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5. Physical properties of clusters

5.1 Physical properties of the hot gas in clusters

5.1.1 Mean free path

[S:5.4.1]

→ The mean free path for electron-electron Coulomb collisions is

λe ∝
T 2

e

ne ln Λ
, (5.2)

where ln Λ is the Coulomb logarithm (ln of the ratio between largest

and smallest impact parameter), weakly dependent of Te and ne:

ln Λ = 37.8 ln

[(

Te

108K

)

( ne

10−3cm−3

)−1/2
]

. (5.3)

→ For typical Te and ne of Intracluster Medium (ICM):

λe ≃ 23

(

Te

108K

)2
( ne

10−3cm−3

)−1
kpc (5.4)

=⇒ λe ≪ cluster size =⇒ ICM is a collisional fluid satisfying the

hydrodynamic equations.

→ Electrons achieve an isotropic Maxwellian velocity distribution in a

timescale

tee ≡
λe

σe
≃ 3 × 105

(

Te

108K

)3/2
( ne

10−3cm−3

)−1
yr, (5.5)

where σe is the r.m.s. electron veocity, given by

1

2
meσ

2
e =

3

2
kBTe. (5.6)

→ For protons tpp ≃
√

mp/metee, and for equipartition tep ≃
(mp/me)tee ≃ 6 × 108yr ≪ cluster age =⇒ ICM is a plasma at

Tgas ∼ Te ∼ Tp.
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5.1.2 Hydrostatic models of the ICM

[S:5.5, S:5.5.1, S:5.5.2, V.II.B.2]

→ The sound crossing time ts = D/cs ∝ D/
√
Te (where cs is sound speed

and D is the cluster size) is shorter than the cluster age and cooling

time =⇒ hydrostatic equilibrium

∇P = −ρgas∇Φ, (5.7)

where Φ is the total gravitational potential.

If spherically symmetric

dP

dr
= −ρgas

dΦ

dr
= −ρgas

GM(r)

r2
, (5.8)

where M(r) is the total mass (DM+gas+galaxies) within r.

Isothermal distributions

→ Consider isothermal gas at temperature Te in equilibrium =⇒ using

P = ρgaskBTe/µmp = ngaskBTe we get

d ln ngas

d ln r
= −µmpr

kBTe

dΦ

dr
= − µmp

kBTe

GM(r)

r
. (5.9)

→ For example if the total mass distribution is a singular isothermal

sphere (SIS) ρ(r) = σ2/2πGr2, M(r) = 2σ2r/G (σ = const is 1D

velocity dispersion), the density distribution of an isothermal gas in

equilibrium is a power law ngas ∝ r−α with

α = −d lnngas

d ln r
=

2µmpσ
2

kBTe
, (5.10)

dependent on the gas temperature.

→ Introducing the virial temperature of the cluster (SIS) potential Tvir ≡
µmpσ

2/kB , the density slope is α = 2Tvir/Te.
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→ Observed cluster temperature profiles are almost (but not exactly)

isothermal. Typically the temperature slightly increases with radius

in the central regions and decreases with radius in the outer regions.

Polytropic distributions

→ Isothermal distributions are special cases of polytropic distributions,

in which p ∝ ργpol , where γpol is the polytropic index. If γpol = 1

=⇒ isothermal distribution; if γpol = γ = 5/3 =⇒ adiabatic

distribution. We will consider 1 ≤ γpol ≤ 5/3.

→ In the adiabatic case γpol = γ = 5/3 the entropy K of the gas is

constant throughout the cluster =⇒ distributions with γpol > 5/3 are

convectively unstable. If γpol < 5/3 entropy increases outwards.

→ In polytropic models p/p0 = (ρ/ρ0)
γpol , Te/Te,0 = (ρ/ρ0)

γpol−1 or

p/p0 = (Te/Te,0)
γpol/(γpol−1), where subscript 0 indicates quantities

evaluated at a reference radius r0 =⇒

1

ρ
∇P =

γpol

γpol − 1

kB

µmp
∇Te. (5.11)

→ From the hydrostatic equation we get the solution

Te

Te,0
= 1 − µmp

kBTe,0

γpol − 1

γpol
(Φ − Φ0) (5.12)

and

ρ

ρ0
=

(

Te

Te,0

) 1
γpol−1

. (5.13)

The gas distribution can be truncated or not depending on the value

of Te,0.

