coordination problem

the behaviour of the coordination medium should not be fixed once and
for all
all coordination problems should fit some admissible behaviour of the
coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 10 / 107

ReSpecT Hybrid Coordination Models

Outline

1 The Limits of Linda

2 ReSpecT: Programming Tuple Spaces
Hybrid Coordination Models
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics
Situated ReSpecT
Situated ReSpecT: A Case Study

3 TuCSoN: A Space-based Infrastructure
The TuCSoN Model

4 Towards a Notion of Agent Coordination Context

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 11 / 107

ReSpecT Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N agents have
asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

Of course, this does not fit our agent / A&A framework, where
(passage of) control is blacklisted

information-driven coordination vs. action-driven coordination clearly
fits better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 12 / 107

ReSpecT Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N agents have
asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

Of course, this does not fit our agent / A&A framework, where
(passage of) control is blacklisted

information-driven coordination vs. action-driven coordination clearly
fits better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 12 / 107

ReSpecT Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N agents have
asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

Of course, this does not fit our agent / A&A framework, where
(passage of) control is blacklisted

information-driven coordination vs. action-driven coordination clearly
fits better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 12 / 107

ReSpecT Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N agents have
asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

Of course, this does not fit our agent / A&A framework, where
(passage of) control is blacklisted

information-driven coordination vs. action-driven coordination clearly
fits better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 12 / 107

ReSpecT Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N agents have
asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

Of course, this does not fit our agent / A&A framework, where
(passage of) control is blacklisted

information-driven coordination vs. action-driven coordination clearly
fits better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 12 / 107

ReSpecT Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N agents have
asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

Of course, this does not fit our agent / A&A framework, where
(passage of) control is blacklisted

information-driven coordination vs. action-driven coordination clearly
fits better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 12 / 107

ReSpecT Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N agents have
asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

Of course, this does not fit our agent / A&A framework, where
(passage of) control is blacklisted

information-driven coordination vs. action-driven coordination clearly
fits better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 12 / 107

ReSpecT Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like agent-based ones

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of agent autonomy
[Dastani et al., 2005]
no coordination medium could say “do this, do that” to a coordinated
entity, when a coordinable is an agent

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 13 / 107

ReSpecT Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like agent-based ones

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of agent autonomy
[Dastani et al., 2005]
no coordination medium could say “do this, do that” to a coordinated
entity, when a coordinable is an agent

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 13 / 107

ReSpecT Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like agent-based ones

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of agent autonomy
[Dastani et al., 2005]
no coordination medium could say “do this, do that” to a coordinated
entity, when a coordinable is an agent

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 13 / 107

ReSpecT Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like agent-based ones

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of agent autonomy
[Dastani et al., 2005]
no coordination medium could say “do this, do that” to a coordinated
entity, when a coordinable is an agent

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 13 / 107

ReSpecT Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like agent-based ones

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of agent autonomy
[Dastani et al., 2005]
no coordination medium could say “do this, do that” to a coordinated
entity, when a coordinable is an agent

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 13 / 107

ReSpecT Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like agent-based ones

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of agent autonomy
[Dastani et al., 2005]
no coordination medium could say “do this, do that” to a coordinated
entity, when a coordinable is an agent

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 13 / 107

ReSpecT Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like agent-based ones

control-driven models like Reo [Arbab, 2004] need to be adapted to
agent-based contexts, mainly to deal with the issue of agent autonomy
[Dastani et al., 2005]
no coordination medium could say “do this, do that” to a coordinated
entity, when a coordinable is an agent

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 13 / 107

ReSpecT Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features from the coordination side

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

New features from the artifact side?

the list deriving from the interpretation of coordination media as
coordination artifacts

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 14 / 107

ReSpecT Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features from the coordination side

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

New features from the artifact side?

the list deriving from the interpretation of coordination media as
coordination artifacts

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 14 / 107

ReSpecT Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features from the coordination side

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

New features from the artifact side?

the list deriving from the interpretation of coordination media as
coordination artifacts

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 14 / 107

ReSpecT Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features from the coordination side

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

New features from the artifact side?

the list deriving from the interpretation of coordination media as
coordination artifacts

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 14 / 107

ReSpecT Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features from the coordination side

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

New features from the artifact side?

the list deriving from the interpretation of coordination media as
coordination artifacts

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 14 / 107

ReSpecT Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features from the coordination side

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

New features from the artifact side?

the list deriving from the interpretation of coordination media as
coordination artifacts

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 14 / 107

ReSpecT Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features from the coordination side

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

New features from the artifact side?

the list deriving from the interpretation of coordination media as
coordination artifacts

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 14 / 107

ReSpecT Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features from the coordination side

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

New features from the artifact side?

the list deriving from the interpretation of coordination media as
coordination artifacts

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 14 / 107

ReSpecT Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features from the coordination side

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

New features from the artifact side?

the list deriving from the interpretation of coordination media as
coordination artifacts

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 14 / 107

ReSpecT Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features from the coordination side

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

New features from the artifact side?

the list deriving from the interpretation of coordination media as
coordination artifacts

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 14 / 107

ReSpecT Tuple Centres

Outline

1 The Limits of Linda

2 ReSpecT: Programming Tuple Spaces
Hybrid Coordination Models
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics
Situated ReSpecT
Situated ReSpecT: A Case Study

3 TuCSoN: A Space-based Infrastructure
The TuCSoN Model

4 Towards a Notion of Agent Coordination Context

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 15 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Feature List: From A&A to Tuple-based Coordination

Coordinable are agents

tuple-space coordination primitives are (communication / pragmatical)
actions

Coordination abstractions are artifacts

tuple spaces as specialised artifacts for agent coordination

Some relevant features of (coordination) artifacts

inspectability & controllability observing / controlling tuple space
structure, state & behaviour

for monitoring / debugging purposes

malleability / forgeability adapting / changing tuple space function /
state & behaviour

for incremental development, but also for run-time
adaptation & change

linkability & distribution composing distributed tuple spaces

for separation of concerns, encapsulation & scalability

situation reacting to environment events & changes

reacting to other events rather than invocations of
coordination primitives

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 16 / 107

ReSpecT Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable agent interaction protocols to be organised around
the desired / required agent perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, agents could get rid of the unnecessary burden of coordination, by
embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to

representing each chopstick as a single chop(i) tuple in the tuple
space, while
enabling philosopher agents to perceive chopsticks as pairs (tuples
chops(i,j)), thus
allowing agent to acquire / release two chopsticks by means of a single
tuple space operation in(chops(i,j)) / out(chops(i,j))

How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 17 / 107

ReSpecT Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable agent interaction protocols to be organised around
the desired / required agent perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, agents could get rid of the unnecessary burden of coordination, by
embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to

representing each chopstick as a single chop(i) tuple in the tuple
space, while
enabling philosopher agents to perceive chopsticks as pairs (tuples
chops(i,j)), thus
allowing agent to acquire / release two chopsticks by means of a single
tuple space operation in(chops(i,j)) / out(chops(i,j))

How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 17 / 107

ReSpecT Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable agent interaction protocols to be organised around
the desired / required agent perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, agents could get rid of the unnecessary burden of coordination, by
embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to

representing each chopstick as a single chop(i) tuple in the tuple
space, while
enabling philosopher agents to perceive chopsticks as pairs (tuples
chops(i,j)), thus
allowing agent to acquire / release two chopsticks by means of a single
tuple space operation in(chops(i,j)) / out(chops(i,j))

How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 17 / 107

ReSpecT Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable agent interaction protocols to be organised around
the desired / required agent perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, agents could get rid of the unnecessary burden of coordination, by
embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to

representing each chopstick as a single chop(i) tuple in the tuple
space, while
enabling philosopher agents to perceive chopsticks as pairs (tuples
chops(i,j)), thus
allowing agent to acquire / release two chopsticks by means of a single
tuple space operation in(chops(i,j)) / out(chops(i,j))

How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 17 / 107

ReSpecT Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable agent interaction protocols to be organised around
the desired / required agent perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, agents could get rid of the unnecessary burden of coordination, by
embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to

representing each chopstick as a single chop(i) tuple in the tuple
space, while
enabling philosopher agents to perceive chopsticks as pairs (tuples
chops(i,j)), thus
allowing agent to acquire / release two chopsticks by means of a single
tuple space operation in(chops(i,j)) / out(chops(i,j))

How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 17 / 107

ReSpecT Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable agent interaction protocols to be organised around
the desired / required agent perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, agents could get rid of the unnecessary burden of coordination, by
embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to

representing each chopstick as a single chop(i) tuple in the tuple
space, while
enabling philosopher agents to perceive chopsticks as pairs (tuples
chops(i,j)), thus
allowing agent to acquire / release two chopsticks by means of a single
tuple space operation in(chops(i,j)) / out(chops(i,j))

How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 17 / 107

ReSpecT Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable agent interaction protocols to be organised around
the desired / required agent perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, agents could get rid of the unnecessary burden of coordination, by
embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to

representing each chopstick as a single chop(i) tuple in the tuple
space, while
enabling philosopher agents to perceive chopsticks as pairs (tuples
chops(i,j)), thus
allowing agent to acquire / release two chopsticks by means of a single
tuple space operation in(chops(i,j)) / out(chops(i,j))

How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 17 / 107

ReSpecT Tuple Centres

Ideas from the Dining Philosophers

1 Keeping information representation and perception separated

in the tuple space
this would enable agent interaction protocols to be organised around
the desired / required agent perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, agents could get rid of the unnecessary burden of coordination, by
embedding coordination laws into the coordination media

In the Dining Philosophers example. . .

