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Abstract. In this paper we give a sufficient condition for the existence of the eco-
nomic batch to a Wilson-type inventory model loaded by a fully exogenous continuous
demand function of time. After some cases solvable in closed form, the computational
problem is introduced of inverting the reordering time versus the ordered quantity as
necessary step to obtain the cost function to be minimized. Such a mixed (theoreti-
cal/numerical) approach is applied to a demand consisting of three different behaviors:
growth, decrease and prolonged zero. Such a wave-form is assumed to iterate itself
periodically and the relevant seasonal demand is expanded in a Fourier series of time.
Performing the integration and reverting the reordering time, the cost function is com-
puted and its minimizing EOQ detected. Finally an example shows that the above
conditions guarantee the existence but not uniqueness to solution.

Introduction

Economic Order Quantity (EOQ) is a set of microeconomic models defining the optimal
quantity of a good to be ordered for minimizing the total variable costs required to
make orders and to hold inventory. They went in existence long before the computer,
the first having been developed by [Harris, 1913], though [Wilson, 1934] is credited for
his early in-depth analysis.

Main underlying assumptions are:

i) the unit time demand δ for the goods is known, and deterministic;

ii) no lead time (between order and arrivals) is taken into account;

iii) the receipt of the order occurs in a single instant and immediately after ordering
it;
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iv) delivery, A > 0, and holding h > 0, specific costs are constant.

Several extensions have been made to the EOQ model: the demand can change
with the amount itself or with time; the model can include backordering costs and
multiple items, their perishability and so on, see for instance, we do not claim to be
exaustive, [Giri and Chaudhuri, 1998], [Goh, 1994], [Weiss, 1982], [Mingari Scarpello
and Ritelli, 2008].

Recall that, in the basic Wilson model, [Wilson, 1934], the inventory is assumed
to be loaded under a demand of constant variation rate. Accordingly, let q(t) be the
amount of goods stored at time t; we have:(

q′(t) = −δ,
q(0) = Q,

whence the blow-down law will be: q(t) = Q − δ t and T = Q/δ is the time, called
reordering time, after which the demand clears out all the inventory. Coming to the
costs, the delivery A and holding h are specific, namely for unity of item, and time-
invariant, then the total cost, i.e. delivering plus holding, for a whichever Q > 0
amount of goods can be formed as:

C(Q) =
A

T
+
h

T

Z t

0

q(τ)dτ =
δ A

Q
+
h

2
Q.

1. Our model

This article will treat some EOQ models having the peculiarity that demand is a
exogenous function of time. When δ = δ(t) is a given and positive and continuous
function of time, the inventory dynamics is ruled by the differential equation:(

q′(t) = −δ(t),
q(0) = Q,

=⇒ q(t) = Q−
Z t

0

δ(τ) dτ. (1)

The reordering time T = T (Q) is such that q(T ) = 0, or, it will solve the equation:

Q =

Z T

0

δ(τ) dτ. (2)

Let µ the mean value of the stock on hand q(t) between the times t = 0 and t = T of
full and empty:

µ =
1

T

Z T

0

q(t) dt =
1

T

Z T

0


Q−

Z t

0

δ(τ)dτ

ff
dt.

Minding the Q definition, one gets:

µ =
1

T

Z T

0

Z T

0

δ(τ)dτ −
Z t

0

δ(τ)dτ

ff
dt =

1

T

Z T

0

Z T

t

δ(τ)dτ

ff
dt,

or, changing the integrations’ order:

µ =
1

T

Z T

0

τδ(τ)dτ,

so that the total cost function becomes:

C(Q) =
1

T (Q)

(
A+ h

Z T (Q)

0

τδ(τ)dτ

)
, (3)

280



which, once that (2) has been solved to T , shows that the total cost depends on the
order Q. The aim of all EOQ analysis is to detect the best order, namely that special
Q-value, say Q∗, which minimizes C(Q).

