
Coordination Models & Languages
Multiagent Systems LS

Sistemi Multiagente LS

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2009/2010

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 1 / 57

Outline

1 Elements of Multi-agent Systems Engineering

2 Coordination: A Meta-model

3 Enabling vs. Governing Interaction

4 Classifying Coordination Models

5 Introduction to (Tuple-based) Coordination
Tuple-based Coordination & Linda

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 2 / 57

Multi-agent Systems Engineering

Scenarios for Multi-Agent Systems

Issues

Concurrency / Parallelism

Agents are multiple independent activities / loci of control . . .
. . . active simultaneously

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among agent activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 3 / 57

Multi-agent Systems Engineering

Scenarios for Multi-Agent Systems

Issues

Concurrency / Parallelism

Agents are multiple independent activities / loci of control . . .
. . . active simultaneously

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among agent activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 3 / 57

Multi-agent Systems Engineering

Scenarios for Multi-Agent Systems

Issues

Concurrency / Parallelism

Agents are multiple independent activities / loci of control . . .
. . . active simultaneously

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among agent activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 3 / 57

Multi-agent Systems Engineering

Scenarios for Multi-Agent Systems

Issues

Concurrency / Parallelism

Agents are multiple independent activities / loci of control . . .
. . . active simultaneously

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among agent activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 3 / 57

Multi-agent Systems Engineering

Scenarios for Multi-Agent Systems

Issues

Concurrency / Parallelism

Agents are multiple independent activities / loci of control . . .
. . . active simultaneously

Distribution

Activities running on different and heterogeneous execution contexts
(machines, devices, . . .)

“Social” Interaction

Dependencies among agent activities
Collective goals involving activities coordination / cooperation

“Environmental” Interaction

Interaction with external resources
Interaction within the time-space fabric

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 3 / 57

Multi-agent Systems Engineering

Basic Engineering Principles

Principles

Abstraction

Problems should be faced / represented at the most suitable level of
abstraction
Resulting “abstractions” should be expressive enough to capture the
most relevant problems
Conceptual integrity

Locality & encapsulation

Design abstractions should embody the solutions corresponding to the
domain entities they represent

Run-time vs. design-time abstractions

Incremental change / evolutions
On-line engineering
(Cognitive) Self-organising systems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 4 / 57

Multi-agent Systems Engineering

Basic Engineering Principles

Principles

Abstraction

Problems should be faced / represented at the most suitable level of
abstraction
Resulting “abstractions” should be expressive enough to capture the
most relevant problems
Conceptual integrity

Locality & encapsulation

Design abstractions should embody the solutions corresponding to the
domain entities they represent

Run-time vs. design-time abstractions

Incremental change / evolutions
On-line engineering
(Cognitive) Self-organising systems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 4 / 57

Multi-agent Systems Engineering

Basic Engineering Principles

Principles

Abstraction

Problems should be faced / represented at the most suitable level of
abstraction
Resulting “abstractions” should be expressive enough to capture the
most relevant problems
Conceptual integrity

Locality & encapsulation

Design abstractions should embody the solutions corresponding to the
domain entities they represent

Run-time vs. design-time abstractions

Incremental change / evolutions
On-line engineering
(Cognitive) Self-organising systems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 4 / 57

Multi-agent Systems Engineering

Basic Engineering Principles

Principles

Abstraction

Problems should be faced / represented at the most suitable level of
abstraction
Resulting “abstractions” should be expressive enough to capture the
most relevant problems
Conceptual integrity

Locality & encapsulation

Design abstractions should embody the solutions corresponding to the
domain entities they represent

Run-time vs. design-time abstractions

Incremental change / evolutions
On-line engineering
(Cognitive) Self-organising systems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 4 / 57

Multi-agent Systems Engineering

Which Components?

Open MAS

No hypothesis on the agent life & behaviour

Distributed MAS

No hypothesis on the agent location & motion

Heterogeneous MAS

No hypothesis on the agent nature & structure

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 5 / 57

Multi-agent Systems Engineering

Which Components?

Open MAS

No hypothesis on the agent life & behaviour

Distributed MAS

No hypothesis on the agent location & motion

Heterogeneous MAS

No hypothesis on the agent nature & structure

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 5 / 57

Multi-agent Systems Engineering

Which Components?

