
Design of SOA/WS applications using an Agent-based
approach

Andrea Santi1 Michele Piunti1

1Università degli studi di Bologna, DEIS - Cesena

Design of SOA/WS applications using a Agent-based approach,
12/06/2009

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 1 / 61

Outline

1 Rationale

2 Foundations of Agent-Oriented Computing

3 A&A meta-model and CArtAgO

4 Design of SOA/WS application based on CArtAgO-WS

5 The WS-* layer

6 Case study

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 2 / 61

Rationale

Outline

1 Rationale

2 Foundations of Agent-Oriented Computing

3 A&A meta-model and CArtAgO

4 Design of SOA/WS application based on CArtAgO-WS

5 The WS-* layer

6 Case study

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 3 / 61

Rationale

The need for a SOA/WS programming model

SOA is a promising solution for building complex distributed systems,
but does not provide a unifying programming model to support the
core system design and development
Actually the mainstream proposals are either object-oriented or
component-oriented

In our opinion this models are deeply inadequate for the design of
complex SOA system

Rationale
Agent concepts and technologies could be fruitfully exploited to define a
general-purpose programming model to support the design, development,
management of complex SOA/WS systems

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 4 / 61

Rationale

Agent-based SOA/WS: Why?

Agents and MAS are more and more recognised as a suitable paradigm
for engineering SOA/WS systems[Hunhs, 2006, N. Huhns et al., 2005,
Greenwood and Calisti, 2004]
Actually agents are in service-oriented model described in the official
W3C’s document [Booth et al., 2004]:

A convergence of abstractions: Autonomy, Loose coupling, Message-based interactions
Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 5 / 61

Foundations of Agent-Oriented Computing

Outline

1 Rationale

2 Foundations of Agent-Oriented Computing

3 A&A meta-model and CArtAgO

4 Design of SOA/WS application based on CArtAgO-WS

5 The WS-* layer

6 Case study

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 6 / 61

Foundations of Agent-Oriented Computing

Complex Software Systems: Towards a Paradigm Shift

Programming in the large
Nextcoming computing will be:

Anywhere: distributed, embedded in every environment item/object,
cuncurrently operating in information-rich environments
Always connected and always active: wireless technologies will make
interconnection pervasive

Which impact on the design & development of software systems?
Quantitative: in terms of computational units, software components,
number of interconnections... current processes, methods and
technologies do not scale
Qualitative: new software systems are different in kind, will be
introduced new features never modelled before

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 7 / 61

Foundations of Agent-Oriented Computing

Requirements of Complex Software Systems

Situatedness
Computations occur within an environment
Computations and environment mutually affect each other, and cannot
be understood separately

Openness
Systems and technologies are heterogenous but interoperable

Locality in control
Components of a system are autonomous wrt other entities
Proactive loci of control

Locality in interaction
Components of a system interact on a local basis based on some notion
of spatio-temporal compresence
partial knowledge

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 8 / 61

Foundations of Agent-Oriented Computing

Agents I

Intelligent Agents [Russell and Norvig, 2002]

An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that environment
through effectors.

ENVIRONMENT

AGENT(s)

Actions Perception

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 9 / 61

Foundations of Agent-Oriented Computing

Agents II

Intelligent Agents [IBM, 1995]

Software entities that carry out some set of operations on
behalf of a user or another program with some degree of
independence or autonomy and in so doing employ some
knowledge or representation of user’s goals or desires.

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 10 / 61

Foundations of Agent-Oriented Computing

Autonomy as Foundational Notion of Agency

Agents are autonomous as they encapsulate (the processes of) their
control and the rules to govern it
Agents have no interface, cannot be controlled, nor can they be
invoked
Control does not pass through agent boundaries only information
(readable data/events, messages) crosses agent boundaries

BOUNDARIES

AGENT

EXTERNAL ENVIRONMENT:
Users, humans, other agents,
information sources, platforms,

servers, web services, networks,
other programs,

INTERNAL STATE:
Knowledge, Goals, Plans,

Capabilities, Sensors, Effectors,
Memory, other resources, ...