5.1.3 Intracluster entropy

[V:IV.A.1]
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→ A quantity often used in the study of the ICM is the “entropy”

K ≡ P

ργ
=

kBT

µmpρ
2/3
gas

, (5.14)

in units of erg cm2 g−5/3 This quantity is related to the thermodynamic

entropy per particle by

s = kB lnK3/2 + s0. (5.15)

→ Sometimes also the following quantity is called “entropy”

Ke = kBTn
−2/3
e (5.16)

in units of keV cm2. Ke is often indicated also as S.

→ Independent of the details of the definition entropy is a quantity such

that it is conserved in adiabatic transformations p = Kρ5/3 =⇒ in a

polytropic distribution with γpol = γ = 5/3 (= adiabatic distribution)

all gas particles have the same entropy.

→ Heating =⇒ K increases; cooling =⇒ K decreases.

→ Observed ISM density, temperature, and entropy profiles: entropy

increases outwards.

5.1.4 Intracluster metallicity

→ Metallicity or metal abundance is the fraction of metals with respect to

H and He (Metals are all elements other than H and He). Metallicity

Z usually measured in units of solar metallicty Z⊙

→ X,Y,Z are the H, He and metal mass fraction. For the sun: X ≃ 0.74,

Y ≃ 0.24 and Z ≃ 0.02.
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→ ICM abundances are relatively easy to measure from intensity of

emission lines of X-ray spectra. In particular 7 kev Fe line. =⇒ on

average Z ∼ 0.3Z⊙.

→ Metallicity gradients: metallicity decreases outward in clusters (with

central dominant galaxy)

→ No evidence of variation of ISM metallicity with redshift (at least up

to z ∼ 0.5.

→ Iron in ICM > iron in all stars in the cluster galaxies =⇒ galaxies

lose more metals than they retain. It is not clear whether supernova

feedback is enough.

5.2 Mass of galaxy clusters

5.2.1 Baryons and dark matter in clusters

→ Total mass with different methods, using galaxies, gas, gravitational

lensing. Not always agreement among estimates with different

methods, but improving.

→ Total mass profile not far from isothermal (ρtot ∝ r−2) at intermediate

radii: typically shallower at small radii and steeper at large radii. Total

masses ∼ 1014 − 1015M⊙.

→ Mass fractions (in rich clusters): dark matter 80-87%, baryons (13-

20%) [hot gas 11-15%, galaxies (stars) 2-5%]

→ Galaxies and dark matter distribution more concentrated than gas

distribution

5.2.2 Virial theorem

[S:2.8]
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→ Zeroth-order estimate of cluster mass Mtot (Zwicky 1937)

→ Assume cluster is in equilibrium =⇒ 2T + W = 0 (virial theorem),

where the kinetic energy is

T =
1

2
Mtotσ

2
V , (5.17)

where σV is the virial velocity dispersion and the gravitational

potential energy is

W = −GM
2
tot

rg
, (5.18)

where rg is the gravitational radius (dependent on the mass

distribution)

→ If one knew σV and rg =⇒Mtot because

Mtot =
rgσV

G
(5.19)

→ Assuming spherical symmetry and isotropic velocity distribution =⇒
σ2

V = 3σ2
los, where σlos is the line-of-sight velocity dispersion of cluster

galaxies.

→ Assuming also that galaxy distribution traces mass distribution

rg = 2

(

∑

i

mi

)2




∑

i6=j

mimj

rij





−1

, (5.20)

where mi is galaxy mass and rij galaxy-galaxy separation. In terms

of the projected galaxy-galaxy separation Rij , rg = (π/2)Rg (derive)

where

Rg = 2

(

∑

i

mi

)2




∑

i6=j

mimj

Rij





−1

. (5.21)

→ Thus

Mtot =
3rgσ

2
los

G
= 7 × 1014

(

σlos

1000 km/s

)2( rg
Mpc

)

(5.22)

→ OK order of magnitude, but assumptions not necessarily justified.
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5.2.3 Jeans modeling

[Binney & Tremaine (Galactic dynamics):4.8.1]

→ More accurate mass determination using galaxy velocity and density

profiles =⇒ Jeans modeling =⇒ determine cluster mass profile.