Open MAS

No hypothesis on the agent life & behaviour

Distributed MAS

No hypothesis on the agent location & motion

Heterogeneous MAS

No hypothesis on the agent nature & structure

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 5 / 57

Multi-agent Systems Engineering

The Space of Interaction

interaction
space

software
component

!"

!"

!"

!"

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 6 / 57

Multi-agent Systems Engineering

Algorithmic Computation

Elaboration / Computation

Turing Machine

Black box algorithms

Church and computable functions

Beyond Turing Machines

Wegner’s Interaction Machines

Examples: AGV, Chess oracle

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 7 / 57

Multi-agent Systems Engineering

Algorithmic Computation

Elaboration / Computation

Turing Machine

Black box algorithms

Church and computable functions

Beyond Turing Machines

Wegner’s Interaction Machines

Examples: AGV, Chess oracle

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 7 / 57

Multi-agent Systems Engineering

Basics of Interaction

A simple sequential machine

Output: shows part of its state outside

Input: bounds a portion of its own state to the outside

Coupling across component’s boundaries

Information

Time – internal / sequential vs. external / entropic

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 8 / 57

Multi-agent Systems Engineering

Basics of Interaction

A simple sequential machine

Output: shows part of its state outside

Input: bounds a portion of its own state to the outside

Coupling across component’s boundaries

Information

Time – internal / sequential vs. external / entropic

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 8 / 57

Multi-agent Systems Engineering

Compositionality vs. Non-compositionality

Compositionality

Sequential composition P1; P2

behaviour(P1; P2) = behaviour(P1) + behaviour(P2)

Non-compositionality

Interactive composition P1|P2

behaviour(P1|P2) =
behaviour(P1) + behaviour(P2) + interaction(P1, P2)

Interactive composition is more than the sum of its parts

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 9 / 57

Multi-agent Systems Engineering

Compositionality vs. Non-compositionality

Compositionality

Sequential composition P1; P2

behaviour(P1; P2) = behaviour(P1) + behaviour(P2)

Non-compositionality

Interactive composition P1|P2

behaviour(P1|P2) =
behaviour(P1) + behaviour(P2) + interaction(P1, P2)

Interactive composition is more than the sum of its parts

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 9 / 57

Multi-agent Systems Engineering

Non-compositionality

Issues

Compositionality vs. formalisability

Emergent behaviours

Formalisability vs. expressiveness

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 10 / 57

Multi-agent Systems Engineering

Coordination in Distributed Programming

Coordination model as a glue

A coordination model is the glue that binds separate activities
into an ensemble [Gelernter and Carriero, 1992]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the
interaction of active and independent entities called agents can
be expressed [Ciancarini, 1996]

Issues for a coordination model

A coordination model should cover the issues of creation and
destruction of agents, communication among agents, and
spatial distribution of agents, as well as synchronization and
distribution of their actions over time [Ciancarini, 1996]

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 11 / 57

Multi-agent Systems Engineering

Coordination in Distributed Programming

Coordination model as a glue

A coordination model is the glue that binds separate activities
into an ensemble [Gelernter and Carriero, 1992]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the
interaction of active and independent entities called agents can
be expressed [Ciancarini, 1996]

Issues for a coordination model

A coordination model should cover the issues of creation and
destruction of agents, communication among agents, and
spatial distribution of agents, as well as synchronization and
distribution of their actions over time [Ciancarini, 1996]

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 11 / 57

Multi-agent Systems Engineering

Coordination in Distributed Programming

Coordination model as a glue

A coordination model is the glue that binds separate activities
into an ensemble [Gelernter and Carriero, 1992]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the
interaction of active and independent entities called agents can
be expressed [Ciancarini, 1996]

Issues for a coordination model

A coordination model should cover the issues of creation and
destruction of agents, communication among agents, and
spatial distribution of agents, as well as synchronization and
distribution of their actions over time [Ciancarini, 1996]

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 11 / 57

Multi-agent Systems Engineering

Coordination in Distributed Programming

Coordination model as a glue

A coordination model is the glue that binds separate activities
into an ensemble [Gelernter and Carriero, 1992]

Coordination model as an agent interaction framework

A coordination model provides a framework in which the
interaction of active and independent entities called agents can
be expressed [Ciancarini, 1996]

Issues for a coordination model

A coordination model should cover the issues of creation and
destruction of agents, communication among agents, and
spatial distribution of agents, as well as synchronization and
distribution of their actions over time [Ciancarini, 1996]

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 11 / 57

Multi-agent Systems Engineering

What is Coordination?