It has been worked hitherto rather formally: now we are going to define which
assumptions can secure that for each Q > 0 equation (2) can be actually solved to T .
For the purpose we will assume that waiting for an infinite time, the market will ask
for an unlimited amount of goods:

lim
t→∞

Z t

0

δ(τ) dτ =∞. (4)

Well-posedness of the model: a sufficient condition for the minimum

Theorem 1. Suppose that there exist c > 0 and α ≤ 1 so that:

δ(τ) ≥ c

τα
, (5)

furthermore assume that there exist M > 1 and N > 0 such that for any t > N we
have:

tδ(t) >
M

t

Z t

0

τδ(τ)dτ, (6)

then there exists Q∗ > 0 such that:

inf
Q>0

C(Q) = C(Q∗).

Proof. By the definition we get that:

lim
Q→0+

C(Q) =∞. (7)

In fact, after seeing that Q → 0 =⇒ T (Q) → 0, then de l’Hospital-Bernoulli rule
gives:

lim
Q→0+

1

T (Q)

Z T

0

τδ(τ)dτ = 0,

so that (7) holds. Passing to study C(Q) for Q→∞ we get that (5) allows that:

inf
Q>0

C(Q) > 0.

In fact (5) implies that for large Q-values:

C(Q) ≥ A

T
+

ch

2− αT
1−α

what is preventing that C(Q) goes to zero when Q → ∞ and guarantees the lower
bound inf is greater than zero. Then our thesis will be achieved if proving there exist
a real root of C′(Q). We have:

C′(Q) =
T ′(Q)

T (Q)
h

 
T (Q)δ(T (Q))− A

hT (Q)
− 1

T (Q)

Z T (Q)

0

τδ(τ) dτ

!
. (8)

If Q→ 0 the bracket expression in (8) is negative, while (6) grants the same expression
is greater than zero for large Q values.

2. Some effective computations

After having fixed a general sufficient condition capable of ensuring the cost function
really attains a minimum, now we pass to detail three different exmples.
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Closed form solution

Some few problems can be solved in explicit closed form. For instance, if δ(t) =
(1 + t)−1 one finds:

C(Q) =
A− hQ
eQ − 1

+ h,

and then:
C′(Q) = 0 ⇐⇒ N(Q) := h− eQ(A− hQ+ h) = 0.

Recalling Lemma 2.1 in [Mingari Scarpello and Ritelli, 2007], we get the required EOQ
is given by:

Q∗ = W0

„
− exp

„
−A+ h

h

««
+
A

h
+ 1

where W0 is the Lambert1 function. The conclusion is slightly different if δ(t) =
a (b+ ct)−1 :

C(Q) =
Ac− bhQ

b
`
exp

`
cQ
a

´
− 1
´ +

ah

c
, Q∗ =

a

c
W0

„
− exp

„
−Ac

2

abh
− 1

««
+
a

c
+
Ac

bh
.

Anyway, the detection of closed form solutions to this type of EOQ problem through
the special functions is rather rare: in the majority of practical cases a numerical
treatment is required.

The numerical treatment

In the practice just the evalutation of the re-ordering time T (Q), see equation (2), can
lead to a severe computational problem. Neverheless the help of Mathematica R© can
be conclusive. We used the command:

In[1]:= inv@f_, s_D := Function@8t<, s �. FindRoot@f - t, 8s, 1<DD

to revert numerically a function whose explicit expression is not available. So, if for
example, δ(t) = 2 + sin t, (2) becomes 1 + 2T − cosT = Q . Herefrom T (Q) shall be
numerically pulled out, so that the cost function C(Q) can be implemented (assuming
the practical values A = 1 and h = 1 ) through the instructions:

In[2]:= einv = inv@1 + 2 T - Cos@TD, TD

c@Q_D :=

1

einv@QD
H1 + HNIntegrate@Τ H2 + Sin@ΤDL, 8Τ, 0, einv@QD<DLL;

Out[2]= Function@8t$<, T �. FindRoot@H1 + 2 T - Cos@TDL - t$, 8T, 1<DD

getting a cost plot versus the order, see Figure 1.
On which we observe that in this situation the cost function has many stationary

points.