. . . this would amount to

representing each chopstick as a single chop(i) tuple in the tuple
space, while
enabling philosopher agents to perceive chopsticks as pairs (tuples
chops(i,j)), thus
allowing agent to acquire / release two chopsticks by means of a single
tuple space operation in(chops(i,j)) / out(chops(i,j))

How could we do that, in the example, and in general?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 17 / 107

ReSpecT Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

This is the motivation behind the very notion of tuple centre

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
agents as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing agent interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 18 / 107

ReSpecT Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

This is the motivation behind the very notion of tuple centre

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
agents as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing agent interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 18 / 107

ReSpecT Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

This is the motivation behind the very notion of tuple centre

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
agents as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing agent interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 18 / 107

ReSpecT Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

This is the motivation behind the very notion of tuple centre

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
agents as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing agent interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 18 / 107

ReSpecT Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

This is the motivation behind the very notion of tuple centre

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
agents as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing agent interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 18 / 107

ReSpecT Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

This is the motivation behind the very notion of tuple centre

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
agents as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing agent interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 18 / 107

ReSpecT Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

This is the motivation behind the very notion of tuple centre

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
agents as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing agent interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 18 / 107

ReSpecT Tuple Centres

A Possible Solution

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

This is the motivation behind the very notion of tuple centre

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
agents as a standard tuple space
However, since its behaviour can be specified so as to encapsulate the
coordination rules governing agent interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 18 / 107

ReSpecT Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 19 / 107

ReSpecT Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 19 / 107

ReSpecT Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 19 / 107

ReSpecT Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 19 / 107

ReSpecT Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 19 / 107

ReSpecT Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 19 / 107

ReSpecT Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 19 / 107

ReSpecT Tuple Centres

Tuple Centres

Definition [Omicini and Denti, 2001]

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 19 / 107

ReSpecT Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing agent, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 20 / 107

ReSpecT Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing agent, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 20 / 107

ReSpecT Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing agent, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 20 / 107

ReSpecT Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing agent, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 20 / 107

ReSpecT Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing agent, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 20 / 107

ReSpecT Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing agent, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 20 / 107

ReSpecT Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the agent’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 21 / 107

ReSpecT Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the agent’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 21 / 107

ReSpecT Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the agent’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 21 / 107

ReSpecT Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the agent’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 21 / 107

ReSpecT Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the agent’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 21 / 107

ReSpecT Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the agent’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 21 / 107

ReSpecT Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the agent’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 21 / 107

ReSpecT Tuple Centres

Reaction Execution

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given
from the agent’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 21 / 107

ReSpecT Tuple Centres

Tuple Centre’s State vs. Agent’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by agents as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by agents

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the agent’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the multiagent system

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 22 / 107

ReSpecT Tuple Centres

Tuple Centre’s State vs. Agent’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by agents as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by agents

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the agent’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the multiagent system

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 22 / 107

ReSpecT Tuple Centres

Tuple Centre’s State vs. Agent’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by agents as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by agents

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the agent’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the multiagent system

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 22 / 107

ReSpecT Tuple Centres

Tuple Centre’s State vs. Agent’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by agents as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by agents

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the agent’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the multiagent system

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 22 / 107

ReSpecT Tuple Centres

Tuple Centre’s State vs. Agent’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by agents as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by agents

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the agent’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the multiagent system

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 22 / 107

ReSpecT Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by agents

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 23 / 107

ReSpecT Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by agents

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 23 / 107

ReSpecT Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by agents

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 23 / 107

ReSpecT Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by agents

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 23 / 107

ReSpecT Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by agents

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 23 / 107

ReSpecT Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by agents

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 23 / 107

ReSpecT Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by agents

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 23 / 107

ReSpecT Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by agents

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 23 / 107

ReSpecT Dining Philosophers with ReSpecT

Outline

1 The Limits of Linda

2 ReSpecT: Programming Tuple Spaces
Hybrid Coordination Models
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics
Situated ReSpecT
Situated ReSpecT: A Case Study

3 TuCSoN: A Space-based Infrastructure
The TuCSoN Model

4 Towards a Notion of Agent Coordination Context

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 24 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

An agent philosopher tries to eat by getting his chopstick pair from
the tuple centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 25 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

An agent philosopher tries to eat by getting his chopstick pair from
the tuple centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 25 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

An agent philosopher tries to eat by getting his chopstick pair from
the tuple centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 25 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

An agent philosopher tries to eat by getting his chopstick pair from
the tuple centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 25 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

An agent philosopher tries to eat by getting his chopstick pair from
the tuple centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 25 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 26 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 26 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 26 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 26 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 26 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 26 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 26 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 26 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 26 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 26 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: table Behaviour
Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)),
out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)),
out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 27 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: table Behaviour
Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)),
out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)),
out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 27 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: table Behaviour
Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)),
out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)),
out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 27 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: table Behaviour
Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)),
out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)),
out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 27 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: table Behaviour
Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)),
out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)),
out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 27 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: table Behaviour
Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)),
out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)),
out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 27 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 28 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 28 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 28 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 28 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 28 / 107

ReSpecT Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 28 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosopher agents are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)
seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table
tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre / artifact behaviour

N individual artifacts (seat(i,j)) + 1 social artifact (table)
connected in a star network

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 29 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosopher agents are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)
seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table
tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre / artifact behaviour

N individual artifacts (seat(i,j)) + 1 social artifact (table)
connected in a star network

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 29 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosopher agents are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)
seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table
tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre / artifact behaviour

N individual artifacts (seat(i,j)) + 1 social artifact (table)
connected in a star network

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 29 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosopher agents are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)
seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table
tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre / artifact behaviour

N individual artifacts (seat(i,j)) + 1 social artifact (table)
connected in a star network

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 29 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosopher agents are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)
seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table
tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre / artifact behaviour

N individual artifacts (seat(i,j)) + 1 social artifact (table)
connected in a star network

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 29 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosopher agents are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)
seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table
tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre / artifact behaviour

N individual artifacts (seat(i,j)) + 1 social artifact (table)
connected in a star network

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 29 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosopher agents are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)
seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table
tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre / artifact behaviour

N individual artifacts (seat(i,j)) + 1 social artifact (table)
connected in a star network

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 29 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosopher agents are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)
seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table
tuple centre
each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre / artifact behaviour

N individual artifacts (seat(i,j)) + 1 social artifact (table)
connected in a star network

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 29 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()
thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table
from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 30 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()
thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table
from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 30 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()
thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table
from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 30 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()
thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table
from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 30 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()
thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table
from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 30 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()
thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table
from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 30 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()
thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table
from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 30 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()
thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table
from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 30 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()
thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table
from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 30 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()
thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state
state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table
from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 30 / 107

ReSpecT Dining Philosophers with ReSpecT

ReSpecT code for seat(i,j) tuple centres

reaction(out(wanna_eat), (operation, invocation), (% (1)
in(philosopher(thinking)), out(philosopher(waiting_to_eat)),
current_target(seat(C1,C2)), table@node ? in(chops(C1,C2)))).

reaction(out(wanna_eat), (operation, completion), % (2)
in(wanna_eat)).

reaction(in(chops(C1,C2)), (link_out, completion), (% (3)
in(philosopher(waiting_to_eat)), out(philosopher(eating)),
out(chops(C1,C2)))).

reaction(out(wanna_think), (operation, invocation), (% (4)
in(philosopher(eating)), out(philosopher(waiting_to_think)),
current_target(seat(C1,C2)), in(chops(C1,C2)),
table@node ? out(chops(C1,C2)))).

reaction(out(wanna_think), (operation, completion), % (5)
in(wanna_think)).

reaction(out(chops(C1,C2)), (link_out, completion), (% (6)
in(philosopher(waiting_to_think)), out(philosopher(thinking)))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 31 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Social Interaction

Seat–table interaction (link)

tuple centre seat(i,j) requires / returns tuple chops(i,j) from /
to table tuple centre

tuple centre table transforms tuple chops(i,j) into a tuple pair
chop(i), chop(j) whenever required, and back chop(i), chop(j)
into chops(i,j) whenever required and possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 32 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Social Interaction

Seat–table interaction (link)

tuple centre seat(i,j) requires / returns tuple chops(i,j) from /
to table tuple centre

tuple centre table transforms tuple chops(i,j) into a tuple pair
chop(i), chop(j) whenever required, and back chop(i), chop(j)
into chops(i,j) whenever required and possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 32 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Social Interaction

Seat–table interaction (link)

tuple centre seat(i,j) requires / returns tuple chops(i,j) from /
to table tuple centre

tuple centre table transforms tuple chops(i,j) into a tuple pair
chop(i), chop(j) whenever required, and back chop(i), chop(j)
into chops(i,j) whenever required and possible

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 32 / 107

ReSpecT Dining Philosophers with ReSpecT

ReSpecT code for table tuple centre

reaction(out(chops(C1,C2)), (link_in, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (link_in, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (link_in, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)),
out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)),
out(chops(C1,C)))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 33 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosopher agents just express their intentions, in terms of simple
tuples
individual artifacts (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
artifacts (table tuple centre)
the social artifact (table tuple centre) deals with shared resources
(chop tuples) and ensures global system properties, like fairness and
deadlock avoidance

