
The Architecture of the World Wide Web
Distributed Systems L-A

Sistemi Distribuiti L-A

Andrea Omicini
after Giulio Piancastelli

andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2008/2009



Disclaimer

These slides contain material from [Fielding, 2000]

I A lot of material from that PhD Thesis has been re-used in
the following, and integrated with new material according to
the personal view of the teacher of this course

I A well-founded synthesis can be found in
[Fielding and Taylor, 2002]

I Also, the following slides were first developed by Giulio
Piancastelli

I Every problem or mistake contained in these slides, however,
should be attributed to the sole responsibility of the teacher of
this course



Outline

Software Architecture

Network-based Application Architectures

Application Domain Requirements for the World Wide Web

The Representational State Transfer (ReST) Architectural Style

ReST Architectural Elements



Part I

Software Architecture



What is a Software Architecture?

Software architecture
A software architecture is an abstraction of the run-time
elements of a software system during some phase of its operation.
A system may be composed of many levels of abstraction and
many phases of operation, each with its own software architecture

Architectural elements
A software architecture is defined by a configuration of
architectural elements—components, connectors, and
data—constrained in their relationships in order to achieve a
desired set of architectural properties



Architectural Elements

Components

A component is an abstract unit of software instructions and
internal state that provides a transformation of data via its
interface

Connectors
A connector is an abstract mechanism that mediates
communication, coordination, or cooperation among components

Data
A datum is an element of information that is transferred from a
component, or received by a component, via a connector



Architectural Properties & Constraints

The set of architectural properties of a software architecture is
derived from the selection and arrangement of components,
connectors, and data within a system

I functional properties

I quality attributes such as ease of evolution, reusability of
components, efficiency, and dynamic extensibility

Properties are induced by the set of constraints within an
architecture

Architectural constraints are often motivated by the application
of a software engineering principle to an aspect of the architectural
elements



Architectural Styles

Architectural Style

An architectural style is a coordinated set of architectural
constraints that restricts the roles/features of architectural
elements and the allowed relationships among those elements
within any architecture that conforms to that style

Architectural styles

I are a mechanism for categorizing architectures and defining
their common characteristics

I provide an abstraction for the interactions of components,
capturing the essence of a pattern of interaction by ignoring
the accidental details of the rest of the architecture



Part II

Network-based Application Architectures



WWW as a Network-based Application

The World Wide Web is a network-based application because

I communication between components is restricted to message
passing, unlike more general applications

I operations across the network are performed in a fashion that
is not necessarily transparent to the user, unlike classic
distributed systems that look to their users like ordinary
centralized systems

I applications represent “business aware” functionalities, unlike
operating systems, networking software, and support systems

I in application architectures the goals of a user action are
representable as functional architectural properties, such as
the location of information, performing requests, and
rendering data streams

I this is in contrast with e.g. a networking abstraction, where
the goal is to move bits from one location to the other without
regard to why those bits are being moved



Architectural Properties of Interest for Network-based
Applications

I Performance
I Network performance
I User-perceived performance

I Scalability

I Simplicity
I Modifiability

I Evolvability
I Extensibility
I Customizability
I Configurability
I Reusability

I Visibility

I Portability

I Reliability



Part III

Application Domain Requirements for the World
Wide Web



The Application Domain of the World Wide Web

The major goal of the World Wide Web was to be a “shared
information space through which people and machines could
communicate.” That goal arose two basic needs

I a way for people to store and structure their own information

I a way to be able to reference and structure the information
stored by others so that it would not be necessary for everyone
to keep and maintain local copies

More requirements came from

I distribution of intended end-users located around the world

I heterogeneity of machines, operating systems, and file formats
in use



The Web as a Distributed Hypermedia System

The World Wide Web was intended as a distributed hypermedia
system

Hypermedia is defined by the presence of application control
information embedded within, or as a layer above, the presentation
of information

Distributed hypermedia allows the presentation and control
information to be stored at remote locations



Simplicity

A low entry-barrier was necessary to enable sufficient adoption by
readers, authors, and application developers

Readers
Hypermedia was chosen as the user interface because of

I simplicity and generality

I flexibility of relationships (links) allowing for unlimited
structuring

Authors
Hypertext allowed partial availability of content and references
without preventing their creation

Developers

Text-based protocols were the basis for simplifying application
development



Extensibility

While simplicity makes it possible to deploy an initial
implementation of a system, extensibility allows the system to
evolve beyond the the limitations of what was initially deployed



Latency

User actions within a distributed hypermedia system require the
transfer of large amounts of data from where the data is stored to
where it is used