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 11 / 61

Foundations of Agent-Oriented Computing

Other Relevant Agent Properties

Proactivity
agents are designed with the aim to let them autonomously realize
some objective (goal states)
making something happen, rather than waiting for something to
happen

Situatedness
Any "ground" model of action is strictly coupled with the context
where the action takes place
Any agent is then located in the environment where it lives and
(inter)acts

And many others
Regarding the context of interest a lot of other features can be considered

Mobility, Intelligence, sociality, learning...
Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 12 / 61

Foundations of Agent-Oriented Computing

Evolution of Programming Languages: The Picture

Odell, 2002[Odell., 2002]

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 13 / 61

Foundations of Agent-Oriented Computing

Belief Desire Intention model of Agency

Belief Desire Intentions (BDI) is a model of agency mimicking
intelligent mental attitudes.
Agents are conceived, designed and then programmed along with their
mental states:

Beliefs current (internal) state of the agent: beliefbase stores
relevant information about environment, exogenous
entities and other agents;

Goals state that the agent desires to achieve and about which
he brings about (Practical Reasoning) based on
processing of internal and external stimuli;

Plans recipes of procedural means the agent has in repertoire
to change the world and thus achieve its goals

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 14 / 61

Foundations of Agent-Oriented Computing

BDI Agents in Jason

A Jason1 plan has the following general structure:

triggering_event : context <- body.

where:

The triggering event denotes the events that the plan is meant to
handle;
The context represents the circumstances in which the plan can be
used;

logical expression, typically a conjunction of literals to be checked
whether they follow from the current state of the belief base (Belief
Formulae)

The body is the course of actions to be executed to handle the event
if the context is believed true at the time a plan is being chosen to
handle the event.

A sequence of actions may initiate (sub) goals to achieve the root goal
1Jason [Bordini et al., 2007] programming platform is available at:

jason.sourceforge.net/
Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 15 / 61

jason.sourceforge.net/

Foundations of Agent-Oriented Computing

Example: a BDI Agent in Jason

/* Initial Beliefs */
likes(radiohead).
resource(proxyUS, "http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl").
resource(proxyUK, "http://webservices.amazon.com/AWSECommerceService/UK/AWSECommerceService.wsdl").
/* Initial Goal */

!look_for.

/* Goal Event */
+look_for : likes(Name)

<- !doRequest(Name).

/* Sub-Goal to make a query to web resources */
+!doRequests(Query) : resource(Loc, URL)

<- !prepareMsg(Query, URL, Msg);
.println("Doing request: ", Msg, "on resource: " , Loc);
!execute_query(Msg);
-resource(Loc, _);
!doRequests(Query).

/* Reaction to reply Messages */
+reply(Msg,_) [source("proxyUS")] : true

<- !process(Msg, Res);
.print("Answer from US ", Res);

+reply(Msg,_) [source("proxyUK")] : true
<- !process(Msg, Res);
.print("Answer from UK ", Res);

+!process(Msg, Res)
<- // retrieve Res from Msg ...

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 16 / 61

Foundations of Agent-Oriented Computing

Example: a BDI Agent in Jason

/* Initial Beliefs */
likes(radiohead).
resource(proxyUS, "http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl").
resource(proxyUK, "http://webservices.amazon.com/AWSECommerceService/UK/AWSECommerceService.wsdl").
/* Initial Goal */

!look_for.

/* Goal Event */
+look_for : likes(Name)

<- !doRequest(Name).

/* Sub-Goal to make a query to web resources */
+!doRequests(Query) : resource(Loc, URL)

<- !prepareMsg(Query, URL, Msg);
.println("Doing request: ", Msg, "on resource: " , Loc);
!execute_query(Msg);
-resource(Loc, _);
!doRequests(Query).

/* Reaction to reply Messages */
+reply(Msg,_) [source("proxyUS")] : true

<- !process(Msg, Res);
.print("Answer from US ", Res);

+reply(Msg,_) [source("proxyUK")] : true
<- !process(Msg, Res);
.print("Answer from UK ", Res);

+!process(Msg, Res)
<- // retrieve Res from Msg ...

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 17 / 61

Foundations of Agent-Oriented Computing

Agents to Web Services Back and Forth

Besides Agent Comunication Languages (i.e. Agents to Agents
message passing), agent based technolgies and metodologies provide a
weak support for interaction with other environmental resources:

In particular, in the case of Web Services
Typical solutions to integrate agents in WS applications make use of
gateway agents [Greenwood et al., 2007,
Nguyen and Kowalczyk, 2007, Shafiq et al., 2005, Poggi et al., 2007,
Greenwood and Calisti, 2004, Varga and Hajnal, 2003]:

that aims at translating SOAP messages in an agent readable format
In so doing some of the native agent capabilities are simply neglected:

Good Agent Oriented Support would provide native support for goal
orientedness, state persitency, fault tolerance, situatedness and context
awareness, adaptiveness, event handling etc.