At any time, one could look at the coordination artifacts, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single agents is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible
artifacts as far as the portion representing their social interaction is
concerned

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 34 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosopher agents just express their intentions, in terms of simple
tuples
individual artifacts (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
artifacts (table tuple centre)
the social artifact (table tuple centre) deals with shared resources
(chop tuples) and ensures global system properties, like fairness and
deadlock avoidance

At any time, one could look at the coordination artifacts, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single agents is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible
artifacts as far as the portion representing their social interaction is
concerned

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 34 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosopher agents just express their intentions, in terms of simple
tuples
individual artifacts (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
artifacts (table tuple centre)
the social artifact (table tuple centre) deals with shared resources
(chop tuples) and ensures global system properties, like fairness and
deadlock avoidance

At any time, one could look at the coordination artifacts, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single agents is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible
artifacts as far as the portion representing their social interaction is
concerned

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 34 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosopher agents just express their intentions, in terms of simple
tuples
individual artifacts (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
artifacts (table tuple centre)
the social artifact (table tuple centre) deals with shared resources
(chop tuples) and ensures global system properties, like fairness and
deadlock avoidance

At any time, one could look at the coordination artifacts, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single agents is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible
artifacts as far as the portion representing their social interaction is
concerned

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 34 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosopher agents just express their intentions, in terms of simple
tuples
individual artifacts (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
artifacts (table tuple centre)
the social artifact (table tuple centre) deals with shared resources
(chop tuples) and ensures global system properties, like fairness and
deadlock avoidance

At any time, one could look at the coordination artifacts, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single agents is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible
artifacts as far as the portion representing their social interaction is
concerned

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 34 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosopher agents just express their intentions, in terms of simple
tuples
individual artifacts (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
artifacts (table tuple centre)
the social artifact (table tuple centre) deals with shared resources
(chop tuples) and ensures global system properties, like fairness and
deadlock avoidance

At any time, one could look at the coordination artifacts, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single agents is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible
artifacts as far as the portion representing their social interaction is
concerned

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 34 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosopher agents just express their intentions, in terms of simple
tuples
individual artifacts (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
artifacts (table tuple centre)
the social artifact (table tuple centre) deals with shared resources
(chop tuples) and ensures global system properties, like fairness and
deadlock avoidance

At any time, one could look at the coordination artifacts, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single agents is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible
artifacts as far as the portion representing their social interaction is
concerned

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 34 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosopher agents just express their intentions, in terms of simple
tuples
individual artifacts (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
artifacts (table tuple centre)
the social artifact (table tuple centre) deals with shared resources
(chop tuples) and ensures global system properties, like fairness and
deadlock avoidance

At any time, one could look at the coordination artifacts, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single agents is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible
artifacts as far as the portion representing their social interaction is
concerned

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 34 / 107

ReSpecT Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features

Full separation of concerns

philosopher agents just express their intentions, in terms of simple
tuples
individual artifacts (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
artifacts (table tuple centre)
the social artifact (table tuple centre) deals with shared resources
(chop tuples) and ensures global system properties, like fairness and
deadlock avoidance

At any time, one could look at the coordination artifacts, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single agents is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible
artifacts as far as the portion representing their social interaction is
concerned

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 34 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers

An example for situatedness in the spatio-temporal fabric

table tuple centre stores the maximum amount of time for any agent
(philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)
if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by agents through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005b]

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 35 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers

An example for situatedness in the spatio-temporal fabric

table tuple centre stores the maximum amount of time for any agent
(philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)
if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by agents through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005b]

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 35 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers

An example for situatedness in the spatio-temporal fabric

table tuple centre stores the maximum amount of time for any agent
(philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)
if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by agents through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005b]

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 35 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers

An example for situatedness in the spatio-temporal fabric

table tuple centre stores the maximum amount of time for any agent
(philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)
if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by agents through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005b]

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 35 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers

An example for situatedness in the spatio-temporal fabric

table tuple centre stores the maximum amount of time for any agent
(philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)
if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by agents through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005b]

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 35 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers

An example for situatedness in the spatio-temporal fabric

table tuple centre stores the maximum amount of time for any agent
(philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)
if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by agents through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005b]

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 35 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers

An example for situatedness in the spatio-temporal fabric

table tuple centre stores the maximum amount of time for any agent
(philosopher) to use the resource (to eat using chops)

in terms of a tuple max eating time(@Time)
if this time expires the locks are automatically released—chopsticks are
re-inserted by the table tuple centre
late releases (by agents through seat tuple centres) are to be
ignored—linkability used to make seat tuple centres consistent

With a very simple extension using timed reactions, Distributed
Timed Dining Philosophers are done

see [Omicini et al., 2005b]

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 35 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers: Philosopher

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

With respect to Dining Philosopher’s protocol. . .

. . . this is left unchanged

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 36 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers: Philosopher

philosopher(I,J) :-
think, % thinking
table ? in(chops(I,J)), % waiting to eat
eat, % eating
table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

With respect to Dining Philosopher’s protocol. . .

. . . this is left unchanged

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 36 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)
current_time(T), rd(max eating time(Max)), T1 is T + Max,
out(used(C1,C2,T)),
out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 37 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)
current_time(T), rd(max eating time(Max)), T1 is T + Max,
out(used(C1,C2,T)),
out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 37 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)
current_time(T), rd(max eating time(Max)), T1 is T + Max,
out(used(C1,C2,T)),
out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 37 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)
current_time(T), rd(max eating time(Max)), T1 is T + Max,
out(used(C1,C2,T)),
out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 37 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)
current_time(T), rd(max eating time(Max)), T1 is T + Max,
out(used(C1,C2,T)),
out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 37 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)
current_time(T), rd(max eating time(Max)), T1 is T + Max,
out(used(C1,C2,T)),
out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 37 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)))).

reaction(out(chops(C1,C2)), (operation, completion), (% (1’)
out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)
current_time(T), rd(max eating time(Max)), T1 is T + Max,
out(used(C1,C2,T)),
out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 37 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)
in(chops(C1,C2)))).

reaction(out(chops(C1,C2)), (operation, completion), (% (1’)
in(used(C1,C2,_)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)
out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)
in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)
in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)
rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)
rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)
current_time(T), rd(max eating time(Max)), T1 is T + Max,
out(used(C1,C2,T)),
out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 37 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 38 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 38 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 38 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 38 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 38 / 107

ReSpecT Dining Philosophers with ReSpecT

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 38 / 107

ReSpecT ReSpecT: Language & Semantics

Outline

1 The Limits of Linda

2 ReSpecT: Programming Tuple Spaces
Hybrid Coordination Models
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics
Situated ReSpecT
Situated ReSpecT: A Case Study

3 TuCSoN: A Space-based Infrastructure
The TuCSoN Model

4 Towards a Notion of Agent Coordination Context

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 39 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)
if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 40 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)
if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 40 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)
if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 40 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)
if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 40 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)
if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 40 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)
if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 40 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)
if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 40 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)
if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 40 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E,G,R)
if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 40 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Core Syntax

〈TCSpecification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(〈SimpleTCEvent〉 , [〈Guard〉 ,] 〈Reaction〉)
〈SimpleTCEvent〉 ::= 〈SimpleTCPredicate〉 (〈Tuple〉) | time(〈Time〉) | 〈EnvPredicate〉

〈Guard〉 ::= 〈GuardPredicate〉 | (〈GuardPredicate〉 {, 〈GuardPredicate〉})
〈Reaction〉 ::= 〈ReactionGoal〉 | (〈ReactionGoal〉 {, 〈ReactionGoal〉})

〈ReactionGoal〉 ::= 〈TCPredicate〉 | 〈ObservationPredicate〉 |
〈Computation〉 | (〈ReactionGoal〉 ; 〈ReactionGoal〉)

〈TCPredicate〉 ::= 〈SimpleTCPredicate〉 | 〈TCLinkPredicate〉 | 〈TCEnvPredicate〉
〈EnvPredicate〉 ::= get(〈Key〉 , 〈Value〉) | set(〈Key〉 , 〈Value〉)

〈SimpleTCPredicate〉 ::= 〈TCStatePredicate〉 (〈Tuple〉) | 〈TCForgePredicate〉 (〈SpecificationTuple〉)
〈TCLinkPredicate〉 ::= 〈TCIdentifier〉 ? 〈SimpleTCPredicate〉
〈TCEnvPredicate〉 ::= 〈EnvResIdentifier〉 ? 〈EnvPredicate〉
〈TCStatePredicate〉 ::= in | inp | rd | rdp | out | no
〈TCForgePredicate〉 ::= 〈TCStatePredicate〉_s

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉 (〈Tuple〉) |
env(〈Key〉 , 〈Value〉)

〈EventView〉 ::= current | event | start
〈EventInformation〉 ::= predicate | tuple | source | target | time
〈GuardPredicate〉 ::= request | response | success | failure | endo | exo | intra | inter |

from_agent | to_agent | from_tc | to_tc | from_env | to_env |
before(〈Time〉) | after(〈Time〉)

〈Computation〉 is a Prolog-like goal performing arithmetic / logic computations
〈Time〉 is a non-negative integer

〈Tuple〉 , 〈Key〉 , 〈Value〉 are Prolog terms

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 41 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Behaviour Specification