I the World Wide Web architecture must be designed for
large-grain data transfer

The usability of hypermedia interaction is highly sensitive to
user-perceived latency: the time between selecting a link and the
rendering of a usable result

I the World Wide Web architecture needs to minimize network
interactions



Scalability

The Web is intended to be an Internet-scale distributed
hypermedia system

I the entire system is not under the control of a single entity

I the system is about interconnecting information networks
across multiple organizational boundaries

I all entities participating in the system may be acting towards
different or crossing purposes

Scalability

Architectural elements need to continue operating when they are
subjected to unanticipated load, or when given malformed or
maliciously constructed data, since they may be communicating
with elements outside their organizational control

I the architecture must feature mechanisms enhancing visibility
and scalability



Security

Multiple organizational boundaries implies that multiple trust
boundaries could be present in any communication

Security

This requires that the architecture be capable of communicating
authentication data and authorization controls. However

I authentication degrades scalability

I the architecture’s default operation should be limited to
actions that do not need trusted data



Independent Deployment

Multiple organizational boundaries also means that the system
must be prepared for gradual and fragmented change

I old and new implementations co-exist

I old implementations must not prevent the new
implementations from making use of their extended
capabilities

Deployment

The architecture as a whole must be designed to ease the
deployment of architectural elements in a partial, iterative fashion

I Existing architectural elements need to be designed with the
expectation that architectural features will be added later

I Older implementations need to be easily identified so that
legacy behavior can be encapsulated without adversely
impacting newer architectural elements



Deriving the Web Architectural Style

From those requirements, an architectural style can be derived and
used to define the principles behind the World Wide Web
architecture. The formalization process for the Web architectural
style works under two hypothesis:

Hypothesis I

The design rationale behind the WWW architecture can be
described by an architectural style consisting of the set of
constraints applied to the elements within the Web architecture

Hypothesis II

Constraints can be added to the WWW architectural style to
derive a new hybrid style that better reflects the desired properties
of a modern Web architecture



Part IV

The Representational State Transfer (ReST)
Architectural Style



Deriving ReST as the Web Architectural Style

The design rationale behind the Web architecture can be described
by an architectural style consisting of the set of constraints applied
to elements within the architecture

By examining the impact of each constraint as it is added to the
evolving style, we can identify the properties induced by the Web
constraints



Starting From the Null Style

The Null style starts with the system needs as a whole, without
constraints, and then constraints are incrementally identified and
applied to elements of the system in order to differentiate the
design space and allow the forces that influence system behavior to
flow naturally, in harmony with the system



Client-Server (I)

Principle

Separation of concerns (between user interface and data storage)

Constraints
A server component, offering a set of services, listens for requests
upon those services. A client component, desiring that a service be
performed, sends a request to the server via a connector. The
server either rejects or performs the request and sends a response
back to the client.



Client-Server (II)

Properties

I Improve portability of the user interface across multiple
platforms

I Improve scalability by simplifying the server components

I Allow components to evolve independently



Stateless (I)

Constraint
Each request from client to server must contain all of the
information necessary to understand the request, and cannot take
advantage of any stored context on the server



Stateless (II)

Properties

I Improve visibility by allowing monitoring systems to determine
the full nature of a request without looking beyond it

I Improve reliability by easing the recovering from partial failures

I Improve scalability by allowing server components to quickly
free resources

I Improve simplicity by simplifying implementation because the
server does not have to manage resource usage across requests

Disadvantages

I Decrease network performance by increasing the
per-interaction overhead repetitive data sent in a series of
requests

I Reduce the server control over consistent application behavior



Cache (I)

Constraint
Data within a response to a request be implicitly or explicitly
labeled as cacheable or not. If a response is cacheable, then a
client cache is given the right to reuse that response data for later,
equivalent requests.



Cache (II)

Properties

I Improve efficiency, scalability, and user-perceived performance
by reducing the average latency of a series of interactions

Disadvantages

I Decrease reliability if stale data within the cache differs
significantly from the data that would have been obtained had
the request been sent directly to the server



Uniform Interface (I)

The central feature that distinguishes the REST architectural style
from other network-based styles is its emphasis on a uniform
interface between components

Principle

Generality (applied to the component interface)



Uniform Interface (II)

Constraint
Multiple architectural constraints are needed to guide the behavior
of components:

I identification of resources

I manipulation of resources through representations

I self-descriptive messages

I hypermedia as the engine of application state

Properties

I Simplify the overall system architecture

I Improve the visibility of interactions

I Encourage independent evolvability by decoupling
implementations from the services they provide



Uniform Interface (III)