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 18 / 61

Foundations of Agent-Oriented Computing

Agents and Web Services: Related Works

Other approaches proposed intelligent agents to address specific problems:

using BDI reactive planning to control web-service invocation
[Dickinson and Wooldridge, 2005]
agent behavior for deisign of agile business processes
[Burmeister et al., 2008]
goal oriented business processes [Rimassa et al., 2008]
goal oriented service orchestration [van Riemsdijk and Wirsing, 2007]
logic agents able to reason about WS though protocol analysis
[Casella and Mascardi, 2006]
semantic web, planning and service composition
[Cardoso and Sheth, 2003, Pistore et al., 2005, Lécué et al., 2008]
service discovery: adatptive systems shaped in terms of BDI that
discover knowledge concerning how to solve a specific set of problems
[Bozzo et al., 2005, Georgeff, 2006]

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 19 / 61

A&A meta-model and CArtAgO

Outline

1 Rationale

2 Foundations of Agent-Oriented Computing

3 A&A meta-model and CArtAgO

4 Design of SOA/WS application based on CArtAgO-WS

5 The WS-* layer

6 Case study

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 20 / 61

A&A meta-model and CArtAgO

Agents and Artifacts in the A&A Meta-model

Artifacts
Besides Agents, a MAS in A&A meta-model is built using a dual
abstraction: the Artifact.

An A&A artifact is a computational entity, with a set of embodied
functionalities, and readable information aimed at beeing functionally
exploited by agents

Artifacts are non-autonomous entities, designed to serve some agent’s
purpose

not to proactively achieve their own goals
An artifact is a target, a tool, an external resource in the hands of
agents:

Enlarging repertoire of agents available actions
Providding exogenous information that can be suitalby read by agents
An artifact does not need to be self-controlled, it just has to be
governed by agents when they use it

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 21 / 61

A&A meta-model and CArtAgO

The A&A meta-model

A&A: A conceptual framework for MAS modelling & engineering
According to the A&A meta-model, a Mutli Agent System consists in a
number of entities built upon the following three basic abstractions:
[Omicini et al., 2008]

Agents represent pro-active components of the systems,
encapsulating the autonomous execution of some kind of
activities inside some sort of environment

Artifacts represent passive components of the systems such as
resources and media that are intentionally constructed,
shared, manipulated and used by agents to support their
activities, either cooperatively or competitively

Workspaces are the conceptual containers of agents and artifacts, useful
for defining the topology for the environment and providing a
notion of locality in work environments

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 22 / 61

A&A meta-model and CArtAgO

Agents & Artifacts model: basic idea in a picture

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 23 / 61

A&A meta-model and CArtAgO

Artifact Computational Model in CArtAgO

print(Object... args)
println(Object... args)

"System.out"

console

Output_type

+!say_hello : true
<- cartago.joinWorkspace("web-services","localhost");
 cartago.lookupArtifact("console", ConsoleID);
 cartago.observeProperty(ConsoleID, "Output_type", Type);
 !write(Type).

package alice.cartago.util;
import alice.cartago.*;

public class Console extends Artifact {

@OPERATION void init(){
 defineObsProperty("Output_type","System.out");
}

 @OPERATION void print(Object arg){
 internalPrint(arg);
}

@OPERATION void println(Object arg0){
 internalPrintln(arg);
}

 private void internalPrint() { ... }
 private void internalPrintln() { ... }
}

CArtAgO IMPLEMENTATION OF
ARTIFACT CONSOLE:OBSERVABLE

PROPERTIES

USAGE
INTERFACE

+!write("System.out") : true
<- cartago.use(ConsoleID, println("Hello,", "World!")).

+!write(_) : true
<- .print("Hello,", "World!")).

JASON AGENT USING CONSOLE ARTIFACT:

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 24 / 61

A&A meta-model and CArtAgO

Basic Actions for interacting in CArtAgO Working
Environments

(1) joinWorkspace(+Workspace[,Node])

(2) quitWorkspace

(3) makeArtifact(+Artifact,+ArtifactType[,ArtifactConfig])

(4) lookupArtifact(+ArtifactDesc,?Artifact)

(5) disposeArtifact(+Artifact)

(6) use(+Artifact,+UIControl([Params])[,Sensor] [,Timeout] [,Filter])

(7) sense(+Sensor,?PerceivedEvent[,Filter] [,Timeout])

(8) focus(+Artifact[,Sensor] [,Filter])

(9) stopFocussing(+Artifact)

(10) observeProperty(+Artifact,+Property,?PropertyValue)

Table: Basic agent actions managing workspaces (1–2), creating, disposing and looking up
artifacts (3–5), using artifacts (6–7), and observing artifacts (8–10). Syntax is expressed in a
logic-like notation, where italic items in square brackets are optional [Ricci et al., 2008].