〈TCSpecification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(

〈SimpleTCEvent〉 ,
[〈Guard〉 ,]
〈Reaction〉

)

a behaviour specification 〈TCSpecification〉 is a logic theory of FOL
tuples reaction/3

a specification tuple contains an event descriptor 〈SimpleTCEvent〉, a
guard 〈Guard〉 (optional), and a sequence 〈Reaction〉 of reaction
goals

a reaction/2 specification tuple implicitly defines an empty guard

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 42 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Behaviour Specification

〈TCSpecification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(

〈SimpleTCEvent〉 ,
[〈Guard〉 ,]
〈Reaction〉

)

a behaviour specification 〈TCSpecification〉 is a logic theory of FOL
tuples reaction/3

a specification tuple contains an event descriptor 〈SimpleTCEvent〉, a
guard 〈Guard〉 (optional), and a sequence 〈Reaction〉 of reaction
goals

a reaction/2 specification tuple implicitly defines an empty guard

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 42 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Behaviour Specification

〈TCSpecification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(

〈SimpleTCEvent〉 ,
[〈Guard〉 ,]
〈Reaction〉

)

a behaviour specification 〈TCSpecification〉 is a logic theory of FOL
tuples reaction/3

a specification tuple contains an event descriptor 〈SimpleTCEvent〉, a
guard 〈Guard〉 (optional), and a sequence 〈Reaction〉 of reaction
goals

a reaction/2 specification tuple implicitly defines an empty guard

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 42 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Event Descriptor

〈SimpleTCEvent〉 ::= 〈SimpleTCPredicate〉 (〈Tuple〉) |
time(〈Time〉) |
〈EnvPredicate〉

an event descriptor 〈SimpleTCEvent〉 is either the invocation of a
primitive 〈SimpleTCPredicate〉 (〈Tuple〉), a time event
time(〈Time〉), or an environment event in terms of an
〈EnvPredicate〉
an event descriptor 〈SimpleTCEvent〉 is used to match with with
admissible A&A events

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 43 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Event Descriptor

〈SimpleTCEvent〉 ::= 〈SimpleTCPredicate〉 (〈Tuple〉) |
time(〈Time〉) |
〈EnvPredicate〉

an event descriptor 〈SimpleTCEvent〉 is either the invocation of a
primitive 〈SimpleTCPredicate〉 (〈Tuple〉), a time event
time(〈Time〉), or an environment event in terms of an
〈EnvPredicate〉
an event descriptor 〈SimpleTCEvent〉 is used to match with with
admissible A&A events

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 43 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Admissible Event

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉

〈Source〉 , 〈Target〉 ::= 〈AgentIdentifier〉 | 〈TCIdentifier〉 | 〈EnvResIdentifier〉
〈AgentIdentifier〉 ::= 〈AgentName〉 @ 〈NetworkLocation〉
〈TCIdentifier〉 ::= 〈TCName〉 @ 〈NetworkLocation〉

〈EnvResIdentifier〉 ::= 〈EnvResName〉 @ 〈NetworkLocation〉
〈AgentName〉 , 〈TCName〉 , 〈EnvResName〉 are Prolog ground terms

〈NetworkLocation〉 is a Prolog string representing either an IP name or a DNS entry
〈Time〉 is a non-negative integer

〈TCCycleResult〉 ::= ⊥ | {〈Tuple〉}
〈Tuple〉 is a Prolog term

an admissible A&A event descriptor includes its prime cause, its
immediate cause, and the result of the tuple centre response

prime cause and immediate cause may coincide—such as when an
agent invocation reaches its target tuple centre
or, they might be different—such as when a link primitive is invoked by
a tuple centre reacting to an agent primitive invocation upon another
tuple centre

a reaction specification tuple reaction(E,G,R) and an admissible
A&A event ε match if E unifies with ε. 〈Cause〉 . 〈SimpleTCEvent〉
the result is undefined in the invocation stage, whereas it is defined in
the completion stage

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 44 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Admissible Event

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉

〈Source〉 , 〈Target〉 ::= 〈AgentIdentifier〉 | 〈TCIdentifier〉 | 〈EnvResIdentifier〉
〈AgentIdentifier〉 ::= 〈AgentName〉 @ 〈NetworkLocation〉
〈TCIdentifier〉 ::= 〈TCName〉 @ 〈NetworkLocation〉

〈EnvResIdentifier〉 ::= 〈EnvResName〉 @ 〈NetworkLocation〉
〈AgentName〉 , 〈TCName〉 , 〈EnvResName〉 are Prolog ground terms

〈NetworkLocation〉 is a Prolog string representing either an IP name or a DNS entry
〈Time〉 is a non-negative integer

〈TCCycleResult〉 ::= ⊥ | {〈Tuple〉}
〈Tuple〉 is a Prolog term

an admissible A&A event descriptor includes its prime cause, its
immediate cause, and the result of the tuple centre response

prime cause and immediate cause may coincide—such as when an
agent invocation reaches its target tuple centre
or, they might be different—such as when a link primitive is invoked by
a tuple centre reacting to an agent primitive invocation upon another
tuple centre

a reaction specification tuple reaction(E,G,R) and an admissible
A&A event ε match if E unifies with ε. 〈Cause〉 . 〈SimpleTCEvent〉
the result is undefined in the invocation stage, whereas it is defined in
the completion stage

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 44 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Admissible Event

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉

〈Source〉 , 〈Target〉 ::= 〈AgentIdentifier〉 | 〈TCIdentifier〉 | 〈EnvResIdentifier〉
〈AgentIdentifier〉 ::= 〈AgentName〉 @ 〈NetworkLocation〉
〈TCIdentifier〉 ::= 〈TCName〉 @ 〈NetworkLocation〉

〈EnvResIdentifier〉 ::= 〈EnvResName〉 @ 〈NetworkLocation〉
〈AgentName〉 , 〈TCName〉 , 〈EnvResName〉 are Prolog ground terms

〈NetworkLocation〉 is a Prolog string representing either an IP name or a DNS entry
〈Time〉 is a non-negative integer

〈TCCycleResult〉 ::= ⊥ | {〈Tuple〉}
〈Tuple〉 is a Prolog term

an admissible A&A event descriptor includes its prime cause, its
immediate cause, and the result of the tuple centre response

prime cause and immediate cause may coincide—such as when an
agent invocation reaches its target tuple centre
or, they might be different—such as when a link primitive is invoked by
a tuple centre reacting to an agent primitive invocation upon another
tuple centre

a reaction specification tuple reaction(E,G,R) and an admissible
A&A event ε match if E unifies with ε. 〈Cause〉 . 〈SimpleTCEvent〉
the result is undefined in the invocation stage, whereas it is defined in
the completion stage

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 44 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Admissible Event

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉

〈Source〉 , 〈Target〉 ::= 〈AgentIdentifier〉 | 〈TCIdentifier〉 | 〈EnvResIdentifier〉
〈AgentIdentifier〉 ::= 〈AgentName〉 @ 〈NetworkLocation〉
〈TCIdentifier〉 ::= 〈TCName〉 @ 〈NetworkLocation〉

〈EnvResIdentifier〉 ::= 〈EnvResName〉 @ 〈NetworkLocation〉
〈AgentName〉 , 〈TCName〉 , 〈EnvResName〉 are Prolog ground terms

〈NetworkLocation〉 is a Prolog string representing either an IP name or a DNS entry
〈Time〉 is a non-negative integer

〈TCCycleResult〉 ::= ⊥ | {〈Tuple〉}
〈Tuple〉 is a Prolog term

an admissible A&A event descriptor includes its prime cause, its
immediate cause, and the result of the tuple centre response

prime cause and immediate cause may coincide—such as when an
agent invocation reaches its target tuple centre
or, they might be different—such as when a link primitive is invoked by
a tuple centre reacting to an agent primitive invocation upon another
tuple centre

a reaction specification tuple reaction(E,G,R) and an admissible
A&A event ε match if E unifies with ε. 〈Cause〉 . 〈SimpleTCEvent〉
the result is undefined in the invocation stage, whereas it is defined in
the completion stage

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 44 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Admissible Event

〈GeneralTCEvent〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈TCCycleResult〉
〈StartCause〉 , 〈Cause〉 ::= 〈SimpleTCEvent〉 , 〈Source〉 , 〈Target〉 , 〈Time〉

〈Source〉 , 〈Target〉 ::= 〈AgentIdentifier〉 | 〈TCIdentifier〉 | 〈EnvResIdentifier〉
〈AgentIdentifier〉 ::= 〈AgentName〉 @ 〈NetworkLocation〉
〈TCIdentifier〉 ::= 〈TCName〉 @ 〈NetworkLocation〉

〈EnvResIdentifier〉 ::= 〈EnvResName〉 @ 〈NetworkLocation〉
〈AgentName〉 , 〈TCName〉 , 〈EnvResName〉 are Prolog ground terms

〈NetworkLocation〉 is a Prolog string representing either an IP name or a DNS entry
〈Time〉 is a non-negative integer