Ruling the space of interaction

coordination

elaboration /
computation

!"

!"

!"

!"

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 12 / 57

Multi-agent Systems Engineering

New Perspective on Computational Systems

Programming languages

Interaction as an orthogonal dimension

Languages for interaction / coordination

Software engineering

Interaction as an independent design dimension

Coordination patterns

Artificial intelligence

Interaction as a new source for intelligence

Social intelligence

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 13 / 57

Multi-agent Systems Engineering

New Perspective on Computational Systems

Programming languages

Interaction as an orthogonal dimension

Languages for interaction / coordination

Software engineering

Interaction as an independent design dimension

Coordination patterns

Artificial intelligence

Interaction as a new source for intelligence

Social intelligence

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 13 / 57

Multi-agent Systems Engineering

New Perspective on Computational Systems

Programming languages

Interaction as an orthogonal dimension

Languages for interaction / coordination

Software engineering

Interaction as an independent design dimension

Coordination patterns

Artificial intelligence

Interaction as a new source for intelligence

Social intelligence

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 13 / 57

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 14 / 57

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 14 / 57

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 14 / 57

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 14 / 57

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 14 / 57

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 14 / 57

Coordination: A Meta-model

Coordination: Sketching a Meta-model

The medium of coordination

“fills” the interaction space

enables / promotes / governs
the admissible / desirable /
required interactions among the
interacting entities

according to some coordination
laws

enacted by the behaviour of
the medium
defining the semantics of
coordination coordinables

coordination

medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 14 / 57

Coordination: A Meta-model

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling agent interactions

Coordination laws Rules defining the behaviour of the coordination media
in response to interaction

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 15 / 57

Coordination: A Meta-model

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling agent interactions

Coordination laws Rules defining the behaviour of the coordination media
in response to interaction

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 15 / 57

Coordination: A Meta-model

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling agent interactions

Coordination laws Rules defining the behaviour of the coordination media
in response to interaction

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 15 / 57

Coordination: A Meta-model

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling agent interactions

Coordination laws Rules defining the behaviour of the coordination media
in response to interaction

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 15 / 57

Coordination: A Meta-model

Coordination: A Meta-model [Ciancarini, 1996]

A constructive approach

Which are the components of a coordination system?

Coordination entities Entities whose mutual interaction is ruled by the
model, also called the coordinables

Coordination media Abstractions enabling and ruling agent interactions

Coordination laws Rules defining the behaviour of the coordination media
in response to interaction

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 15 / 57

Coordination: A Meta-model

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 16 / 57

Coordination: A Meta-model

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 16 / 57

Coordination: A Meta-model

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 16 / 57

Coordination: A Meta-model

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 16 / 57

Coordination: A Meta-model

Coordinables

Original definition [Ciancarini, 1996]

These are the entity types that are coordinated. These could be
Unix-like processes, threads, concurrent objects and the like, and
even users.

examples Processes, threads, objects, human users, agents, . . .

focus Observable behaviour of the coordinables

question Are we anyhow concerned here with the internal machinery /
functioning of the coordinable, in principle?

→ This issue will be clear when comparing Linda & TuCSoN
agents

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 16 / 57

Coordination: A Meta-model

Coordination Media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces &
ReSpecT tuple centres

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 17 / 57

Coordination: A Meta-model

Coordination Media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces &
ReSpecT tuple centres

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 17 / 57

Coordination: A Meta-model

Coordination Media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces &
ReSpecT tuple centres

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 17 / 57

Coordination: A Meta-model

Coordination Media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces &
ReSpecT tuple centres

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 17 / 57

Coordination: A Meta-model

Coordination Media

Original definition [Ciancarini, 1996]

These are the media making communication among the agents
possible. Moreover, a coordination medium can serve to
aggregate agents that should be manipulated as a whole.
Examples are classic media such as semaphores, monitors, or
channels, or more complex media such as tuple spaces,
blackboards, pipelines, and the like.

examples Semaphors, monitors, channels, tuple spaces, blackboards,
pipes, . . .

focus The core around which the components of the system are
organised

question Which are the possible computational models for
coordination media?