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 25 / 61

Design of SOA/WS application based on CArtAgO-WS

Outline

1 Rationale

2 Foundations of Agent-Oriented Computing

3 A&A meta-model and CArtAgO

4 Design of SOA/WS application based on CArtAgO-WS

5 The WS-* layer

6 Case study

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 26 / 61

Design of SOA/WS application based on CArtAgO-WS

Sahping SOA/WS applications in A&A

SOA modelled in one or multiple workspaces where a (possibly open and
heterogeneous) set of agents work together and interact both via direct
communication and by producing, consuming, sharing and cooperatively
using a dynamic set of artifacts

Agents encapsulate the responsibility of the execution and control of
the business activities and tasks that characterise the SOA-specific
scenario,

business logic of service providers/requestors is encapsulated in the
application by agents
task as service discovery, orchestration, coordination, composition etc.
are delegated to agents

Artifacts encapsulate the business resources and tools needed by
agents to operate in the service application domain.

exploited (also) to model and engineer those parts encapsulating Web
Services, to be used, changed and adapted by agents on the need.
encapsulate and govern the message processing logic, which typically
includes header processing, validation, and possible transformation
according to WS-* specificationsAndrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 27 / 61

Design of SOA/WS application based on CArtAgO-WS

Sahping SOA/WS applications in A&A

SOA modelled in one or multiple workspaces where a (possibly open and
heterogeneous) set of agents work together and interact both via direct
communication and by producing, consuming, sharing and cooperatively
using a dynamic set of artifacts

Agents encapsulate the responsibility of the execution and control of
the business activities and tasks that characterise the SOA-specific
scenario,

business logic of service providers/requestors is encapsulated in the
application by agents
task as service discovery, orchestration, coordination, composition etc.
are delegated to agents

Artifacts encapsulate the business resources and tools needed by
agents to operate in the service application domain.

exploited (also) to model and engineer those parts encapsulating Web
Services, to be used, changed and adapted by agents on the need.
encapsulate and govern the message processing logic, which typically
includes header processing, validation, and possible transformation
according to WS-* specificationsAndrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 27 / 61

Design of SOA/WS application based on CArtAgO-WS

Sahping SOA/WS applications in A&A

SOA modelled in one or multiple workspaces where a (possibly open and
heterogeneous) set of agents work together and interact both via direct
communication and by producing, consuming, sharing and cooperatively
using a dynamic set of artifacts

Agents encapsulate the responsibility of the execution and control of
the business activities and tasks that characterise the SOA-specific
scenario,

business logic of service providers/requestors is encapsulated in the
application by agents
task as service discovery, orchestration, coordination, composition etc.
are delegated to agents

Artifacts encapsulate the business resources and tools needed by
agents to operate in the service application domain.

exploited (also) to model and engineer those parts encapsulating Web
Services, to be used, changed and adapted by agents on the need.
encapsulate and govern the message processing logic, which typically
includes header processing, validation, and possible transformation
according to WS-* specificationsAndrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 27 / 61

Design of SOA/WS application based on CArtAgO-WS

Agent based SOA in CArtAgO-WS

CArtAgO-WS is a programming platform providing artifact based facilities
that enable agents holding to heterogenous and distributed platforms to
natively interact with Web Services in their Worksapeces.
In particular, a couple of programmable artifacts are provided:

WSPanel artifact: used by provider agents for build up and set up a
new WS:

Provides basic functionalities to manage service requests, including
receiving and sending messages according to the specific MEP as
described in the WSDL, and basic controls to configure security and
reliability policies.

WSInterface artifact: used by user agents for consuming existing WS:
Provides basic functionalities to interact with the specified Web
Service, in particular to send messages for executing operations and to
get the replies sent back by the service, according to the message
exchange patterns defined in the WSDL and to the quality of service
specified by the service policies (in particular, security and reliability).

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 28 / 61

Design of SOA/WS application based on CArtAgO-WS

CArtAgO-WS platform

WSPanel

WSDL

SOAP / WS-I

WS consumers

AXIS2+Tomcat CArtAgO

CArtAgO-WS

Java Platform

Jason Intepreter

JVM

C4Jason
bridge

Other
Agent

Platforms
...

web-services

wsp-1

SOAP / WS-I

WSInterface

WSDL

Web Service

SOAP / WS-I

AXIS2+Tomcat CArtAgO

CArtAgO-WS

Java Platform

Jason Intepreter

JVM

WSInterface
WSDL

Web Service
web-services

C4Jason
bridge

Other
Agent

Platforms
...

wsp-0

Agents

Artifacts

use
perceptions

LEGEND

Figure: On the left, a CArtAgO-WS node running a Web Service, composed by
two workspaces (web-services and wsp-1). In web-services, an instance of
WSPanel artifact is shared and used by two agents to process WS requests and
send replies. On the right, a CArtAgO-WS node running an application using
existing Web Services. In web-services workspace two instances of
WSInterface artifact are exploited by the same agent to interact (concurrently)
with two distinct Web Services.