1Lambert W function, named after the German mathematician Johann Heinrich Lambert
(1728-1777), is the inverse function of f(w) = wew where ew is the natural exponential
function and w is any complex number. Such a function is denoted by W : z = W (z)eW (z).
The standard W function expresses exact solutions to transcendental algebraic x−equations
like: e−cx = a0(x−r), where a0, c and r are real constants: its solution is x = r+W (ce−cr/ao).
Lambert was an eclectic and authoritative mathematician and probably would be astonished
for such a paternity credited with him. It is true he first considered the related trinomial
transcendental equation in 1758 which led to a paper by Leonhard Euler in 1783 who discussed
a special case of wew. But the inverse of wew was really first described by Pólya and Szegö in
Aufgaben und Lehrsätze aus der Analysis, issued as vol. 19 and 20 of Grundlehren der math.
Wiss. in 1925.
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In[4]:= Plot@c@QD, 8Q, 0, 20<, PlotRange ® 80, 9<,
PlotStyle ® 8Black, Thickness@.0029D<, AxesLabel ® TraditionalForm �� 8Q, C<,
LabelStyle ® 8FontFamily ® "Times", FontSize ® 14<, AxesStyle ® Arrowheads@8-0., 0.030<DD

Out[4]=

0 5 10 15
Q

2

4

6

8

C

Figure 1: Cost plot versus the order under oscillatory demand δ(t) = 2 + sin t

Periodic seasonal demand

Let us take into account a time-nonmonotonic demand which is almost everywhere
nonzero, but: starts growing at a fixed rate till to its maximum followed by a falling
down at a fixed but different rate.

ΑL 2L

m

Figure 2: A 2L− periodic wave of up-down linear demand versus time.

Let 2L be the time-duration of such a wave-form; we have:

δ(t) =

8>><>>:
m

αL
t if 0 ≤ t ≤ αL

m(t− 2L)

L(α− 2)
if αL < t ≤ 2L

where m > 0, 0 < α < 2.
We assume such a demand will iterate its 2L-behavior, just that of our Figure 2,

so generating a 2L-periodic function of time (indefinite wave-train). In such a way we
are meaning to model the seasonal periodicity of demand from the market. We are led
in a natural way to expand the demand function in Fourier series. The Fourier series
of δ(t) is

δ(t) =
a0

2
+

∞X
n=1

„
an cos

nπt

L
+ bn sin

nπt

L

«
where

an =
1

L

Z 2L

0

δ(t) cos
nπ t

L
dt, bn =

1

L

Z 2L

0

δ(t) sin
nπ t

L
dt.
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In our case we get:

a0 =
m

2
, an =

2m [1− cos(πnα)]

π2n2(α− 2)α
, bn = − 2m sin(πnα)

π2n2(α− 2)α
.

By stopping the Fourier expansion of δ(t) at the N th harmonic, we will manage here-
inafter its truncated Fourier approximation δN (t), being N our convenient or practical
choice: in our simulation we used N = 40. We can resort again to the Mathematica R©
power for:

i) carrying out the integration of (1) which will provide q as a function of t;

ii) performing a numerical inversion of (2) in order to get the reordering time T
through the generic order Q;

iii) plugging T = T (Q) in (3) and evaluating there the “first integral moment” of
δN (t). In such a way the relevant cost function C(Q) is known and can be plotted
Figure 3. We take L = 2, N = 40, m = 1, α = 0.4 in our simulation, so that its
minimizing order Q∗ is promptly obtained.

2 4 6 8

2

4

6

Figure 3: Cost plot versus the order under a demand wave train like Figure 2.

As for the Figure 1, the cost function has again several stationary points: anyhow the
minimizing order is unique (Q∗ ' 2) .

A three-fold periodic demand

The particular behavior of this new demand consists of being first growing, after falling
and finally zero for a known amount of time (Figure 4). The distribution will depend
on m,α, β where 2L is again the period of the wave-train. Our analytical description
of the whole demand will be:

δ(t) =

8>>><>>>:
m

αL
t if 0 ≤ t ≤ αL

m(t− β L)

(α− β)L
if αL < t < β L

0 if β L ≤ t ≤ 2L

where m > 0, 0 < α < β < 2,
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ΑL ΒL 2L

m

Figure 4: A 2L−periodic wave of a three-fold linear demand.