→ This issue will be clear when comparing Linda tuple spaces &
ReSpecT tuple centres

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 17 / 57

Coordination: A Meta-model

Coordination Laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws define the behaviour of the coordination media in
response to interaction

a notion of (admissible interaction) event is required to define a model

Coordination laws are expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 18 / 57

Coordination: A Meta-model

Coordination Laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws define the behaviour of the coordination media in
response to interaction

a notion of (admissible interaction) event is required to define a model

Coordination laws are expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 18 / 57

Coordination: A Meta-model

Coordination Laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws define the behaviour of the coordination media in
response to interaction

a notion of (admissible interaction) event is required to define a model

Coordination laws are expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 18 / 57

Coordination: A Meta-model

Coordination Laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws define the behaviour of the coordination media in
response to interaction

a notion of (admissible interaction) event is required to define a model

Coordination laws are expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 18 / 57

Coordination: A Meta-model

Coordination Laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws define the behaviour of the coordination media in
response to interaction

a notion of (admissible interaction) event is required to define a model

Coordination laws are expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 18 / 57

Coordination: A Meta-model

Coordination Laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws define the behaviour of the coordination media in
response to interaction

a notion of (admissible interaction) event is required to define a model

Coordination laws are expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 18 / 57

Coordination: A Meta-model

Coordination Laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws define the behaviour of the coordination media in
response to interaction

a notion of (admissible interaction) event is required to define a model

Coordination laws are expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 18 / 57

Coordination: A Meta-model

Coordination Laws

Original definition [Ciancarini, 1996]

A coordination model should dictate a number of laws to
describe how agents coordinate themselves through the given
coordination media and using a number of coordination
primitives. Examples are laws that enact either synchronous or
asynchronous behaviors or exploit explicit or implicit naming
schemes for coordination entities.

Coordination laws define the behaviour of the coordination media in
response to interaction

a notion of (admissible interaction) event is required to define a model

Coordination laws are expressed in terms of
the communication language, as the syntax used to express and
exchange data structures

examples tuples, XML elements, FOL terms, (Java) objects, . . .

the coordination language, as the set of the asmissible interaction
primitives, along with their semantics

examples in/out/rd (Linda), send/receive (channels), push/pull (pipes), . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 18 / 57

Enabling vs. Governing Interaction

Toward a Notion of Coordination Model

What Do We Ask to a Coordination Model?

to provide high-level abstractions and powerful mechanisms for
distributed system engineering

to enable and promote the construction of open, distributed,
heterogeneous systems

to intrinsically add properties to systems independently of
components

e.g. flexibility, control, intelligence, . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 19 / 57

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms I

Message passing

communication among peers

no abstractions apart from message

no limitations

the notion of protocol could be added as a coordination abstraction

no intrinsic model of coordination

any pattern of coordination can be superimposed – again, protocols

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 20 / 57

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms II

Agent Communication Languages

Goal: promote information exchange

Examples: Arcol, KQML

Standard: FIPA ACL

Semantics: ontologies

Enabling communication

ACLs create the space of inter-agent communication
they do not allow to constrain it

No coordination, again, if not with protocols

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 21 / 57

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms III

Service-Oriented Architectures

Basic abstraction: service

Basic pattern: Service request / response

Several standards

Very simple pattern of coordination

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 22 / 57

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms IV

Web Server

Basic abstraction: resource (REST/ROA)

Basic pattern: Resource request / representation / response

Several standards

Again, a very simple pattern of coordination

Generally speaking, objects, HTTP, applets, JavaScript with AJAX,
user interface

a multi-coordinated systems
“spaghetti-coordination”, no value added from composition

How can we “fill” the space of interaction to add value to systems?

so, how do we get value from coordination?