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 29 / 61

Design of SOA/WS application based on CArtAgO-WS

The WSInterface Artifact

WSInterface is instantiated specifying the WSDL to interact with,
name/port type (if the WSDL includes multiple port and services), a
local endpoint to which the artifact receive messages (e.g. replies).
Includes controls to send a message to the service (sendWSMsg), to get
the reply to messages (getWSReply), and higher-level operations to
directly support basic MEPs, such as the request-response
(requestOp).
Other operation controls configure the WS interaction (support for
basic WS-* standards, i.e. WS-Addressing)

web-services

Web
Service

Web
Service

agent

agent

sendWSMsg

getWSReply

requestOp

serviceName
endp
WSDL

setWSAddressing

SOAP / WS-I

SOAP / WS-I

WSInterface

WSInterface

WSInterface

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 30 / 61

Design of SOA/WS application based on CArtAgO-WS

The WSPanel Artifact

WSPanel is instantiated specifying a WSDL document for the service
to be created
Operation controls are provided to retrieve or be notified of
requests/messages arrived at the Web Service (getWSMsg and
subscribeWSMsgs), possibly specifying filters to select specific
messages, and to send replies (sendWSReply).

web-services

service
agent(s)

getWSMsg

subscribeWSMsgs
sendWSReply

serviceName
endp
WSDL
nMsgReceived

SOAP / WS-I

WSDL

service
agent(s) WSDL

WS consumers

WS consumers

SOAP / WS-I

WSPanel

WSPanel

WSPanel

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 31 / 61

Design of SOA/WS application based on CArtAgO-WS

Agents, Artifacts and WS in CArtAgO-WS Work
Environments

web-services

proxyUS

Amazon US
Web Service

proxyUK

Amazon UK
Web Service

Jason
Agent

SOAP

SOAP

console

default

1a

1b
2

WSInterface

WSInterface

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 32 / 61

Design of SOA/WS application based on CArtAgO-WS

Example: Jason agent exploiting WS in CArtAgO-WS

+look_for : likes(Name)
<- cartago.joinWorkspace("web-services","localhost");
!makeInterface(proxyUS,"http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl");
!makeInterface(proxyUK,"http://webservices.amazon.com/AWSECommerceService/UK/AWSECommerceService.wsdl")
// initialise proxies (i.e., use WSInterface setWSAddressingSupport, setWSHeaderSupport operations)
!doRequests.

/* Create a WSInterface related to WSDLURI */
+!makeInterface(Name,WSDLURI) : true

<- cartago.makeArtifact(Name,"alice.cartagows.WSInterface",[WSDLURI],Proxy);
.print("service-interface ",Name," built.").

+!doRequests(Query) : resource(Loc, URL)
<- !prepareMsg(Query, URL, Msg);
.println("Doing request: ", Msg, "on resource: " , Loc);
cartago.use(Loc,requestOp("ItemSearch",Msg)); //no sensor is provided (1.a & 1.b)
-resource(Loc, _);
!doRequests(Query).

/* In CArtAgO-WS, artifact’s observable events are signalled to the agents as +EventDescr[source(art_name)] */
+reply(Msg, _)[source("proxyUK")] : true

<- .print("Answer from UK ",Msg);
cws.buildDOM(Msg,Elem);
cws.getDOMElemValue(Elem,"ItemSearchResponse.Items.TotalResults",Value);
cartago.use("console@default",println("Total hits in UK Web Service: ",Value)). (2)

+reply(Msg,_) [source("proxyUS")]: true
<- .print("Answer from US ",Msg);
....

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 33 / 61

The WS-* layer

Outline

1 Rationale

2 Foundations of Agent-Oriented Computing

3 A&A meta-model and CArtAgO

4 Design of SOA/WS application based on CArtAgO-WS

5 The WS-* layer

6 Case study

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 34 / 61

The WS-* layer

Considerations

SOA/WS evolution

The second generation of WS has introduced a set of specification (WS-*)
for the managing of advanced functionalities:
WS-Coordination provides the rules for coordinate complex activities

(AtomicTransactions , BusinessActivities) between WSs
WS-Security framework is a set of security specifications that provides

authentication, authorization, data integrity and a so on...
WS-Trust allows a WS to advertise its policies (on security, QoS..)