The ReST interface is designed to be efficient for large-grain
hypermedia data transfer, optimizing for the common case of the
Web, but resulting in an interface that is not optimal for other
forms of architectural interaction

Disadvantages

I Degrades efficiency by transferring information in a
standardized form rather than one which is specific to an
application’s needs



Layered System (I)

Constraint
Compose an architecture of hierarchical layers by constraining
component behavior such that each component cannot see beyond
the immediate layer with which they are interacting



Layered System (II)

Properties

I Improve the overall system simplicity and promote
independence by restricting knowledge of the system to a
single layer

I Improve system scalability by enabling load balancing of
services at intermediaries

I Improve security by allowing policies to be enforced on data
crossing organizational boundaries

Disadvantages

I Reduce user-perceived performance by adding overhead and
latency to data processing

I the effect is countered by shared caching at intermediaries



Code-On-Demand (I)

It is an optional constraint, so that the architecture only gains the
benefit and suffer the disadvantage of it when they are known to
be in effect for some realm of the overall system

Constraint
Client functionalities can be extended by downloading and
executing code (typically in the form of applets and scripts)



Code-On-Demand (II)

Properties

I Simplify clients by reducing the number of features required to
be pre-implemented

I Improve system extensibility by allowing features to be
downloaded after deployment

Disadvantages

I Reduce visibility and thus is only an optional constraint



Part V

ReST Architectural Elements



ReST General Overview

The Representational State Transfer (ReST) is an abstraction of
the architectural elements within a distributed hypermedia system.
ReST ignores the details of component implementation and
protocol syntax in order to focus on

I the roles of components

I the constraints upon interaction between components

I the component interpretation of significant data elements

ReST components communicate by transferring a representation of
a resource in a format matching one of an evolving set of standard
data types, selected dynamically based on the capabilities or
desires of the recipient and the nature of the resource. Whether
the representation is in the same format as the raw source, or is
derived from the source, remains hidden behind the component
uniform interface.



ReST Data Elements

Data Element Modern Web Examples

resource the conceptual target of a hypertext link

resource identifier URI (URL, URN)

representation HTML document, JPEG image

representation metadata media type, last-modified time

resource metadata source link, alternates, vary

control data if-modified-since, cache-control



Resources

The key abstraction of information in ReST is a resource. Any
information that can be named and is important enough to be
referenced as a thing in itself can be a resource:

I a document

I an image
I a temporal service

I e.g. today’s weather in any Italian city

I a collection of other resources
I e.g. a list of open bugs in a bug database

I a non-virtual object
I e.g. a physical object like a lamp, an abstract concept like fear



Resources as Conceptual Mappings

A resource is a conceptual mapping to a set of entities, not the
entity that corresponds to the mapping at any particular point in
time. The entities in the set can be:

I resource representations

I resource identifiers

A resource can map to the empty set

I References can be made to a concept before any realization of
that concept exists

Resources can be

I static, in the sense that, when examined at any time after
their creation, they always correspond to the same entity set

I dynamic, otherwise

The only thing that is required to be static for a resource is the
semantics of the mapping, since the semantics is what
distinguishes one resource from another



Resources and the Web Architecture

The abstract definition of resources enables key features of the
Web architecture

I provides generality by encompassing many sources of
information

I avoids artificially distinguishing information sources by type or
implementation

I allows late binding of the reference to a representation
I enables content negotiation to take place based on

characteristics of the request

I allows an author to reference the concept rather than some
singular representation of that concept

I thus removing the need to change all existing links whenever
the representation changes



Resource Identifiers

Each resource has to have at least one identifier in the form of a
URI (RFC 2396, [Berners-Lee et al., 1998]). The URI is the name
and address of a resource.

The URI is the fundamental technology of the Web.
There were hypertext systems before HTML, and
Internet protocols before HTTP, but they didn’t talk to
each other. The URI interconnected all these Internet
protocols into a Web.

The web kills off other protocols because it has
something most protocols lack: a simple way of labeling
every available item. Every resource on the Web has at
least one URI.

Design Guidelines

URIs should have a structure. Their structure should vary in
predictable ways.



The Relationship Between URIs and Resources

No two resources can be the same, since each resource maps a
different concept
However, at some moment in time, two different resources may
point to the same data, e.g.

I http://example.com/software/release/1.0.3/

I http://example.com/software/release/latest/

A resource may have one URI or many. Every URI designates
exactly one resource.