〈TCCycleResult〉 ::= ⊥ | {〈Tuple〉}
〈Tuple〉 is a Prolog term

an admissible A&A event descriptor includes its prime cause, its
immediate cause, and the result of the tuple centre response

prime cause and immediate cause may coincide—such as when an
agent invocation reaches its target tuple centre
or, they might be different—such as when a link primitive is invoked by
a tuple centre reacting to an agent primitive invocation upon another
tuple centre

a reaction specification tuple reaction(E,G,R) and an admissible
A&A event ε match if E unifies with ε. 〈Cause〉 . 〈SimpleTCEvent〉
the result is undefined in the invocation stage, whereas it is defined in
the completion stage

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 44 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Guards

〈Guard〉 ::= 〈GuardPredicate〉 |
(〈GuardPredicate〉 {, 〈GuardPredicate〉})

〈GuardPredicate〉 ::= request | response | success | failure |
endo | exo | intra | inter |
from_agent | to_agent | from_tc | to_tc |
from_env | to_env |
before(〈Time〉) | after(〈Time〉)

〈Time〉 is a non-negative integer

A triggered reaction is actually executed only if its guard is true
All guard predicates are ground ones, so their have always a success /
failure semantics
Guard predicates concern properties of the event, so they can be used
to further select some classes of events after the initial matching
between the admissible event and the event descriptor

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 45 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Guards

〈Guard〉 ::= 〈GuardPredicate〉 |
(〈GuardPredicate〉 {, 〈GuardPredicate〉})

〈GuardPredicate〉 ::= request | response | success | failure |
endo | exo | intra | inter |
from_agent | to_agent | from_tc | to_tc |
from_env | to_env |
before(〈Time〉) | after(〈Time〉)

〈Time〉 is a non-negative integer

A triggered reaction is actually executed only if its guard is true
All guard predicates are ground ones, so their have always a success /
failure semantics
Guard predicates concern properties of the event, so they can be used
to further select some classes of events after the initial matching
between the admissible event and the event descriptor

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 45 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Guards

〈Guard〉 ::= 〈GuardPredicate〉 |
(〈GuardPredicate〉 {, 〈GuardPredicate〉})

〈GuardPredicate〉 ::= request | response | success | failure |
endo | exo | intra | inter |
from_agent | to_agent | from_tc | to_tc |
from_env | to_env |
before(〈Time〉) | after(〈Time〉)

〈Time〉 is a non-negative integer

A triggered reaction is actually executed only if its guard is true
All guard predicates are ground ones, so their have always a success /
failure semantics
Guard predicates concern properties of the event, so they can be used
to further select some classes of events after the initial matching
between the admissible event and the event descriptor

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 45 / 107

ReSpecT ReSpecT: Language & Semantics

Semantics of Guard Predicates in ReSpecT

Guard atom True if
Guard(ε, (g ,G)) Guard(ε, g) ∧ Guard(ε,G)

Guard(ε, endo) ε.Cause.Source = c
Guard(ε, exo) ε.Cause.Source 6= c

Guard(ε, intra) ε.Cause.Target = c
Guard(ε, inter) ε.Cause.Target 6= c

Guard(ε, from agent) ε.Cause.Source is an agent
Guard(ε, to agent) ε.Cause.Target is an agent

Guard(ε, from tc) ε.Cause.Source is a tuple centre
Guard(ε, to tc) ε.Cause.Target is a tuple centre

Guard(ε, from env) ε.Cause.Source is the environment
Guard(ε, to env) ε.Cause.Target is the environment

Guard(ε, before(t)) ε.Cause.Time < t
Guard(ε, after(t)) ε.Cause.Time > t
Guard(ε, request) ε.TCCycleResult is undefined

Guard(ε, response) ε.TCCycleResult is defined
Guard(ε, success) ε.TCCycleResult 6= ⊥
Guard(ε, failure) ε.TCCycleResult = ⊥

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 46 / 107

ReSpecT ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 47 / 107

ReSpecT ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 47 / 107

ReSpecT ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 47 / 107

ReSpecT ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 47 / 107

ReSpecT ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 47 / 107

ReSpecT ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 47 / 107

ReSpecT ReSpecT: Language & Semantics

〈GuardPredicate〉 aliases

request invocation, inv, req, pre

response completion, compl, resp, post

before(Time),after(Time’) between(Time,Time’)

from agent,to tc operation

from tc,to tc,endo,inter link out

from tc,to tc,exo,intra link in

from tc,to tc,endo,intra internal

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 47 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Reactions

〈Reaction〉 ::= 〈ReactionGoal〉 |
(〈ReactionGoal〉 {, 〈ReactionGoal〉})

〈ReactionGoal〉 ::= 〈TCPredicate〉 |
〈ObservationPredicate〉 |
〈Computation〉 |
(〈ReactionGoal〉 ; 〈ReactionGoal〉)

〈TCPredicate〉 ::= 〈SimpleTCPredicate〉 | 〈TCLinkPredicate〉|
〈TCEnvPredicate〉

〈TCLinkPredicate〉 ::= 〈TCIdentifier〉 ? 〈SimpleTCPredicate〉

A reaction goal is either a primitive invocation (possibly, a link), a
predicate recovering properties of the event, or some logic-based
computation

Sequences of reaction goals are executed transactionally with an
overall success / failure semantics

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 48 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Reactions

〈Reaction〉 ::= 〈ReactionGoal〉 |
(〈ReactionGoal〉 {, 〈ReactionGoal〉})

〈ReactionGoal〉 ::= 〈TCPredicate〉 |
〈ObservationPredicate〉 |
〈Computation〉 |
(〈ReactionGoal〉 ; 〈ReactionGoal〉)

〈TCPredicate〉 ::= 〈SimpleTCPredicate〉 | 〈TCLinkPredicate〉|
〈TCEnvPredicate〉

〈TCLinkPredicate〉 ::= 〈TCIdentifier〉 ? 〈SimpleTCPredicate〉

A reaction goal is either a primitive invocation (possibly, a link), a
predicate recovering properties of the event, or some logic-based
computation

Sequences of reaction goals are executed transactionally with an
overall success / failure semantics

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 48 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Tuple Centre Predicates

〈SimpleTCPredicate〉 ::= 〈TCStatePredicate〉 (〈Tuple〉) |
〈TCForgePredicate〉 (〈SpecificationTuple〉)

〈TCStatePredicate〉 ::= in | inp | rd | rdp | out | no
〈TCForgePredicate〉 ::= 〈TCStatePredicate〉_s

Tuple centre predicates are uniformly used for agent invocations,
internal operations, and link invocations

The same predicates are substantially used for changing the
specification state, with essentially the same semantics

pred s invocations affect the specification state, and can be used
within reactions, also as links

no works as a test for absence

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 49 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Tuple Centre Predicates

〈SimpleTCPredicate〉 ::= 〈TCStatePredicate〉 (〈Tuple〉) |
〈TCForgePredicate〉 (〈SpecificationTuple〉)

〈TCStatePredicate〉 ::= in | inp | rd | rdp | out | no
〈TCForgePredicate〉 ::= 〈TCStatePredicate〉_s

Tuple centre predicates are uniformly used for agent invocations,
internal operations, and link invocations

The same predicates are substantially used for changing the
specification state, with essentially the same semantics

pred s invocations affect the specification state, and can be used
within reactions, also as links

no works as a test for absence

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 49 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Tuple Centre Predicates

〈SimpleTCPredicate〉 ::= 〈TCStatePredicate〉 (〈Tuple〉) |
〈TCForgePredicate〉 (〈SpecificationTuple〉)

〈TCStatePredicate〉 ::= in | inp | rd | rdp | out | no
〈TCForgePredicate〉 ::= 〈TCStatePredicate〉_s

Tuple centre predicates are uniformly used for agent invocations,
internal operations, and link invocations

The same predicates are substantially used for changing the
specification state, with essentially the same semantics

pred s invocations affect the specification state, and can be used
within reactions, also as links

no works as a test for absence

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 49 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Tuple Centre Predicates

〈SimpleTCPredicate〉 ::= 〈TCStatePredicate〉 (〈Tuple〉) |
〈TCForgePredicate〉 (〈SpecificationTuple〉)

〈TCStatePredicate〉 ::= in | inp | rd | rdp | out | no
〈TCForgePredicate〉 ::= 〈TCStatePredicate〉_s

Tuple centre predicates are uniformly used for agent invocations,
internal operations, and link invocations

The same predicates are substantially used for changing the
specification state, with essentially the same semantics

pred s invocations affect the specification state, and can be used
within reactions, also as links

no works as a test for absence

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 49 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉 (〈Tuple〉)
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg
source from
target to

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 50 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉 (〈Tuple〉)
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg
source from
target to

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 50 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉 (〈Tuple〉)
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg
source from
target to

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 50 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉 (〈Tuple〉)
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg
source from
target to

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 50 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉 (〈Tuple〉)
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg
source from
target to

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 50 / 107

ReSpecT ReSpecT: Language & Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉 (〈Tuple〉)
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple |
source | target | time

event & start clearly refer to immediate and prime cause,
respectively—current refers to what is currently happening,
whenever this means something useful