Consequences?

A platform for building SOA/WS application worthy of the name should:
Provides support for the new specifications introduced
Enable a developer an easy method to get access and use the
functionalities provided by the WS-* specifications

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 35 / 61

The WS-* layer

The WS-* layer

The objective
Provide a straightforward and uniform way for developers and agents, to
get access, and manage, all the processing related to WS’s specifications
thanks to a specification-independent architectural model

WS-* layer fundamentals

All the functionalities of the WS-* layer can be exploited simply using
two different kind of artifact:

The RequestMediator (RM) artifact
The Wallet (WA) artifact

Proper WorkerAgents contained into the WS-* layer, working behind
RM artifacts and not visible to application agents, are responsible of
the managing and the material execution of the processing relates to
the requests

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 36 / 61

The WS-* layer

RequestMediator and Wallet in a nutshell

RequestMediator (RM) and Wallet (WA)

The RM mediates the interactions between the WS-* layer and its
utilizers in a request-response based interaction
The WA is a sort of personal data container that the agents can
exploits for:

Store/retrieve any kind of specification-based information
Dynamically configure a WSInterface/WSPanel with the information
contained in it

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 37 / 61

The WS-* layer

WS-* layer dynamics

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 38 / 61

Case study

Outline

1 Rationale

2 Foundations of Agent-Oriented Computing

3 A&A meta-model and CArtAgO

4 Design of SOA/WS application based on CArtAgO-WS

5 The WS-* layer

6 Case study

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 39 / 61

Case study

Scenario’s overview

The scenario
A typical example used in SOA/WS contexts: a client WS wants to book
an holiday by exploiting a series of WSs providing the required resources as
hotel reservation, transport facilities, payment

The actors
The Booking Requestor (BR): the WS that wants to make an holiday
booking for a specified date
A set of WSs that compose the booking application (BA)

The Hotel Service (HS)
The Transport Service (TS)
The Payment Service (PS)

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 40 / 61

Case study

Booking dynamics

The entire booking dynamics are managed through a
WS-AtomicTransacion (WS-AT, one of the complex activities that can be
coordinated on top of the WS-Coordination specification)

Booking dynamics detail
The Booking Requestor BR must contact each WS that compose the
Booking Application BA
If every WS reply to the BR’s request with the desired response
message the WS-AT can be committed and then the holiday can be
considered successfully booked
Otherwise, if some wrong response is retrieved by the BR

The BR is forced to rollback the WS-AT
Ad-hoc failure handling can be performed...

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 41 / 61

Case study

Transport Service (TS) and Payment Service (PS)

The Transport Service
The TS is the WS that manges the booking for the transport used for
arrive and leave from the designed destination. It maintains the transport’s
availability into its private registry

The Payment Service
The PS manages bank accounts and can be used for settle payment
requests. Obviously a payment request can succeed only and only if the
specified bank account contains enough money

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 42 / 61

Case study

Hotel Service (HS) overview

Functionalities provided

The Hotel Service (HS) manages the hotel’s booking tasks and also
provides notification functionalities to interested subscribers

Implementation
The HS has been designed using two specialized agents, sharing and
exploiting an instance of WSPanel used to expose the service
Hotel Basic Agent manages the requests related to bookings and

cancellations, exploiting to this end the functionalities
provided by an HotelBookingRegistry artifact

Hotel Notifier Agent manages the HS’s notification functionalities: it uses
a SubscribersMap artifact to keep track of the subscriptions
requested and monitors the HotelBookingRegistry so as to
notify interested subscribers as soon as changes regarding
date availabilities are observed

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 43 / 61

Case study

Part of the scenario’s structural architecture

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 44 / 61

Case study

A generic WS-AT Participant’s WSDL

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 45 / 61

Case study

Sketch of the Payment Service’s WSDL

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 46 / 61

Case study

Sketch of the Hotel Service’s WSDL 1/2

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 47 / 61

Case study

Sketch of the Hotel Service’s WSDL 2/2

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 48 / 61

Case study

The Booking dynamics of the considered example

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 49 / 61

Case study

Simplified overview of the BR Agent in Jason 1/2

+!start_booking :
<- !setupTools;
!book_hotel.

+!setupTools : resources(Wallet)
<-
//Use the RequestMediator to create a new WS-AT and add the relates info to the Wallet
...
cartago.use(Wallet, addInfo(WS-AT-INFO));
/* Set up the required artifacts (only if not already created)
for the communication with the designed WSs */
!buildWSInterface(Name, WsdlURI, Op, Port, WSInt);
//Add the WS-AT-INFO to the WSInterface configuration
cartago.use(WSInt, configure(WS-AT-INFO)).
...