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 23 / 57

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms V

Middleware

Goal: to provide global properties across distributed systems

Idea: fill the space of interaction with abstractions and shared
features

interoperability, security, transactionality, . . .

Middleware can contain coordination abstractions

but, it can contain anything, so we need to look at specific middleware

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 24 / 57

Enabling vs. Governing Interaction

Examples of Coordination Mechanisms VI

CORBA

Goal: managing object interaction across a distributed systems in a
transparent way

Key features: ORB, IDL, CORBAServices. . .

However, no model for coordination

just the client-servant pattern

However, it can provide a shared support for any coordination
abstraction or pattern

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 25 / 57

Enabling vs. Governing Interaction

Enabling vs. Governing Interaction I

Enabling interaction

ACL, middleware, mediators. . .

enabling communication

enabling components interoperation

no models for coordination of components

no rules on what components should (not) say and do at any given
moment, depending on what other components say and do, and on
what happens inside and outside the system

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 26 / 57

Enabling vs. Governing Interaction

Enabling vs. Governing Interaction II

Governing interaction

ruling communication

providing concepts, abstractions, models, mechanisms for meaningful
component integration

governing mutual component interaction, and
environment-component interaction

in general, a model that does

rule what components should (not) say and do at any given moment
depending on what other components say and do, and on what
happens inside and outside the system

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 27 / 57

Classifying Coordination Models

Two Classes for Coordination Models

Control-oriented vs. Data-oriented Models

— Control-driven vs. Data-driven Models
[Papadopoulos and Arbab, 1998]

Control-oriented Focus on the acts of communication

Data-oriented Focus on the information exchanged during communication

— Several surveys, no time enough here

— Are these really classes?

– actually, better to take this as a criterion to observe
coordination models, rather than to separate them

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 28 / 57

Classifying Coordination Models

Control-oriented Models I

Processes as black boxes

I/O ports

events & signals on state

Coordinators. . .

. . . create coordinated processes as well as communication channels

. . . determine and change the topology of communication

Hierarchies of coordinables / coordinators are possible

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 29 / 57

Classifying Coordination Models

Control-oriented Models II

Coordinators as meta-level communication components

coordinator

General features

High flexibility, high control

Separation between communication / coordination and computation /
elaboration

Examples

RAPIDE
Manifold
ConCoord
Reo

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 30 / 57

Classifying Coordination Models

A Classical Example: Manifold

Main features

coordinators

control-driven evolution

events without parameters

stateful communication

coordination via topology

fine-grained coordination

typical example: sort-merge

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 31 / 57

Classifying Coordination Models

Control-oriented Models: Impact on Design

Which abstractions?

Producer-consumer pattern

Point-to-point communication

Coordinator

Coordination as configuration of topology

Which systems?

Fine-grained granularity

Fine-tuned control

Good for small-scale, closed systems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 32 / 57

Classifying Coordination Models

Control-oriented Models: Impact on Design

Which abstractions?

Producer-consumer pattern

Point-to-point communication

Coordinator

Coordination as configuration of topology

Which systems?

Fine-grained granularity

Fine-tuned control

Good for small-scale, closed systems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 32 / 57

Classifying Coordination Models

An Evolutionary Pattern?

Paradigms of sequential programming

Imperative programming with “goto”

Structured programming (procedure-oriented)

Object-oriented programming (data-oriented)

Paradigms of coordination programming

“Procedure-call” coordination

Control-oriented coordination

Data-oriented coordination

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 33 / 57

Classifying Coordination Models

An Evolutionary Pattern?

Paradigms of sequential programming

Imperative programming with “goto”

Structured programming (procedure-oriented)

Object-oriented programming (data-oriented)

Paradigms of coordination programming

“Procedure-call” coordination

Control-oriented coordination

Data-oriented coordination

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 33 / 57

Classifying Coordination Models

Data-oriented Models I

Communication channel

Shared memory abstraction

Stateful channel

Processes

Emitting / receiving data / information

Coordination

Access / change / synchronise on shared data

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 34 / 57

Classifying Coordination Models

Data-oriented Models II

Shared dataspace: constraint on comunication

shared
dataspace

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 35 / 57

Classifying Coordination Models

Data-oriented Models

General features

Expressive communication abstraction

→ information-based design

Possible spatio-temporal uncoupling

No control means no flexibility??