〈EventInformation〉 aliases

predicate pred, call; deprecated: operation, op
tuple arg
source from
target to

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 50 / 107

ReSpecT ReSpecT: Language & Semantics

Semantics of Observation Predicates

〈(r ,R),Tu,Σ,Re,Out〉ε −→e 〈Rθ,Tu,Σ,Re,Out〉ε
r where

env(K, V) θ = mgu((ε.Key , ε.Value), (K, V))
event predicate(Obs) θ = mgu(ε.Cause.SimpleTCEvent.SimpleTCPredicate, Obs)

event tuple(Obs) θ = mgu(ε.Cause.SimpleTCEvent.Tuple, Obs)
event source(Obs) θ = mgu(ε.Cause.Source, Obs)
event target(Obs) θ = mgu(ε.Cause.Target, Obs)
event time(Obs) θ = mgu(ε.Cause.Time, Obs)

start predicate(Obs) θ = mgu(ε.StartCause.SimpleTCEvent.SimpleTCPredicate, Obs)
start tuple(Obs) θ = mgu(ε.StartCause.SimpleTCEvent.Tuple, Obs)

start source(Obs) θ = mgu(ε.StartCause.Source, Obs)
start target(Obs) θ = mgu(ε.StartCause.Target, Obs)
start time(Obs) θ = mgu(ε.StartCause.Time, Obs)

current predicate(Obs) θ = mgu(current predicate, Obs)
current tuple(Obs) θ = mgu(Obs, Obs) = {}
current source(Obs) θ = mgu(c , Obs)
current target(Obs) θ = mgu(c , Obs)

current time(Obs) θ = mgu(nc , Obs)

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 51 / 107

ReSpecT ReSpecT: Language & Semantics

Re-interpreting ReSpecT

ReSpecT tuple centres as coordination artifacts

tuple centres as social artifacts
tuple centres as individual artifacts?
tuple centres as environment artifacts?

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are
inspectable

not controllable

malleable
(linkable)
situated

time
environment

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 52 / 107

ReSpecT ReSpecT: Language & Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for MAS

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for MAS

Both spaces are inspectable

by MAS engineers, via ReSpecT inspectors
by agents, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another artifact / tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 53 / 107

ReSpecT ReSpecT: Language & Semantics

Malleability of ReSpecT Tuple Centres

The behaviour of a ReSpecT tuple centre is defined by the ReSpecT
tuples in the specification space

it can be adapted / changed by changing its ReSpecT specification

ReSpecT tuple centres are malleable

by MAS engineers, via ReSpecT tools
by agents, via in & out primitives

in & out for the tuple space; in s & out s for the specification space
either directly or indirectly, through either a coordination primitive, or
another artifact / tuple centre

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 54 / 107

ReSpecT ReSpecT: Language & Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also a ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
< TCIdentifier > @ < NetworkLocation >? < SimpleTCPredicate >

any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 55 / 107

ReSpecT ReSpecT: Language & Semantics

Situatedness of ReSpecT Tuple Centres

Time [Omicini et al., 2007]

Every tuple centre is immersed in time

reacting to time events
observing time properties of events
implementing timed coordination policies

Environment [Casadei and Omicini, 2009]

Every tuple centre is immersed in the environment

reacting to environment events
observing environmental properties
affecting environmental properties

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 56 / 107

ReSpecT Situated ReSpecT

Outline

1 The Limits of Linda

2 ReSpecT: Programming Tuple Spaces
Hybrid Coordination Models
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics
Situated ReSpecT
Situated ReSpecT: A Case Study

3 TuCSoN: A Space-based Infrastructure
The TuCSoN Model

4 Towards a Notion of Agent Coordination Context

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 57 / 107

ReSpecT Situated ReSpecT

Situated ReSpecT

ReSpecT artifacts for environment engineering

Artifacts are immersed into the MAS environment, and should be
reactive to events of any sort

Also, artifacts should mediate any agent activity toward the
environment, allowing for a fruitful interaction

⇒ ReSpecT tuple centres should be able to capture general environment
events, and to generally mediate agent-environment interaction

Situated ReSpecT: extensions

The ReSpecT language has been revised and extended so as to
capture environment events, and express general MAS-environment
interactions [Casadei and Omicini, 2009]

⇒ ReSpecT captures, reacts to, and observes general environment events

⇒ ReSpecT can explicitly interact with the environment

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 58 / 107

ReSpecT Situated ReSpecT

Extending ReSpecT towards Situatedness I

Environment events

ReSpecT tuple centres are extended to capture two classes of
environmental events

the interaction with sensors perceiving environmental properties,
through environment predicate get(〈Key〉,〈Value〉)
the interaction with actuators affecting environmental properties,
through environment predicate set(〈Key〉,〈Value〉)

Source and target of a tuple centre event can be any external
resource

a suitable identification scheme – both at the syntax and at the
infrastructure level – is introduced for environmental resources

Properties of an environmental event can be observed through the
observation predicate env(〈Key 〉,〈Value 〉)

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 59 / 107

ReSpecT Situated ReSpecT

Extending ReSpecT towards Situatedness II

Environment communication

The ReSpecT language is extended to express explicit communication
with environmental resources

The body of a ReSpecT reaction can contain a tuple centre predicate
of the form

〈EnvResIdentifier〉 ? get(〈Key〉,〈Value〉)
enabling a tuple centre to get properties of environmental resources
〈EnvResIdentifier〉 ? set(〈Key〉,〈Value〉)
enabling a tuple centre to set properties of environmental resources

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 60 / 107

ReSpecT Situated ReSpecT

Extending ReSpecT towards Situatedness III

Transducers

Specific environment events have to be translated into well-formed
ReSpecT tuple centre events

This should be done at the infrastructure level, through a
general-purpose schema that could be specialised according to the
nature of any specific resource

A ReSpecT transducer is a component able to bring
environment-generated events to a ReSpecT tuple centre (and back),
suitably translated according to the general ReSpecT event model

Each transducer is specialised according to the specific portion of the
environment it is in charge of handling—typically, the specific resource
it is aimed at handling, like a temperature sensor, or a heater.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 61 / 107

ReSpecT Situated ReSpecT: A Case Study

Outline

1 The Limits of Linda

2 ReSpecT: Programming Tuple Spaces
Hybrid Coordination Models
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics
Situated ReSpecT
Situated ReSpecT: A Case Study

3 TuCSoN: A Space-based Infrastructure
The TuCSoN Model

4 Towards a Notion of Agent Coordination Context

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 62 / 107

ReSpecT Situated ReSpecT: A Case Study

Controlling Environmental Properties of Physical Areas

A set of real sensors are used to measure some environmental property
(for instance, temperature) within an area where they are located
Such information is then exploited to govern suitably placed actuators
(say, heaters) that can affect the value of the observed property in the
environment
Sensors are supposed to be cheap and non-smart, but provided with
some kind of communication interface – either wireless or wired –
that makes it possible to send streams of sampled values of the
environmental property under observation
Accordingly, sensors are active devices, that is, devices pro-actively
sending sensed values at a certain rate with no need of being asked
for such data—this is what typically occurs in pervasive computing
scenarios
Altogether, actuators and sensors are part of a MAS aimed at
controlling environmental properties (in the case study, temperature),
which are affected by actuators based on the values measured by
sensors and the designed control policies as well
Coordination policies can be suitably automated and encapsulated
within environment artifacts controlling sensors and actuators

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 63 / 107

ReSpecT Situated ReSpecT: A Case Study

Case Study: ReSpecT-based Architecture

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 64 / 107

ReSpecT Situated ReSpecT: A Case Study

Case Study: Artifact Structure

Artifacts are internally defined in terms of A&A ReSpecT tuple centres:

<<sensor>> artifacts wrapping real temperature sensors which
perceive temperature of different areas of the room

<<actuator>> artifacts wrapping actuators, which act as heating
devices so as to control temperature

<<aggregator>> artifact provides an aggregated view of the
temperature values perceived by sensors spread in the room since it is
linked to <<sensor>> artifacts:

<<sensor>> artifacts update tuples on <<aggregator>>
artifact through linkability

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 65 / 107

ReSpecT Situated ReSpecT: A Case Study

Case Study: Sensor Artifacts

%(1)
reaction(get(temperature, Temp), from_env, (

event_time(Time), event_source(sensor(Id)),
out(sensed_temperature(Id,Temp,Time)),
tc_aggr@node_aggr ? out(sensed_temperature(Id,Temp)))

).
%(2)
reaction(out(sensed_temperature(_,Temp,_)), from_tc, (

in(current_temperature(_)),
out(current_temperature(Temp)))

).

Behaviour

Reaction (1) is triggered by external events generated by a
temperature sensor
Reaction (2) updates current temperature

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 66 / 107

ReSpecT Situated ReSpecT: A Case Study

Case Study: Aggregator Artifacts

%(4)
reaction(out(sensed_temperature(Id,Temp)), from_tc, (

in(total_temperature(OldTotalTemp),
in(sensed_temperature(Id,OldTemp)),
TotalTemp is OldTotalTemp - OldTemp + Temp,
out(total_temperature(TotalTemp),
rd(number_of_sensors(SensorNo),
AvgTemp is TotalTemp / SensorNo,
in(average_temp(_)), out(average_temp(AvgTemp)))

).

Behaviour

Reaction (4) keeps track of the current state of the average
temperature

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 67 / 107

ReSpecT Situated ReSpecT: A Case Study

Case Study: Agents

Observable behaviour

Agents are goal-oriented and proactive entities that control temperature of
the room

1 get local information from sensor
tc sens@node i ? rd(current temperature(Temp i))

2 get global information from aggregator
tc aggr@node aggr ? rd(average temp(AvgTemp))

3 deliberate action by determining TempVar based on Temp i and
AvgTemp

4 act upon actuators (if TempVar6= 0)
tc-heat i@node i ? out(change temperature(TempVar))

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 68 / 107

ReSpecT Situated ReSpecT: A Case Study

Case Study: Actuator Artifacts

%(3)
reaction(out(change_temperature(TempVar)), from_agent,

actuator_i ? set(temp_inc,TempVar)
).