→ For spherical stationary cluster the radial component σr(r) of the

velocity dispersion tensor is given by solving the Jeans equation

dngalσ
2
r

dr
+

2βngalσ
2
r

r
= −ngalgr, (5.23)

where gr(r) = dΦ(r)/dr = GM(r)/r2, Φ(r) is the total gravitational

potential, M(r) is the total mass profile and

β(r) ≡ 1 −
σ2

ϑ + σ2
ϕ

2σ2
r

(5.24)

is the anisotropy parameter (σϑ and σϕ are, respectively, the ϑ and ϕ

components of the velocity-dispersion tensor).

The line-of-sight velocity dispersion is

σ2
los(R) =

2

Σgal(R)

∫ ∞

R

[

1 − β(r)
R2

r2

]

ngal(r)σ
2
rrdr√

r2 −R2
, (5.25)

where

Σgal(R) = 2

∫ ∞

R

ngal(r)rdr√
r2 −R2

. (5.26)

ngal and Σgal are the intrinsic and projected number of galaxy density.

σr and σlos are the intrinsic and projected velocity dispersions of

galaxies.

→ It is possible to build model of given ngal(r), β(r) and M(r), compute

Σgal(R) and σlos(R) and compare with observed quantities.
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→ Viceversa, assuming β(r) it is possible to derive M(r) if we know

ngal(r) and σr(r). By deprojecting Σgal one obtains the corresponding

intrinsic density distribution (Abel inversion)

ngal(r) = − 1

π

∫ ∞

r

dΣgal

dR

dR√
R2 − r2

(5.27)

Simlarly, deprojecting σlos(R) one can obtain σr(r).

5.2.4 Hydrostatic equilibrium of hot gas

[S:5.5.5,V:II.B.1,V:II.B.2]

→ Assume hot gas in hydrostatc equilibrium in the cluster gravitational

potential:

∇P = −ρgas∇Φ. (5.28)

If spherically symmetric

dP

dr
= −ρgas

dΦ

dr
= −ρgas

GM(r)

r2
. (5.29)

→ Using P = ρgaskBTe/µmp we get

M(r) = −kBrTe(r)

µmpG

(

d ln ρgas

d ln r
+
d lnTe

d ln r

)

(5.30)

→ If we know ρgas and Te =⇒M(r). But the observables are X-ray SB

profiles and spectrum. When spectra and intensity at different annuli

are available it is possible to obtain Te and ne profiles by deprojection,

assuming spherical symmetry (not easy! different techniques).

→ Recall that X-ray emissivity depends on temperature as well as on

density ǫ ∝ n2
eΛ(T )

→ If gas is isothermal at temperature Te:

M(r) = −kBrTe

µmpG

d ln ρgas

d ln r
(5.31)



10 L.M. Astrofisica e Cosmologia - Bologna

If β model (derive)

M(r) =
3βrkBTe

µmpG

r2

r2 + r2c
. (5.32)
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6. Gravitational lensing by cluster of galaxies

6.0.2 Introduction

[V:II.A.3]

→ Gravitational lensing is sensitive to mass within a projected radius R,

which deflects light from background galaxies. Large deflection angle

=⇒ strong lensing; small deflection angle =⇒ weak lensing

→ Strong lensing produces gravitational arcs (typically tangential).

Needs high surface mass density =⇒ central regions of clusters

=⇒ measures of the central mass distribution

→ Weak lensing produces small distortion of shape and orientation of

background galaxies =⇒ background galaxies result tangentially

stretched w.r.t. cluster mass distribution. Intrinsic orientation of

galaxies uncorrelated. Weak lensing does not need high surface density

=⇒ mass distribution also in outer regions of cluster

6.1 Bending of light by a point-like deflector

[MR:2.1.6, 2.2.1]

→ Gravitational lensing is an effect predicted by general relativity.

Consider spacetime interval ds2 = gijdx
idxj , where gij is the metric

tensor.



12 L.M. Astrofisica e Cosmologia - Bologna

→ Schwarzschild metric (solution of Einstein equations outside a

spherical distribution of total mass M):

ds2 =
(

1 − rS
r

)

c2dt2 −
(

1 − rS
r

)−1
dr2 − r2(sin2 θdφ2 + dθ2) (6.2)

where

rS ≡ 2GM

c2
(6.3)

is the Schwarzschild radius.