Examples

Gamma / Chemical coordination
Linda & friends / tuple-based coordination

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 36 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Outline

1 Elements of Multi-agent Systems Engineering

2 Coordination: A Meta-model

3 Enabling vs. Governing Interaction

4 Classifying Coordination Models

5 Introduction to (Tuple-based) Coordination
Tuple-based Coordination & Linda

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 37 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 38 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 38 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 38 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 38 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 38 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 38 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 39 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 39 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 39 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 39 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 39 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 39 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 39 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism by which tuples are said to
“match” templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 40 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism by which tuples are said to
“match” templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 40 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism by which tuples are said to
“match” templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 40 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism by which tuples are said to
“match” templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 40 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism by which tuples are said to
“match” templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 40 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism by which tuples are said to
“match” templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 40 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism by which tuples are said to
“match” templates

examples: pattern matching, unification, . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 40 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda: The Coordination Language [Gelernter, 1985] I

out(T)

out(T) puts tuple T in to the tuple space

examples out(p(1)), out(0,0.5), out(course(’Denti
Enrico’,’Poetry’,hours(150)) . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 41 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda: The Coordination Language [Gelernter, 1985] II

in(TT)

in(TT) retrieves a tuple matching template TT from to the tuple
space

destructive reading the tuple retrieved is removed from the tuple
centre

non-determinism if more than one tuple matches the template, one is
chosen non-deterministically

suspensive semantics if no matching tuples are found in the tuple
space, operation execution is suspended, and woken
when a matching tuple is finally found

examples in(p(X)), in(0,0.5), in(course(’Denti
Enrico’,Title,hours(X)) . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 42 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda: The Coordination Language [Gelernter, 1985] III

rd(TT)

rd(TT) retrieves a tuple matching template TT from to the tuple
space

non-destructive reading the tuple retrieved is left untouched in the
tuple centre

non-determinism if more than one tuple matches the template, one is
chosen non-deterministically

suspensive semantics if no matching tuples are found in the tuple
space, operation execution is suspended, and awakened
when a matching tuple is finally found

examples rd(p(X)), rd(0,0.5), rd(course(’Ricci
Alessandro’,’Operating Systems’,hours(X)) . . .

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 43 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

A First Example: Sharing a Pool of Printers

The model

Each printer in the pool is represented by a number PrinterNo

An available printer is represented by a tuple
availablePrinter(PrinterNo)

The protocol

Each agent willing to print asks for a tuple availablePrinter(N)

When an available printer is assigned to the agent, the corresponding
tuple is removed

When the agent has done with printing, it puts the tuple back in the
tuple space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 44 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

A First Example: Sharing a Pool of Printers

The model

Each printer in the pool is represented by a number PrinterNo

An available printer is represented by a tuple
availablePrinter(PrinterNo)

The protocol

Each agent willing to print asks for a tuple availablePrinter(N)

When an available printer is assigned to the agent, the corresponding
tuple is removed

When the agent has done with printing, it puts the tuple back in the
tuple space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 44 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

A First Example: Sharing a Pool of Printers

The model

Each printer in the pool is represented by a number PrinterNo

An available printer is represented by a tuple
availablePrinter(PrinterNo)

The protocol

Each agent willing to print asks for a tuple availablePrinter(N)

When an available printer is assigned to the agent, the corresponding
tuple is removed

When the agent has done with printing, it puts the tuple back in the
tuple space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 44 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

A First Example: Sharing a Pool of Printers

The model

Each printer in the pool is represented by a number PrinterNo

An available printer is represented by a tuple
availablePrinter(PrinterNo)

The protocol

Each agent willing to print asks for a tuple availablePrinter(N)

When an available printer is assigned to the agent, the corresponding
tuple is removed

When the agent has done with printing, it puts the tuple back in the
tuple space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 44 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

A First Example: Sharing a Pool of Printers

The model

Each printer in the pool is represented by a number PrinterNo

An available printer is represented by a tuple
availablePrinter(PrinterNo)