Behaviour

When the controller agent deliberate an increment in the temperature

a tc-heat i@node i ? out(change temperature(TempVar))
reaches the actuator artifact
by reaction (3), a suitable signal is sent to the actuator, through the
suitably-installed transducer

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 69 / 107

TuCSoN The TuCSoN Model

Outline

1 The Limits of Linda

2 ReSpecT: Programming Tuple Spaces
Hybrid Coordination Models
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics
Situated ReSpecT
Situated ReSpecT: A Case Study

3 TuCSoN: A Space-based Infrastructure
The TuCSoN Model

4 Towards a Notion of Agent Coordination Context

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 70 / 107

TuCSoN The TuCSoN Model

TuCSoN Coordination Model

Tuple Centre Spread over the Network
[Omicini and Zambonelli, 1999].

Started from the idea of proposing a notion of an associative shared
dataspace whose behaviour can be tailored according to the specific
application needs

From tuple spaces to tuples centres [Omicini and Denti, 2001]:
actually, ReSpecT was born here
Tuple centres are programmable tuple spaces

⇒ Programmabile coordination media
⇒ The coordination model it is the same as Linda

Tuple centres are distributed over the network, collected in nodes

⇒ Distributed coordination media

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 71 / 107

TuCSoN The TuCSoN Model

TuCSoN Coordination Space

Set of distributed nodes

Each TuCSoN node is an
Internet node identified by the
IP (logic) address

TuCSoN topology

Here, Internet topology

HiMAT [Cremonini et al., 1999]:
hierarchical, dynamic,
configurable topology

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 72 / 107

TuCSoN The TuCSoN Model

TuCSoN Node / Context I

Each TuCSoN node defines a
coordination context, providing an open
/ dynamic set of tuple centres as
coordination media

Identified by means of a logic
name (a ground FOL term).
Ex: mail(aricci),
room(‘2.3’),
ticket dispenser, ...

Full tuple centre identifier:
<name>@<node>.
Ex: mail(aricci)@myhome.org,
room(‘2.3’)@ingce.unibo.it,
ticket dispenser@137.204.191.188,
...

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 73 / 107

TuCSoN The TuCSoN Model

TuCSoN Node / Context II

In order to access and use the tuple
centres of a node, an agent should
enter the coordination context, either
logically or physically (mobile agents)

Agent Coordination Context (ACC)
[Omicini, 2001].

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 74 / 107

TuCSoN The TuCSoN Model

Tuple Centres Features I

Programmable

Tuple centre behaviour can be
programmed to enact the desired
coordination policies

ReSpecT is an example of
programming language for
specification of the behaviour

It programs as set of logic
tuples (reactions, first order
logic terms such as Prolog
terms) specifying medium
behaviour reacting to
interaction events

⇒ Tuple centres as a general purpose
coordination media customisabled
by means of a specification
language like ReSpecT

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 75 / 107

TuCSoN The TuCSoN Model

Tuple Centres Features II

Adaptable at runtime

Tuple centre behaviour can be
changed / adapted dynamically, at
runtime, by re-programming the
coordination media

Locality / encapsulation

Tuple centres embed coordination
laws

⇒ A tuple centre can be a
full-fledged coordination
abstraction

Reaction model ensure
encapsulation of low-level
coordination policies

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 76 / 107

TuCSoN The TuCSoN Model

Tuple Centres Features III

Inspectable at runtime

Tuple centre behaviour can
be inspected dinamically, at
runtime

Uniformity of languages

Same structure / primitives
for communication and
coordination

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 77 / 107

TuCSoN The TuCSoN Model

Simple Examples I

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 78 / 107

TuCSoN The TuCSoN Model

Simple Examples II

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 79 / 107

TuCSoN The TuCSoN Model

TuCSoN Technology I

TuCSoN API

Virtually any hosting language, currently Java and Prolog

⇒ Support for Java and Prolog agents

Heterogeneous hardware support

TuCSoN Service

Booting the TuCSoN Service daemon

The host becomes a TuCSoN node
With current version (1.4.5):
java -cp dir/tucson.jar alice.tucson.service.Node

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 80 / 107

TuCSoN The TuCSoN Model

TuCSoN Technology II

TuCSoN Tools

Inspector

Fundamental tool to monitor tuple centre communication and
coordination state, and to debug tuple centre behaviour
With current version (1.4.5):
java -cp dir/tucson.jar alice.tucson.tools.Inspector

TuCSoN Shell

Shell interface for human agents
With current version (1.4.5):
java -cp dir/tucson.jar alice.tucson.tools.CLIAgent

TuCSoN technology is freely available in

http://tucson.alice.unibo.it/

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 81 / 107

http://tucson.alice.unibo.it/

TuCSoN The TuCSoN Model

TuCSoN on the Fly

Booting a TuCSoN node

Using a tuble centre (as a human agent) by exploiting TuCSoN shell
node

Inspecting and debugging tuple centres by exploiting TuCSoN
inspector

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 82 / 107

TuCSoN The TuCSoN Model

Development in TuCSoN

Building simple systems

Experiments with the ”Hello world” simple Java agent.

Creating simple coordination among Java, human and Prolog agents.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 83 / 107

TuCSoN The TuCSoN Model

TuCSoN in Java I

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 84 / 107

TuCSoN The TuCSoN Model

TuCSoN in Java II

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 85 / 107

TuCSoN The TuCSoN Model

TuCSoN in Java III

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 86 / 107

TuCSoN The TuCSoN Model

TuCSoN in Prolog (tuProlog)

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 87 / 107

TuCSoN The TuCSoN Model

Remind

Ruling inter-agent and agent-environment interactions is an
environment concern [Weyns et al., 2007]

⇒ TuCSoN is a part of the agent environment

Until now, we have seen TuCSoN as an infrastructure supporting
inter-agent interactions . . .

. . . but we can also see TuCSoN as an infrastructure supporting
agent-environment interactions

Internal environment (work environment)

External environment (see Situated ReSpecT
[Casadei and Omicini, 2009])

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 88 / 107

Towards a Notion of Agent Coordination Context

Coordination in Modern Software Systems

We call context the physical / virtual and social situation in which an
agent is situated [Moran and Dourish, 2001]

⇒ In open world components need some form of context awareness in
order to interact with both other agents and environment

When an agent enters in a new context, the environment should
provide it with a sort of control room that provides agents with
context awareness [Omicini, 2002]

Is the only way in which the agent can perceive the environment as well
as . . .
. . . the only way in which the agent can interact

⇒ It is possible to scale with openness of modern software systems

⇒ While the environment manages social coordination, the control room
manage coordination of the particular agent

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 89 / 107

Towards a Notion of Agent Coordination Context

Agent Coordination Context (ACC) [Omicini, 2001] I

Should be works as a model for the agent environment, by describing
the environment where an agent can interact

Subjective viewpoint — an ACC should provide agents with a
suitable representation of the environment where they
live, interact, and communicate

Objective viewpoint — an ACC should provide a framework to
express the interaction within a MAS as a whole, i.e.
the space of MAS interaction, that is, the admissible
interactions occurring among the agents of a MAS, and
between the agents of a MAS and the MAS environment

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 90 / 107

Towards a Notion of Agent Coordination Context

Agent Coordination Context (ACC) [Omicini, 2001] II

Should enables and rules the interactions between the agent and the
environment by defining the space of the admissible agent
interactions.

Subjective viewpoint — the coordination context enables in principle
agents to perceive the space where they act and
interact, reason about the effect of their actions and
communications, and possibly affect the environment to
accomplish their own goals.

Objective viewpoint — the coordination context would allow
engineers to encapsulate rules for governing applications
built as agent systems, mediate the interactions
amongst agents and the environment, and possibly
affect them so as to change global application behaviour
incrementally and dynamically.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 91 / 107

Towards a Notion of Agent Coordination Context

Agent Coordination Context (ACC) [Omicini, 2001] III

Should be conceived not only as a tool for human designers, but also
as a run-time abstraction provided as a service to agents by a suitable
infrastructure.

⇒ agent model or behaviour is not constrained a priori

⇒ Two basic stages characterize the ACC dynamics [Ricci et al., 2006]:

ACC negotiation — An ACC is meant to be negotiated by the agents
with the MAS infrastructure, in order to start a working
session inside an organisation, specifying which roles to
activate

ACC use — The agent then can use the ACC to interact with the
organisation environment, by exploiting the actions /
perceptions enabled by the ACC

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 92 / 107

Towards a Notion of Agent Coordination Context

Agent Coordination Context (ACC) [Omicini, 2001] IV

Should be dynamically configurable and inspectable by both agents
and humans.

Configurability would allow a MAS to evolve at run time, by suitably
adapting its behaviour to changes.

Inspectability would allow both humans and intelligent agents to reason
about the current laws of coordination as represented and embodied
within coordination contexts, and to possibly change them by properly
reconfigure coordination contexts according to new application needs.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 93 / 107

Towards a Notion of Agent Coordination Context

ACC in MAS Infrastructure [Ricci et al., 2006] I

ACC framework is orthogonal both to the specific computational
model(s) adopted to define agent behaviour, and to the interaction
model(s) adopted to specify how agents communicate, and more
generally, interact within the environment.