+!book_hotel : date(Date) & resources(ProxyHotel)
<-
//Hotel booking request
!createBookingMessage(hotel, Date, MsgBookHotel);
cartago.doRequestResponse(ProxyHotel, bookingOperation(MsgBookHotel), ResponseHotel);

//Hotel’s response inspection for checking the booking availability
!inspect_hotel_response(ResponseHotel, Resp);

//Continue the holiday booking operations
!book_accessories(Resp).

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 50 / 61

Case study

Simplified overview of the BR Agent in Jason 2/2

//Plan that can be used if is possible book the hotel for the specified dates
+!book_accessories("dates_available") : date(Date) & resources(ProxyTransport, ProxyPayment)

& hprice(HotelPrice) & tPrice(TransportPrice)
<- //Transport booking and payment
!createBookingMessage(transport, Date, MsgTransport);
cartago.doRequestResponse(ProxyTransport, bookingOperation(MsgTransport), ResponseTransport);
!createPayMessage("BankAccountID", (HotelPrice+TransportPrice), MsgPay);
cartago.doRequestResponse(ProxyPayment, payOperation(MsgPay), ResponsePayment);
!inspect_accessories_responses(ResponseTransport, ResponsePayment, Result);
//Booking finalization

!finalize(Result).

//Plan that can be used if is NOT possible book the hotel for the specified dates
+!book_accessories("dates_not_available"):wallet_entry(WS-AT-INFO) & resources(ProxyHotel) & dates(FullDates)

<- //Transaction rollback and subscription to the interested dates
!rollbackTransaction(WS-AT-INFO);
!createSubscribeMessage(FullDates, MsgSubscription);
cartago.use(ProxyHotel, subscribeOperation(MsgSubscription)).

//Booking and payment successfully done, transaction commit
+!finalize(operations_succeeded) : wallet_entry(WS-AT-INFO)

<- commitTransaction(WS-AT-INFO).

//Booking and payment NOT successfully done, transaction rollback
+!finalize(operations_not_succeeded) : wallet_entry(WS-AT-INFO)

<- rollbackTransaction(WS-AT-INFO).

//Notification of new booking availability, the booking operation can be retried
+dateNotMoreFull(FullDates) [source(ProxyHotel)] : resources(ProxyHotel)

<- !start_booking;

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 51 / 61

Case study

Final Remarks

Service modeling in SOA is still open issue
Agent and MAS as a suitable modeling for complex systems in general,
including aspects neglected by OO and component based systems
A&Aand CArtAgO-WSenable design and development of true agent
based SOA
System design is not more constrained by low level mechanism but
focused on important aspects as goal orientedness, fault tolerance,
parallel execution, distributed resources, situatedness, etc.

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 52 / 61

Case study

References

CArtAgO and CArtAgO-WS are open-source software:
Project HomePage:

http://cartago.sourceforge.net
http://cartagows.sourceforge.net

SVN: https://cartagows.svn.sourceforge.net/svnroot/cartagows
Jason BDI Agent Platform:

Project Homepage: http://jason.sourceforge.net/

Agents & Artifacts Theory, Design and Practice
Google Group:
http://groups.google.com.au/group/agents-and-artifacts

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 53 / 61

http://cartago.sourceforge.net
http://cartagows.sourceforge.net
https://cartagows.svn.sourceforge.net/svnroot/cartagows
http://jason.sourceforge.net/
http://groups.google.com.au/group/agents-and-artifacts

Case study

Bibliography I

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M.,
Ferris, C., and Orchard, D. (2004).
Web services architecture - w3c working group note 11 february 2004.
http://www.w3.org/TR/ws-arch/.

Bordini, R., Hübner, J. F., and Wooldridge, M. (2007).
Programming Multi-Agent Systems in AgentSpeak Using Jason.
John Wiley & Sons, Ltd.

Bozzo, L., Mascardi, V., Ancona, D., and Busetta, P. (2005).
COOWS: Adaptive BDI agents meet service-oriented computing
(extended version).
In European Workshop on Multi-Agent Systems (EUMAS 2005).

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 54 / 61

Case study

Bibliography II

Burmeister, B., Arnold, M., Copaciu, F., and Rimassa, G. (2008).
BDI-agents for agile goal-oriented business processes.
In Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2008), Industry and Application Track.

Cardoso, J. and Sheth, A. (2003).
Semantic e-workflow composition.
J. Intell. Inf. Syst., 21(3):191–225.

