BETA
v1.1

Sistemi Concorrenti e di Rete LS

Il Facolta di Ingegneria - Cesena
a.a 2008/2009

[module lab 2.2]

BASIC BUILDING BLOCKS
FOR SYNCHRONIZATION

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 1

CONCURRENT BUILDING BLOCKS

« The Java platform libraries (Java 5.0 & Java 6.0) include a rich set of
concurrent building blocks such as thread-safe collections and a
variety of synchronizers that can coordinate the control flow of
cooperating threads

— Synchronized Collections
— Concurrent Collections
— Synchronizers

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 2

SYNCHRONIZED COLLECTIONS

« Synchronized wrappers
— created by Collections.synchronizedXxXX factory methods

— achieving thread-safety by
» encapsulating the state
« synchronizing every public method

> achieving safety by serializing all access to the collection’s state
* Problems

— need to use additional client-side locking to guard compound actions

« common compound actions include iteration, navigation, conditional
operations such as put-if-absent

— the object to be used for client-side locking is the synchronized collection
object itself

— performance problems
 locking the collection for long-term operations, such as iteration...
 strongly limiting concurrency

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 3

CONCURRENT COLLECTIONS

* Introduced with Java 5.0 and designed for concurrent access from
multiple threads

— greatly improving scalability and performance with respect to
synchronized collections

* Main classes

— ConcurrentHashMap
* replacement for synchronized hash-based Map implementations

— CopyOnWriteArrayList
* areplacement for synchronized List implementations

— Queue and BlockingQueue
* interfaces with a different kinds of implementations available

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 4

BLOCKING QUEUE

Provides blocking put / take methods + timed equivalent offer / poll
— if the queue is full, put blocks until space become available
— it the queue is empty, take blocks until an element is available
* Queue can be bounded and unbounded
— unbounded queue are never full
« Bounded queue as a basic building block for producer-consumer
design pattern

— powerful resource management tool for building reliable applications

* making programs more robust to overload by throttling activities that threaten
to produce more work than can be handled

» Different classes implementing BlockingQueue

— LinkedBlockingQueue, ArrayBlockingQueue,
PriorityBlockingQueue,...

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 5

EXAMPLE: DESKTOP SEARCH

« A concurrent program scanning local drives for documents and
indexes them for later searching

— similar to Google Desktop or the Window Indexing Service

« Two agents + work queue

— File Crawler

« producer searching a file hierarchy for files meeting an indexing criterion and
putting their names on the work queue

— Indexer
« consumer taking the file names from the queue and indexes them
« Benefits of the concurrent architecture (vs. sequential)
— decomposing the overall problem in simple problems
 increasing readability and reusability of the solution

— several performance benefits
» producers and consumers can execute concurrently (possibly in parallel)

» good also in the case of mono-processor architecture, if the processes are I/
O bound + CPU bound

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 6

SI

FILE CRAWLER

public class FileCrawler extends Thread {
private final BlockingQueue<File> fileQueue;
private final FileFilter fileFilter;
private final File root;

public FileCrawler (BlockingQueue<File> q, FileFilter f, File r){
fileQueue = q;
fileFilter = f;
root = r;

}

public void run(){
try {
crawl (root);
} catch (InterruptedException ex)({
Thread.currentThread() .interrupt();
}
}

private void crawl(File root) throws InterruptedException {
File[] entries = roo.listFiles(fileFilter);
if (entries != null){
for (File entry: entries){
if (entry.isDirectory()){
crawl (entry);
} else if (!alreadyIndexed(entry)){
fileQueue.put(entry);
}
}
}
}

bcks

INDEXER

public class Indexer extends Thread {
private final BlockingQueue<File> fileQueue;

public Indexer (BlockingQueue<File> q){
fileQueue = q;

}

public void run(){
try {
while (true) {
indexFile(queue.take);
}
} catch (InterruptedException ex){
Thread.currentThread() .interrupt();
}
}
}