⇒ It is possible to extend any MAS infrastructure with the ACC
framework in order to support the organisation and security features.

As minimum requirements, the infrastructure must explicitly define
two different models:

It must provide a model of interaction, expressing agent / perceptions
(including eventually communication).

It should specify a basic organisational model, at least including the
notion of agent identity.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 94 / 107

Towards a Notion of Agent Coordination Context

ACC in MAS Infrastructure [Ricci et al., 2006] II

A general model of ACC can be defined, by describing three distinct
aspects characterizing the ACC concept [Ricci et al., 2006]:

ACC Interface — It defines the set of admissible operations provided
by the infrastructure for interacting with the (social and
resource) environment

ACC Contract — It is a description of the relationships between the
agent and the (organisation) environment where the
agent is playing, in particular of the policy enacted by
the ACC ruling agent actions and interaction protocols

ACC Configuration — The ACC configuration is a description of the
run-time state of the ACC, concerning the evolution of
ongoing interaction protocols

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 95 / 107

Towards a Notion of Agent Coordination Context

ACC as a Unifying Abstraction for Organisation and
Security I

ACC can be exploited as a unifying abstraction to face a number of
otherwise heterogeneous issues in the modelling and engineering of
MASs where MASs are seen as structural / social settings
[Ricci et al., 2006]. In particular:

Modelling Organisation

Modelling Access Control

Modelling the Quality of Interaction

Modelling Relationships between Agents and Institutions

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 96 / 107

Towards a Notion of Agent Coordination Context

ACC as a Unifying Abstraction for Organisation and
Security II

Modelling Organisation — When engineering complex software systems by
adopting agent-oriented abstractions, organisation emerges a
fundamental dimension [Omicini et al., 2005a]. The ACC
abstraction makes it possible to explicitly model the presence
of an agent in an organisational context where specific
structures and rules are defined.

Modelling Access Control — Agent autonomy and system openness are
among the main features that make the engineering of
security particularly challenging in the context of MASs
[Omicini and Ricci, 2004]. The governing behaviour enacted
by the ACC on the agent actions makes this abstraction
suitable to model forms of dynamic access control to
environment resources.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 97 / 107

Towards a Notion of Agent Coordination Context

ACC as a Unifying Abstraction for Organisation and
Security III

Modelling the Quality of Interaction — As an interface, the ACC is the
conceptual framework place where non-functional properties
related to the quality of the interaction / communication can
be suitably modelled [Ricci and Omicini, 2002].

Modelling Relationships between Agents and Institutions — The ACC
represents a contract between the agent and the institution
(organisation) that released it.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 98 / 107

Towards a Notion of Agent Coordination Context

ACC as a Unifying Abstraction for Organisation,
Coordination, and Security IV

Conceiving and representing different issues exploiting a unified
abstraction have several benefits [Omicini and Ricci, 2003]. In
particular:

Conceptual economy is obviously the first benefit

A common framework is the most obvious way to consistently support
adaption and evolution of such issues

There are system aspects that can be modelled and engineered in their
complex articulation only by considering such issues at the same time

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 99 / 107

Towards a Notion of Agent Coordination Context

Experiments in TuCSoN Infrastructure

In [Cremonini et al., 1999] TuCSoN was extended in order to deal
with security and topology issues

The access control model adopted, however was unrelated from
organisation specification and management

⇒ In [Omicini et al., 2005a] the previous approach was integrated with
RBAC-like architecture, by explicitly considering access control as
linked to organisation structures and rules

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 100 / 107

Conclusions

1 The Limits of Linda

2 ReSpecT: Programming Tuple Spaces
Hybrid Coordination Models
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Semantics
Situated ReSpecT
Situated ReSpecT: A Case Study

3 TuCSoN: A Space-based Infrastructure
The TuCSoN Model

4 Towards a Notion of Agent Coordination Context

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 101 / 107

Conclusions

Bibliography I

Arbab, F. (2004).
Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14:329–366.

Casadei, M. and Omicini, A. (2009).
Situated tuple centres in ReSpecT.
In Shin, S. Y., Ossowski, S., Menezes, R., and Viroli, M., editors, 24th Annual ACM
Symposium on Applied Computing (SAC 2009), Honolulu, Hawai’i, USA. ACM.

Cremonini, M., Omicini, A., and Zambonelli, F. (1999).
Multi-agent systems on the Internet: Extending the scope of coordination towards security
and topology.
In Garijo, F. J. and Boman, M., editors, Multi-Agent Systems Engineering, volume 1647 of
LNAI, pages 77–88. Springer-Verlag.
9th European Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW’99), Valencia, Spain, 30 June– 2 July 1999. Proceedings.

Dastani, M., Arbab, F., and de Boer, F. S. (2005).
Coordination and composition in multi-agent systems.
In Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M. P., and Wooldridge, M. J.,
editors, 4rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2005), pages 439–446, Utrecht, The Netherlands. ACM.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 102 / 107

Conclusions

Bibliography II

Dijkstra, E. W. (2002).
Co-operating sequential processes.
In Hansen, P. B., editor, The Origin of Concurrent Programming: From Semaphores to
Remote Procedure Calls, chapter 2, pages 65–138. Springer.
Reprinted. 1st edition: 1965.

Moran, T. and Dourish, P. (2001).
Introduction to this special issue on context-aware computing.
Human-Computer Interaction, 20(2–4):87–95.

Omicini, A. (2001).
On the notion of agent coordination context: Preliminary notes.
AI*IA Notizie, XIV(4):44–46.

Omicini, A. (2002).
Towards a notion of agent coordination context.
In Marinescu, D. C. and Lee, C., editors, Process Coordination and Ubiquitous Computing,
chapter 12, pages 187–200. CRC Press, Boca Raton, FL, USA.

Omicini, A. and Denti, E. (2001).
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 103 / 107

Conclusions

Bibliography III

Omicini, A. and Ricci, A. (2003).
Reasoning about organisation: Shaping the infrastructure.
AI*IA Notizie, XVI(2):7–16.

Omicini, A. and Ricci, A. (2004).
MAS organisation within a coordination infrastructure: Experiments in TuCSoN.
In Omicini, A., Petta, P., and Pitt, J., editors, Engineering Societies in the Agents World
IV, volume 3071 of LNAI, pages 200–217. Springer-Verlag.
4th International Workshop (ESAW 2003), London, UK, 29–31 October 2003. Revised
Selected and Invited Papers.

Omicini, A., Ricci, A., and Viroli, M. (2005a).
RBAC for organisation and security in an agent coordination infrastructure.
Electronic Notes in Theoretical Computer Science, 128(5):65–85.
2nd International Workshop on Security Issues in Coordination Models, Languages and
Systems (SecCo’04), 30 August 2004. Proceedings.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 104 / 107

Conclusions

Bibliography IV

Omicini, A., Ricci, A., and Viroli, M. (2005b).
Time-aware coordination in ReSpecT.
In Jacquet, J.-M. and Picco, G. P., editors, Coordination Models and Languages, volume
3454 of LNCS, pages 268–282. Springer-Verlag.
7th International Conference (COORDINATION 2005), Namur, Belgium,
20–23 April 2005. Proceedings.

Omicini, A., Ricci, A., and Viroli, M. (2007).
Timed environment for Web agents.
Web Intelligence and Agent Systems, 5(2):161–175.

Omicini, A. and Zambonelli, F. (1999).
Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269.
Special Issue: Coordination Mechanisms for Web Agents.

Ricci, A. and Omicini, A. (2002).
Agent coordination contexts: Experiments in TuCSoN.
In De Paoli, F., Manzoni, S., and Poggi, A., editors, AI*IA/TABOO Joint Workshop
“Dagli oggetti agli agenti: dall’informazione alla conoscenza” (WOA 2002), Milano, Italy.
Pitagora Editrice Bologna.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 105 / 107

Conclusions

Bibliography V

Ricci, A., Viroli, M., and Omicini, A. (2006).
Agent coordination contexts in a MAS coordination infrastructure.
Applied Artificial Intelligence, 20(2–4):179–202.
Special Issue: Best of “From Agent Theory to Agent Implementation (AT2AI) – 4”.

Weyns, D., Omicini, A., and Odell, J. (2007).
Environment as a first-class abstraction in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 14(1):5–30.
Special Issue on Environments for Multi-agent Systems.

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 106 / 107

Conclusions

Tuple-based Coordination:
From Linda to ReSpecT & TuCSoN

Multiagent Systems LS
Sistemi Multiagente LS

Andrea Omicini
after Matteo Casadei, Elena Nardini, Alessandro Ricci

andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2009/2010

Andrea Omicini (Università di Bologna) Tuple-based Coordination A.Y. 2009/2010 107 / 107

	Outline
	The Limits of Linda
	ReSpecT: Programming Tuple Spaces
	Hybrid Coordination Models
	Tuple Centres
	Dining Philosophers with ReSpecT
	ReSpecT: Language & Semantics
	Situated ReSpecT
	Situated ReSpecT: A Case Study

	TuCSoN: A Space-based Infrastructure
	The TuCSoN Model

	Towards a Notion of Agent Coordination Context
	Conclusions