The protocol

Each agent willing to print asks for a tuple availablePrinter(N)

When an available printer is assigned to the agent, the corresponding
tuple is removed

When the agent has done with printing, it puts the tuple back in the
tuple space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 44 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

A First Example: Sharing a Pool of Printers

The model

Each printer in the pool is represented by a number PrinterNo

An available printer is represented by a tuple
availablePrinter(PrinterNo)

The protocol

Each agent willing to print asks for a tuple availablePrinter(N)

When an available printer is assigned to the agent, the corresponding
tuple is removed

When the agent has done with printing, it puts the tuple back in the
tuple space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 44 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

A First Example: Sharing a Pool of Printers

The model

Each printer in the pool is represented by a number PrinterNo

An available printer is represented by a tuple
availablePrinter(PrinterNo)

The protocol

Each agent willing to print asks for a tuple availablePrinter(N)

When an available printer is assigned to the agent, the corresponding
tuple is removed

When the agent has done with printing, it puts the tuple back in the
tuple space

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 44 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Tuple Space

The initial state

Each printer in the pool is represented by a number PrinterNo

All printer are initially available, so there are as many
availablePrinter(PrinterNo) tuple as printers in the pool

State

At each instant in the working cycle, there are as many
availablePrinter(PrinterNo) in the tuple space as there are
available printers

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 45 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Tuple Space

The initial state

Each printer in the pool is represented by a number PrinterNo

All printer are initially available, so there are as many
availablePrinter(PrinterNo) tuple as printers in the pool

State

At each instant in the working cycle, there are as many
availablePrinter(PrinterNo) in the tuple space as there are
available printers

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 45 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Tuple Space

The initial state

Each printer in the pool is represented by a number PrinterNo

All printer are initially available, so there are as many
availablePrinter(PrinterNo) tuple as printers in the pool

State

At each instant in the working cycle, there are as many
availablePrinter(PrinterNo) in the tuple space as there are
available printers

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 45 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Tuple Space

The initial state

Each printer in the pool is represented by a number PrinterNo

All printer are initially available, so there are as many
availablePrinter(PrinterNo) tuple as printers in the pool

State

At each instant in the working cycle, there are as many
availablePrinter(PrinterNo) in the tuple space as there are
available printers

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 45 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Tuple Space

The initial state

Each printer in the pool is represented by a number PrinterNo

All printer are initially available, so there are as many
availablePrinter(PrinterNo) tuple as printers in the pool

State

At each instant in the working cycle, there are as many
availablePrinter(PrinterNo) in the tuple space as there are
available printers

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 45 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

First Example: The Agent Protocol

Agents printing with ins and outs

printingAgent :-
getSomethingToPrint(Doc),
in(availablePrinter(N)),
print(document(Doc),printer(N)),
out(availablePrinter(N)),

!, printingAgent.

Features

Very simple agent protocol – agents concerned only with printing, not
with choosing / sharing / competing

Clean world representation – observing the tuple space is observing a
portion of the actual system state

Coordination (such as synchronisation) is mostly delegated to the
coordination medium

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 46 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT
from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT
is found in the tuple space

success / failure predicative primitives introduce success / failure
semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 47 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT
from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT
is found in the tuple space

success / failure predicative primitives introduce success / failure
semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 47 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT
from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT
is found in the tuple space

success / failure predicative primitives introduce success / failure
semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 47 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT
from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT
is found in the tuple space

success / failure predicative primitives introduce success / failure
semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 47 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT
from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT
is found in the tuple space

success / failure predicative primitives introduce success / failure
semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 47 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT
(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 48 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT
(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 48 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT
(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 48 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT
(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 48 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT
(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 48 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT
(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 48 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT
(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 48 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT
(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 48 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Bulk Primitives

in all(TT), rd all(TT)

Linda primitives (including predicative ones) deal with a tuple at a
time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT
(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 48 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to agents

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 49 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to agents

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 49 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to agents

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 49 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to agents

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 49 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to agents

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 49 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to agents

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 49 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to agents

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 49 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to agents