→ Consider trajectory of photon close to a point-like object. Trajectory

is in a plane (say θ = π/2) =⇒

ds2 =
(

1 − rS
r

)

c2dt2 −
(

1 − rS
r

)−1
dr2 − r2dφ2 (6.4)

Photons follow null geodesics

gij
dxi

dλ

dxj

dλ
= 0, (6.5)

where λ is a parameter used to parameterize the trajectory. =⇒

dφ =
J

r2
dr

√

1 − J2

r2

(

1 − rs

r

)

. (6.6)

where J = r2(dφ/dλ) = const is an integral of motion.

→ At closest approach r = rm, dr/dφ = 0 =⇒

J =
rm

√

1 − rs

rm

. (6.7)

→ Combining the two equations above and integrating we get

φm − φ∞ =

∫ 1

0

dx
√

1 − x2 − rS

rm
(1 − x3)

, (6.8)

where x ≡ rm/r. If rm ≫ rS =⇒

φm − φ∞ =
π

2
+
rS
rm
, (6.9)

=⇒ deflection angle for a point-like object of mass M

α̂ = 2(φm − φ∞) − π = 2
rS
rm

=
4GM

rmc2
(6.10)
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6.2 Bending of light by extended mass

distribution

[MR:2.2.3]

→ Consider mass density distribution ρ(x) =⇒ surface mass density

Σ(ξ) =

∫

dzρ(x), (6.11)

where x = (x, y, z), ξ = (x, y) and z is the line of sight.

→ Thin-lens approximation: all mass distributed in the lens plane

→ In weak field limit we can sum contributions from mass elements =⇒

α̂(ξ) =
4G

c2

∫

d2ξ′Σ(ξ′)
ξ − ξ′

|ξ − ξ′|2 (6.12)

→ Define projected gravitational potential:

ψ(ξ) =

∫

dzΦ(x), (6.13)

=⇒ from Poisson equation

∇2
ξψ(ξ) = 4πGΣ(ξ) (6.14)

or

ψ(ξ) = 2G

∫

Σ(ξ′) ln |ξ − ξ′|d2ξ′. (6.15)

=⇒
α̂(ξ) =

2

c2
∇ξψ(ξ) (6.16)

→ Consider spherical mass distribution. From Gauss theorem
∫

∇ · α̂dA =

∮

α̂ · ξ

ξ
dl; (6.17)

but ∇ · α̂ = 8πGΣ/c2 and
∮

α̂ · ξ
ξdl = 2πξα̂ =⇒

α̂(ξ) =
4GM(ξ)

c2ξ
, (6.18)
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where

M(ξ) = 2π

∫ ξ

0
dξ′ξ′Σ(ξ′) (6.19)

→ For a singular isothermal sphere with projevted mass M(ξ) = πσ2ξ/G

(σ is 1D velocity dispersion)

α̂ =
4πσ2

c2
(6.20)

independent of radius.

6.3 The lens equation for a point-mass lens

[MR:3.1.1]

→ Consider point-mass lens of mass M where DOS, DOL and DLS are

the angular diameter distances from the observer to the source, from

the observer to the lens and from the lens to the source, respectively.

=⇒
θDOS = βDOS + α̂DLS, (6.21)

where θ is the angular position of the image, β is the angular position

of the source and α̂ is the deflection angle. =⇒

β = θ − α (lens equation), (6.22)

where

α ≡ α̂
DLS

DOS
(6.23)

is the reduced deflection angle.

→ The closest approach distance rm = θDOL =⇒

α =
4GM

c2θ

DLS

DOLDOS
(6.24)
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→ Lens equation can be written as

θ2 − βθ − θE
2 = 0, (6.25)

where

θE ≡
√

4GM

c2
DLS

DOLDOS
(Einstein angle). (6.26)

→ When β = 0 (observer, lens and source on a straight line) =⇒ the

image is a ring of angular radius θE (Einstein ring). Einstein radius

rE ≡ DOLθE.