Design Guidelines

A resource and its URI ought to have an intuitive correspondence



Representations

A representation is a sequence of bytes, plus representation
metadata to describe those bytes

I Other commonly used but less precise names for a
representation include: document, file, HTTP message

A representation contains any useful information about the current
state of a resource



Representations Metadata

Representation metadata is in the form of name-value pairs, where
the name corresponds to a standard that defines the structure and
semantics of the value. Response messages may include both

I representation metadata, and

I resource metadata, i.e. information about the resource that is
not specific to the supplied representation

Control Data
Control data defines the purpose of a message between
components

I e.g. the action being requested or the meaning of a response

Control data is also used to parameterize requests and override the
default behavior of some connecting elements

I e.g. cache behavior



Media Types

The data format of a representation is known as a media type

A representation can be included in a message and processed by
the recipient according to the control data of the message and the
nature of the media type

The design of a media type can directly impact the user-perceived
performance of a distributed hypermedia system.

I Any data that must be received before the recipient can begin
rendering the representation adds to the latency of an
interaction



Connectors

Connector Modern Web Examples
client libwww, libwww-perl
server libwww, Apache API, NSAPI
resolver bind (DNS lookup library)
tunnel SOCKS, SSL after HTTP CONNECT
cache browser cache

I provide a generic interface for accessing and manipulating the
value set of a resource

I enhancing simplicity by providing a clean separation of
concerns

I encapsulate the activities of accessing resources and
transferring resource representations

I enabling substitutability by hiding the underlying
implementation of resources and communication mechanisms



Connector Types

Client and Server
The primary connector types are client and server

I a client initiates communication by making a request
I a server listens for connections and responds to requests in

order to supply access to its services

Resolver
A resolver translates partial or complete resource identifiers into
the network address information needed to establish an
inter-component connection

Tunnel
A tunnel simply relays communication across a connection
boundary, such as a firewall or lower-level network gateway. Some
ReST components (e.g. proxy) may dynamically switch from active
component behavior to that of a tunnel.



Cache (I)

The cache connector is located on the interface to a client or
server connector in order to save cacheable responses to current
interactions so that they can be reused for later requested
interactions

Some cache connectors are shared, meaning that cached responses
may be used in answer to a client other than the one for which the
response was originally obtained

I can be an effective way to reduce the impact of “flash
crowds” on the load of a popular server

I can also lead to errors if the cached response does not match
what would have been obtained by a new request



Cache (II)

A cache is able to determine the cacheability of a response because
the interface is generic rather than specific to each resource.

Default cache behavior can be overridden by including proper
control data in the interaction.



Components (I)

Component Modern Web Examples
origin server Apache httpd, Microsoft IIS
gateway Squid
proxy CERN Proxy, Netscape Proxy
user agent Mozilla Firefox, Safari

Origin Server

Uses a server connector to govern the namespace for a requested
resource

I the server is the definitive source for representations of its
resources and must be the ultimate recipient of any request
that intends to modify the value of its resources

I provides a generic interface to its services as a resource
hierarchy



Components (II)

User Agent

Uses a client connector to initiate a request and becomes the
ultimate recipient of the response

Proxy and Gateway

Intermediary components act as both a client and a server in order
to forward, with possible translation, requests and responses

I a client determines when it will use a proxy

I a gateway is imposed by the network or origin server



Part VI

The HyperText Transfer Protocol



HyperText Transfer Protocol (HTTP)

ReST components on the World Wide Web communicate through
the HTTP protocol (RFC 2616, [Fielding et al., 1999]). HTTP is
a synchronous document-based protocol where transactions are
carried out in two steps

1. the client creates a HTTP request by putting a document in
an envelope, and sends it to the server

2. the server creates a HTTP response by putting a response
document in an envelope, and sends it to the client



HTTP Request Example

GET /index.html HTTP/1.1

Host: www.oreilly.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.12)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9

Accept-Language: us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15;utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive



HTTP Request Example: the HTTP Method

GET /index.html HTTP/1.1

Host: www.oreilly.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.12)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9

Accept-Language: us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15;utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

The name of the HTTP method indicates how the client expects
the server to process this request



HTTP Methods

Unlike RPC, requests in HTTP are directed to resources using a
generic interface with standard semantics that can be interpreted
by intermediaries almost as well as by the machines that originated
services

The most important methods in the generic HTTP interface and
their semantics are

GET to retrieve a representation of the resource in an
idempotent way

POST to create a new subordinate entity of the specified
resource using the content sent in the request

PUT to create or modify the specified resource using the
content sent in the request

DELETE specifying that the resource must be deleted



HTTP Request Example: The Path

GET /index.html HTTP/1.1

Host: www.oreilly.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.12)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9

Accept-Language: us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15;utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

This is the portion of the URI to the right of the host name and
indicates which part of the server data the client expects to be
processed by this request



HTTP Request Example: The Headers

GET /index.html HTTP/1.1

Host: www.oreilly.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.12)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9

Accept-Language: us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15;utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Request headers are key-value pairs of metadata. There is a
standard list of HTTP headers, and applications can define their
own.