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 49 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination
Many extensions have focussed on making a multiplicity of tuple
spaces available to agents

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts@node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 49 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 50 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 50 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 50 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 50 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 50 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
semantic interpretation: a tuple contains all information concerning an
given item

Tuple structure based on

arity
type
position
information content

Anti-tuples / Tuple templates

to describe / define sets of tuples

Matching mechanism

to define belongingness to a set

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 51 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Generative Communication

Communication orthogonality: both senders and the receivers can
interact even without having prior knowledge about each others

space uncoupling (also called distributed naming): no need to coexist
in space for two agents to interact
time uncoupling : no need for simultaneity for two agents to interact
name uncoupling: no need for names for agents to interact

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 52 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Generative Communication

Communication orthogonality: both senders and the receivers can
interact even without having prior knowledge about each others

space uncoupling (also called distributed naming): no need to coexist
in space for two agents to interact
time uncoupling : no need for simultaneity for two agents to interact
name uncoupling: no need for names for agents to interact

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 52 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Generative Communication

Communication orthogonality: both senders and the receivers can
interact even without having prior knowledge about each others

space uncoupling (also called distributed naming): no need to coexist
in space for two agents to interact
time uncoupling : no need for simultaneity for two agents to interact
name uncoupling: no need for names for agents to interact

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 52 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Generative Communication

Communication orthogonality: both senders and the receivers can
interact even without having prior knowledge about each others

space uncoupling (also called distributed naming): no need to coexist
in space for two agents to interact
time uncoupling : no need for simultaneity for two agents to interact
name uncoupling: no need for names for agents to interact

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 52 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Associative Access

Content-based coordination: synchronisation based on tuple content
& structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 53 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Associative Access

Content-based coordination: synchronisation based on tuple content
& structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 53 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Associative Access

Content-based coordination: synchronisation based on tuple content
& structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 53 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Associative Access

Content-based coordination: synchronisation based on tuple content
& structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 53 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Associative Access

Content-based coordination: synchronisation based on tuple content
& structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 53 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Associative Access

Content-based coordination: synchronisation based on tuple content
& structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 53 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Associative Access

Content-based coordination: synchronisation based on tuple content
& structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 53 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Associative Access

Content-based coordination: synchronisation based on tuple content
& structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 53 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Associative Access

Content-based coordination: synchronisation based on tuple content
& structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 53 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Suspensive Semantics

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 54 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Suspensive Semantics

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 54 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Suspensive Semantics

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 54 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Suspensive Semantics

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 54 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Suspensive Semantics

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 54 / 57

(Tuple-based) Coordination Tuple-based Coordination & Linda

Features of Linda: Suspensive Semantics

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 54 / 57

Conclusions

1 Elements of Multi-agent Systems Engineering

2 Coordination: A Meta-model

3 Enabling vs. Governing Interaction

4 Classifying Coordination Models

5 Introduction to (Tuple-based) Coordination
Tuple-based Coordination & Linda

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 55 / 57

Conclusions

Bibliography I

Ciancarini, P. (1996).
Coordination models and languages as software integrators.
ACM Computing Surveys, 28(2):300–302.

Gelernter, D. (1985).
Generative communication in Linda.
ACM Transactions on Programming Languages and Systems, 7(1):80–112.

Gelernter, D. and Carriero, N. (1992).
Coordination languages and their significance.
Communications of the ACM, 35(2):97–107.

Papadopoulos, G. A. and Arbab, F. (1998).
Coordination models and languages.
In Zelkowitz, M. V., editor, The Engineering of Large Systems, volume 46 of Advances in
Computers, pages 329–400. Academic Press.

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 56 / 57

Conclusions

Coordination Models & Languages
Multiagent Systems LS

Sistemi Multiagente LS

Andrea Omicini
andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2009/2010

Andrea Omicini (Università di Bologna) Coordination Models & Languages A.Y. 2009/2010 57 / 57

	Outline
	Elements of Multi-agent Systems Engineering
	Coordination: A Meta-model
	Enabling vs. Governing Interaction
	Classifying Coordination Models
	Introduction to (Tuple-based) Coordination
	Tuple-based Coordination & Linda

	Conclusions