6.4 The lens equation for an extended lens

[MR:3.1.2; MR:3.3; MR:3.4]

→ Thin-lens approximation =⇒

β = θ − α, (6.27)

where α = α̂DLS/DOS and θ = ξ/DOL. =⇒

β = θ − ∇θΨ(θ), (6.28)

where

Ψ(θ) ≡ 2

c2
DLS

DOSDOL
ψ(ξ). (6.29)

→ For given β we can have different θ =⇒ possible multiple images

(strong lensing)

→ The lens equation can be seen as a 2D mapping between the positions

of the images θ and the positions of the sources β. Consider the

Jacobian of the trasformation

J = det
∂β

∂θ
. (6.30)
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→ Let us define the matrix of the mapping

Tij ≡
∂βi

∂θj
, (6.31)

which can be written as

Tij = δij −
∂2Ψ

∂θi∂θj
. (6.32)

=⇒
Tr

∂2Ψ

∂θi∂θj
= ∇2

θΨ = 2
Σ(θ)

Σcr
≡ 2κ(θ), (6.33)

where

Σcr ≡
c2DOS

4πGDOLDLS
(6.34)

is the critical surface density and

κ(θ) ≡ Σ(θ)

Σcr
(6.35)

is the convergence.

→ The matrix of the mapping can be written as

T =

(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

, (6.36)

where

γ1 ≡ 1

2

(

∂2Ψ

∂θ2
1

− ∂2Ψ

∂θ2
2

)

(6.37)

and

γ2 ≡ ∂2Ψ

∂θ1∂θ2
(6.38)

are the component of the shear γ.

→ The amplification is

A = J−1 = (det T )−1 =
1

(κ− 1)2 − γ2
, (6.39)

where γ = ‖γ‖ =
√

γ2
1 + γ2

2 .
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→ The convergence κ changes the size of the image, but not the shape.

The shear γ is responsible for the distortion of the image.

→ A sufficient condition to produce multiple images is that at some point

in the lens plane Σ(θ) > Σcr (i.e. κ(θ) > 1)

→ Caustics are positions in the source plane in which A → ∞. Critical

lines are the corresponding positions in the lens plane in which A→ ∞.

6.5 Gravitational lensing by galaxy clusters

[MR:4.4, 4.5]

→ Lens: galaxy cluster. Sources: background galaxies.

6.5.1 Strong lensing

→ Strong gravitational lensing: multiple images, strong distortion =⇒
image shape cannot be accounted for without lensing ( =⇒ arcs).

→ Arcs detected in ∼ 1/3 of X-ray selected clusters.

→ Arcs are formed in correspondence of critical lines: A → ∞, i.e.

κ ∼ 1 − γ ( =⇒ Σ <∼ Σcr in the presence of shear).

→ Spherical lens =⇒ arcs form on the Einstein ring at an angular

distance from the centre θE =⇒ total projected mass within Einstein

angle

M(θE) =
c2

4G

rE
2DOS

DOLDLS
= π(DOLθE)2Σcr = πrE

2Σcr (6.40)

→ From location of tangential arcs =⇒ integrated mass within Einstein

radius rE

→ From radial structure (radial arcs or width of tangential arcs) =⇒
mass density profile.
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→ Strong lensing =⇒ central parts of clusters (high Σ)

6.5.2 Weak lensing

→ Weak gravitational lensing: no multiple images, weak distortion,

Σ < Σcr (κ < 1 − γ).

→ Amplification components:

A1 =
1

1 − κ+ γ
, (6.41)

A2 =
1

1 − κ− γ
. (6.42)

=⇒ shear induces tangential deformations.

→ Average ellipticity < (a− b)/(a+ b) >= 0 for non-lensed galaxies.

→ A circular source is deformed in an ellispe of axis ratio b/a = A1/A2.

=⇒ Average ellipticity < (a − b)/(a + b) >= γ/(1 − κ) for lensed

galaxies. (also statistical lensing)

→ When κ≪ 1 ellipticity map =⇒ shear map.

→ Using inversion techniques it is possible to derive κ from shear maps

of < ǫ >. From κ =⇒ Σ = κΣcr =⇒ surface mass density profile

→ Mass-sheet degeneracy: from shear alone we cannot detect the

presence of a uniform Σ

→ To break mass-sheet degeneracy one can estimate κ using estimate

of the amplification (e.g. if one knows intrinsic luminosity/size of

sources).

→ Weak lensing =⇒ outer parts of clusters (low Σ)