BlockingQueue<File> queue = new LinkedBlockingQueue<File>(BOUND);

FileFilter filter = new FileFilter(){
public boolean accept(File file){ return true;

}

for (File root: roots){
new FileCrawler(queue,filter,root).start();

}

for (File root: N_CONSUMERS) {
new Indexer (queue).start();

}

}

DEQUES AND WORK STEALING

* Deque and BlockingDeque data structure
— introduced with Java 6.0

— double-ended queue that allows for efficient insertion and removal from
both the head and the tail

— implementations: ArrayDeque and LinkedBlockingDeque
« Used for work stealing design pattern

— similar to producers-consumers

— each consumer has its own deque

— if a consumer exhausts the work in its own deque, it can steal work from
the tail of someone else’s deque

 More scalable that producers-consumers

— workers don’t contend for a shared work queue
» most of the time they access only their own deque, reducing contention

— when accessing to others’ deque, the access is from the tail, not from the
head

« further reducing contention

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 9

SYNCHRONIZERS

« A synchronizer is any object that coordinates the control flow of
threads based on its state

— blocking queue can function as synchronizers
« Very important building blocks of concurrent applications

— passive component encapsulating coordination functionalities
« All synchronizers share certain structural properties

— encapsulating state that determines whether threads arriving at the
synchronizers should be allowed to pass or forced to wait

— providing methods to manipulate that state

— providing methods to wait efficiently for the synchronizer to enter in the
desired state

* Main types provided with Java library

— Locks

— Semaphores

— Latches

— Barriers

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 10

LOCKS

« Providing explicit lock functionality
— vs. intrinsic lock given by synchronized blocks

* Lock interface and ReentrantLock implementation

public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException;
void unlock();
Condition newCondition();

}

« Typical usage:

Lock lock = new ReentrantLock();

lock.lock();
try {

// update shared object state

// catch exception and restore invariants if necessary
} finally {

lock.unlock();

}

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 11

POLLED AND TIMED LOCK ACQUISITION

 Using tryLock for polled and timed lock acquisition to have more
sophisticated error recovery

public boolean transferMoney(Account from, Account to, Amount am)
throws InsufficientFundException, InterruptedException {
while (true) {
if (from.lock.tryLock()){

try {
if (to.lock.tryLock()){

try {
if (from.getBalance().compareTo(am)<0) {
throw new InsufficientFundException();
} else {
from.debit(am);
to.credit(am);
return true;
}
} finally {
to.lock.unlock();

}

}
} finally {

from.lock.unlock();

}
}

}
SIg 3

EXPLICIT VS. INTRINSIC LOCKS

Intrinsic locking works fine in most situations but has some functional
limitations
— itis not possible to interrupt a thread waiting to acquire a lock..
— ..or to attempt to acquire a lock without being willing to wait it forever
In this case explicit locks can be used...
— managing interruption
— specifying bounded wait time
..with a strong discipline that must be followed by the programmers
— explicit unlocking locks, for every possible scenario
Performance comparison

— in Java 5.0 explicit locks outperform intrinsic locks
* ReentrantLock throughput about 4 times than intrinsic lock

— in Java 6.0 same performance

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 13

SEMAPHORES

« Implementation of Dijkstra’s basic semaphore construct

 Semaphore class
— created specifying a number of virtual permits

— acquire + release method
— possibility to enforce fairness

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks

14

LATCHES

« A latch is a synchronizer that can delay the progress of a thread until
it reaches its terminal state
* Function as a gate

— until the latch reaches the terminal state, the gate is closed and no
thread can pass

— in the terminal state the gate opens allowing all threads to pass
— once the latch reaches the terminal state, it cannot change the state
again and so it remains open forever
* CountDownLatch class
— CountDownLatch(int count)
* to initialize the latch with a specific count
— countDown
* method to decrement the count
— await

 method that causes the current thread to wait until the latch has counted
down to zero, unless the thread is interrupted.