HTTP Request Example: The Representation

GET /index.html HTTP/1.1

Host: www.oreilly.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.12)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9

Accept-Language: us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15;utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

The representation (also called “entity body”) is the document
inside the HTTP envelope. HTTP GET requests have no entity
body.



HTTP Response Example

HTTP/1.1 200 OK

Date: Fri, 17 Nov 2006 15:36:32 GMT

Server: Apache

Last-Modified: Fri, 17 Nov 2006 09:05:32 GMT

Etag: "7359b7-a7fa-455d8264

Accept-Ranges: bytes

Content-Length: 43302

Content-Type: text/html

X-Cache: MISS from www.oreilly.com

Keep-Alice: timeout=15, max=1000

Connection: Keep-Alive

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

...

</html>



HTTP Response Example: the Response Code

HTTP/1.1 200 OK

Date: Fri, 17 Nov 2006 15:36:32 GMT

Server: Apache

Last-Modified: Fri, 17 Nov 2006 09:05:32 GMT

Etag: "7359b7-a7fa-455d8264

Accept-Ranges: bytes

Content-Length: 43302

Content-Type: text/html

X-Cache: MISS from www.oreilly.com

Keep-Alice: timeout=15, max=1000

Connection: Keep-Alive

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

...

</html>

The response code is a numeric code that tells the client whether
its request has been successfully processed or not, and how the
client should therefore regard the response



HTTP Response Example: the Headers

HTTP/1.1 200 OK

Date: Fri, 17 Nov 2006 15:36:32 GMT

Server: Apache

Last-Modified: Fri, 17 Nov 2006 09:05:32 GMT

Etag: "7359b7-a7fa-455d8264

Accept-Ranges: bytes

Content-Length: 43302

Content-Type: text/html

X-Cache: MISS from www.oreilly.com

Keep-Alice: timeout=15, max=1000

Connection: Keep-Alive

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

...

</html>

Response headers are key-value pairs of metadata. There is a
standard list of HTTP headers, and applications can define their
own headers.



HTTP Response Example: the Representation

HTTP/1.1 200 OK

Date: Fri, 17 Nov 2006 15:36:32 GMT

...

Connection: Keep-Alive

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

...

</html>

The representation contained in the response is the fulfillment of
the request.

The media type of the representation is given in the
Content-Type header. The indication of a media type lets clients
correctly display the representation of the request target resource.



Method and Scoping Information

The method information in a HTTP request indicates how the
client expects the server to process the request

The scope information indicates on which part of the data set
the server should operate the method requested by the client

On systems respectful of ReST constraints, such as the World
Wide Web, the method information is contained in the HTTP
request method and the scope information is the URI (host +
path) of the resource to which the request is directed.



Bibliography

Berners-Lee, T., Fielding, R., and Masinter, L. (1998).
Uniform Resource Identifiers (URI): Generic syntax.
http://www.ietf.org/rfc/rfc2396.txt.
Internet RFC 2396.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., and Berners-Lee, T. (1999).
Hypertext Transfer Protocol – HTTP/1.1.
http://www.w3.org/Protocols/rfc2616/rfc2616.html.
Internet RFC 2616.

Fielding, R. T. (2000).
Architectural Styles and the Design of Network-based Software
Architectures.
PhD thesis, University of California, Irvine, CA, USA.

Fielding, R. T. and Taylor, R. N. (2002).
Principled design of the modern Web architecture.
ACM Transactions on Internet Technology, 2(2):115–150.

Richardson, L. and Ruby, S. (2007).
RESTful Web Services.
O’Reilly.



The Architecture of the World Wide Web
Distributed Systems L-A

Sistemi Distribuiti L-A

Andrea Omicini
after Giulio Piancastelli

andrea.omicini@unibo.it

Ingegneria Due
Alma Mater Studiorum—Università di Bologna a Cesena

Academic Year 2008/2009


	Disclaimer
	Software Architecture
	Software Architecture

	Network-based Application Architectures
	Network-based Application Architectures

	Application Domain Requirements for the World Wide Web
	Application Domain Requirements for the World Wide Web

	The Representational State Transfer (ReST) Architectural Style
	The Representational State Transfer (ReST) Architectural Style

	ReST Architectural Elements
	ReST Architectural Elements

	The HyperText Transfer Protocol
	The HyperText Transfer Protocol
	