Casella, G. and Mascardi, V. (2006).
Intelligent agents that reason about web services: a logic programming
approach.
In Polleres, A., Decker, S., Gupta, G., and de Bruijn, J., editors,
Proceedings of the ICLP’06 Workshop Workshop on Applications of
Logic Programming n the Semantic Web and Semantic Web Services,
ALPSWS2006, pages 55–70.

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 55 / 61

Case study

Bibliography III

Dickinson, I. and Wooldridge, M. (2005).
Agents are not (just) web services : considering bdi agents and web
services.
In SOCABE 2005.

Georgeff, M. (2006).
Service Orchestration: The Next Big Thing.
DM Review.

Greenwood, D. and Calisti, M. (2004).
Engineering web service-agent integration.
In In Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, pages 1918—1925, The Hague, Netherlands.
IEEE Computer Society.

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 56 / 61

Case study

Bibliography IV

Greenwood, D., Lyell, M., Mallya, A., and Suguri, H. (2007).
The IEEE FIPA approach to integrating software agents and web
services.
In AAMAS ’07: Proceedings of the 6th international joint conference
on Autonomous agents and multiagent systems, pages 1–7, New York,
NY, USA. ACM.

Hunhs, M. N. (2006).
A research agenda for agent-based Service-Oriented Architectures.
In Klusch, M., Rovatsos, M., and Payne, T., editors, CIA 2006, volume
4149 of LNA, pages 8–22. Springer-Verlag Berlin Heidelberg.

IBM (1995).
Intelligent agent strategy white paper.
Technical report, IBM.

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 57 / 61

Case study

Bibliography V

Lécué, F., Delteil, A., and Léger, A. (2008).
Towards the composition of stateful and independent semantic web
services.
In SAC, pages 2279–2285.

N. Huhns, M., Singh, M. P., and Burstein, M. e. a. (2005).
Research directions for service-oriented multiagent systems.
IEEE Internet Computing, 9(6):69–70.

Nguyen, X. T. and Kowalczyk, R. (2007).
WS2JADE: Integrating web service with jade agents.
In Service-Oriented Computing: Agents, Semantics, and Engineering,
volume 4507 of LNCS, pages 147–159. Springer Berlin / Heidelberg.

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 58 / 61

Case study

Bibliography VI

Odell., J. (2002).
Objects and agents compared.
Journal of Object Technologies, 13(1):51–53.

Omicini, A., Ricci, A., and Viroli, M. (2008).
Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 17 (3).

Pistore, M., Marconi, A., Bertoli, P., and Traverso, P. (2005).
Automated composition of web services by planning at the knowledge
level.
In IJCAI 2005.

Poggi, A., Tomaiuolo, M., and Turci, P. (2007).
An agent-based service oriented architecture.
In AI*IA Workshop From Object to Agents (WOA-07).

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 59 / 61

Case study

Bibliography VII

Ricci, A., Piunti, M., Acay, L. D., Bordini, R., Hübner, J., and Dastani,
M. (2008).
Integrating Artifact-Based Environments with Heterogeneous
Agent-Programming Platforms.
In Proc. of the Seventh International Conference on Autonomous
Agents and Multiagent Systems (AAMAS’08), pages 225–232.

Rimassa, G., Kernland, M. E., and Ghizzioli, R. (2008).
Ls/abpm - an agent-powered suite for goal-oriented autonomic bpm.
In AAMAS (Demos).

Russell, S. J. and Norvig, P. (2002).
Artificial Intelligence: A Modern Approach.
Prentice Hall / Pearson Education International, Englewood Cliffs, NJ,
USA, 2nd edition.

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 60 / 61

Case study

Bibliography VIII

Shafiq, A. A., Ahmad, H. F., and Suguri, H. (2005).
AgentWeb Gateway - a middleware for dynamic integration of multi
agent system and web services framework.
In IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise.

van Riemsdijk, M. B. and Wirsing, M. (2007).
Using goals for flexible service orchestration - a first step.
In Service-Oriented Computing: Agents, Semantics, and Engineering
(SOCASE’07), volume 4504 of LNCS, pages 31–48. Springer-Verlag.

Varga, L. Z. and Hajnal, A. (2003).
Engineering web service invocations from agent systems.
In In Proceedings of the 3rd International Central and Eastern
European Conference on Multi-Agent Systems, pages pages 626–635,
Prague, Czech Republic.

Andrea Santi, Michele Piunti (DEIS) Agent-based SOA/WS applications 12/06/2009 61 / 61

	Outline
	Rationale
	Foundations of Agent-Oriented Computing
	A&A meta-model and CArtAgO
	Design of SOA/WS application based on CArtAgO-WS
	The WS-* layer
	Case study