The relevant Fourier expansion coefficients are:

a0 =
mβ

2
, an =

m [α cos(πnβ)− β cos(πnα)− α+ β]

π2n2α(α− β)
,

bn =
m [α sin(πnβ)− β sin(πnα)]

π2n2α(α− β)

Approximating δ(t) by δN (t), where N = 40, m = 1, α = 0.4, β = 0.9, L = 24, we
plot the relevant cost function C(Q). We omit all the details and provide directly our
Figure 5 with: N = 40, m = 1, α = 0.4, β = 0.9, L = 24

2 4 6 8 10

1

2

3
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5

Figure 5: Cost plot versus the order under a demand wave train likr Figure 4

Non uniqueness

Instead of writing C(Q) as in (3) set C(Q) = E(y) evaluated when y = T (Q) so that

E(y) =

A+ h

Z y

0

τδ(τ)dτ

y

Assume in the following that A = h = 1. Then choose δ(t) = t2 − (9/2)t + 13/2.
Conditions (4), (5) and (6) are are clearly verified. It is easy too see that

E(y) =
1

4
y3 − 3

2
y2 +

13

4
y +

1

y
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We see that E′(1) = E′(2) = 0 and that E(1) = E(2) = 3. Here below the short
Mathematica code confirms the non-uniqueness of the minimum: see Figure 6.

In[32]:= einv = invB
13 T

2
-
9 T2

4
+
T3

3
, TF

c@Q_D :=
1

einv@QD
1 + NIntegrateBΤ Τ

2
-
9

2
Τ +

13

2
, 8Τ, 0, einv@QD<F ;

Out[32]= FunctionB8t$<, T �. FindRootB
13 T

2
-

9 T2

4
+

T3

3
- t$, 8T, 1<FF

In[34]:= pary2 = Line@880, 3<, 810, 3<<D;
ispi2 = Graphics@8Dashed, Red, pary2<D;

In[36]:= gr = Plot@c@QD, 8Q, 0, 11<, PlotStyle ® 8Black, Thickness@.0029D<, PlotRange ® 82.8, 3.2<,
AxesLabel ® TraditionalForm �� 8Q, C<, LabelStyle ® 8FontFamily ® "Times", FontSize ® 14<,
AxesStyle ® Arrowheads@8-0., 0.030<DD;

In[37]:= Show@gr, ispi2D

Out[37]=

0 2 4 6 8 10
Q

2.9

3.0

3.1

C

Figure 6: Cost plot versus the order: non uniqueness of the minimizing batch.

Conclusions

We found a sufficient condition, Theorem 1, for the existence of the economic batch
to a Wilson-type inventory model whose demand δ(t) is a positive and continuous
function of time. After having treated a case which can be solved in closed form, the
computational problem is described of inverting the reordering time versus the ordered
quantity, what is a necessary step for obtain the cost function to be minimized. The
above theoretical/numerical procedure is detailed assuming a non monotonic demand
formed of three different behaviors: growth, decrease and lasting zero (double “light”
and “dark”). Such a wave-form is assumed to iterate itself periodically: the relevant
seasonal demand is then expanded in a Fourier series of time. The cost function is com-
puted and the relevant EOQ is detected. In tackling the possible wave-forms building
the periodic train, we intentionally omitted those with jumps, like the saw-tooth or
the square wave. First, for avoiding to enter the field of nondifferential optimization.
Afterwards, the Fourier series of the periodic demand formed of the above wave-forms,
would be affected by the Gibbs phenomenon2 (1899). Namely, the N th partial sum of
the Fourier series of a continuously differentiable periodic function shows large oscilla-
tions near the jump, so that “wiggles” appear around the discontinuities, and even if
n→∞, they never disappear so that the overshoot approaches a finite limit. Some of
our plots (see Figures 1 and 3) displayed many stationary points, but always only one

2Named after the American physicist Josiah Willard Gibbs (1839-1903)
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minimizing batch Q∗. A parabolic demand has been finally introduced without best
batch uniqueness, what is reasonably due to the lack of constraints on δ(t).
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