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 15

LATCHES USE

« Used to ensure that certain activities do not proceed until other one-
time activities complete.
* Main examples:
— ensuring that a computation does not proceed until resources it needs
have been initialized
 using a binary latch for each resource
— ensuring that a service does not start until other services on which it
depends have started

» using a binary latch for each service

 starting service S would involve first waiting on latches for other services on
which S depends, and then releasing the S latch after startup completes

— waiting all parties involved in an activity (e.g: players in a multi-player
game) are ready to proceed
» the latch reaches its terminal state after all the players are ready

SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 16

AN EXAMPLE

class Driver { // ...
void main() throws InterruptedException {
CountDownLatch startSignal = new CountDownLatch(1l);
CountDownLatch doneSignal = new CountDownLatch(N);
for (int i = 0; i < N; ++i) // create and start threads

new Thread(new Worker(startSignal, doneSignal)).start();
doSomethingElse(); // don't let run yet
startSignal.countDown(); // let all threads proceed
doSomethingElse();
doneSignal.await(); // wait for all to finish

}

class Worker implements Runnable {
private final CountDownLatch startSignal;
private final CountDownLatch doneSignal;
Worker (CountDownLatch startSignal, CountDownLatch doneSignal)
this.startSignal = startSignal;
this.doneSignal = doneSignal;

}
public void run() {
try {
startSignal.await();
doWork();
doneSignal.countDown() ;
} catch (InterruptedException ex) {} // return;
}
void doWork() { ... }

{

17

ANOTHER EXAMPLE

class Driver2 { // ...
void main() throws InterruptedException {
CountDownLatch doneSignal = new CountDownLatch(N);

Executor e = ...

for (int i = 0; i < N; ++i) // create and start threads
e.execute(new WorkerRunnable(doneSignal, i));

doneSignal.await(); // wait for all to finish

}
}

class WorkerRunnable implements Runnable {
private final CountDownLatch doneSignal;

private final int 1i;
WorkerRunnable(CountDownLatch doneSignal, int i) {

this.doneSignal = doneSignal;

this.i = 1i;
}
public void run() {
try {
doWork(i);
doneSignal.countDown();
} catch (InterruptedException ex) {} // return;
}
void doWork() { ... }

}

18

BARRIERS

* Implementation of the barrier synchronization

— similar to latches in that they block a group of threads until some event has
occurred

— the key difference is that in this case all the threads must come together at a
barrier point at the same time in order to proceed

> Latches are for waiting for events, barriers for other threads
* CyclicBarrier class

— allows a fixed number of parties to rendezvous repeatedly at a barrier point
— CyclicBarrier(int parties)

e creates a new CyclicBarrier that will trip when the given number of parties (threads)
are waiting upon it, and does not perform a predefined action upon each barrier.

— CyclicBarrier(int parties, Runnable barrierAction)
- ...executing an action when the barrier is passed

— int await()
» waits until all parties have invoked await on this barrier.
» the barrier is reset as soon as all threads met at the barrier point

— boolean isBroken()

» queries if this barrier is in a broken state, i.e. a thread blocked in await was
interrupted

SISCOLS-- I Facolta Ingegneria - Cesena Synchronization Building Blocks 19

AN EXAMPLE

class Solver {
final int N;
final float[][] data;
final CyclicBarrier barrier;

class Worker implements Runnable {
int myRow;
Worker (int row) { myRow =
public void run() {

row; }

public Solver(float[][] matrix) {
data = matrix;
N = matrix.length;
barrier = new CyclicBarrier(N,
new Runnable() {
public void run() {
mergeRows (...);
}
)i
for (int i = 0; i < N; ++i)
new Thread(new Worker(i)).start();

while (!done()) {
processRow (myRow) ; waitUntilDone();
try { }
barrier.await(); }
} catch (InterruptedException ex) {
return;
} catch (BrokenBarrierException ex) {
return;
}
}
}
}
SISCO LS - Il Facolta Ingegneria - Cesena Synchronization Building Blocks 20

