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CONCURRENT BUILDING BLOCKS

« The Java platform libraries (Java 5.0 & Java 6.0) include a rich set of
concurrent building blocks such as thread-safe collections and a
variety of synchronizers that can coordinate the control flow of
cooperating threads

— Synchronized Collections
— Concurrent Collections
— Synchronizers
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SYNCHRONIZED COLLECTIONS

« Synchronized wrappers
— created by Collections.synchronizedXxXX factory methods

— achieving thread-safety by
» encapsulating the state
« synchronizing every public method

> achieving safety by serializing all access to the collection’s state
* Problems

— need to use additional client-side locking to guard compound actions

« common compound actions include iteration, navigation, conditional
operations such as put-if-absent

— the object to be used for client-side locking is the synchronized collection
object itself

— performance problems
 locking the collection for long-term operations, such as iteration...
 strongly limiting concurrency
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CONCURRENT COLLECTIONS

* Introduced with Java 5.0 and designed for concurrent access from
multiple threads

— greatly improving scalability and performance with respect to
synchronized collections

* Main classes

— ConcurrentHashMap
* replacement for synchronized hash-based Map implementations

— CopyOnWriteArrayList
* areplacement for synchronized List implementations

— Queue and BlockingQueue
* interfaces with a different kinds of implementations available
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BLOCKING QUEUE

Provides blocking put / take methods + timed equivalent offer / poll
— if the queue is full, put blocks until space become available
— it the queue is empty, take blocks until an element is available
* Queue can be bounded and unbounded
— unbounded queue are never full
« Bounded queue as a basic building block for producer-consumer
design pattern

— powerful resource management tool for building reliable applications

* making programs more robust to overload by throttling activities that threaten
to produce more work than can be handled

» Different classes implementing BlockingQueue

— LinkedBlockingQueue, ArrayBlockingQueue,
PriorityBlockingQueue,...
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EXAMPLE: DESKTOP SEARCH

« A concurrent program scanning local drives for documents and
indexes them for later searching

— similar to Google Desktop or the Window Indexing Service

« Two agents + work queue

— File Crawler

« producer searching a file hierarchy for files meeting an indexing criterion and
putting their names on the work queue

— Indexer
« consumer taking the file names from the queue and indexes them
« Benefits of the concurrent architecture (vs. sequential)
— decomposing the overall problem in simple problems
 increasing readability and reusability of the solution

— several performance benefits
» producers and consumers can execute concurrently (possibly in parallel)

» good also in the case of mono-processor architecture, if the processes are I/
O bound + CPU bound
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FILE CRAWLER

public class FileCrawler extends Thread {
private final BlockingQueue<File> fileQueue;
private final FileFilter fileFilter;
private final File root;

public FileCrawler (BlockingQueue<File> q, FileFilter f, File r){
fileQueue = q;
fileFilter = f;
root = r;

}

public void run(){
try {
crawl (root);
} catch (InterruptedException ex)({
Thread.currentThread() .interrupt();
}
}

private void crawl(File root) throws InterruptedException {
File[] entries = roo.listFiles(fileFilter);
if (entries != null){
for (File entry: entries){
if (entry.isDirectory()){
crawl (entry);
} else if (!alreadyIndexed(entry)){
fileQueue.put(entry);
}
}
}
}
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INDEXER

public class Indexer extends Thread {
private final BlockingQueue<File> fileQueue;

public Indexer (BlockingQueue<File> q){
fileQueue = q;

}

public void run(){
try {
while (true) {
indexFile(queue.take);
}
} catch (InterruptedException ex){
Thread.currentThread() .interrupt();
}
}
}

BlockingQueue<File> queue = new LinkedBlockingQueue<File>(BOUND);

FileFilter filter = new FileFilter(){
public boolean accept(File file){ return true;

}

for (File root: roots){
new FileCrawler(queue,filter,root).start();

}

for (File root: N_CONSUMERS) {
new Indexer (queue).start();

}

}




DEQUES AND WORK STEALING

* Deque and BlockingDeque data structure
— introduced with Java 6.0

— double-ended queue that allows for efficient insertion and removal from
both the head and the tail

— implementations: ArrayDeque and LinkedBlockingDeque
« Used for work stealing design pattern

— similar to producers-consumers

— each consumer has its own deque

— if a consumer exhausts the work in its own deque, it can steal work from
the tail of someone else’s deque

 More scalable that producers-consumers

— workers don’t contend for a shared work queue
» most of the time they access only their own deque, reducing contention

— when accessing to others’ deque, the access is from the tail, not from the
head

« further reducing contention
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SYNCHRONIZERS

« A synchronizer is any object that coordinates the control flow of
threads based on its state

— blocking queue can function as synchronizers
« Very important building blocks of concurrent applications

— passive component encapsulating coordination functionalities
« All synchronizers share certain structural properties

— encapsulating state that determines whether threads arriving at the
synchronizers should be allowed to pass or forced to wait

— providing methods to manipulate that state

— providing methods to wait efficiently for the synchronizer to enter in the
desired state

* Main types provided with Java library

— Locks

— Semaphores

— Latches

— Barriers
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LOCKS

« Providing explicit lock functionality
— vs. intrinsic lock given by synchronized blocks

* Lock interface and ReentrantLock implementation

public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException;
void unlock();
Condition newCondition();

}

« Typical usage:

Lock lock = new ReentrantLock();

lock.lock();
try {

// update shared object state

// catch exception and restore invariants if necessary
} finally {

lock.unlock();

}
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POLLED AND TIMED LOCK ACQUISITION

 Using tryLock for polled and timed lock acquisition to have more
sophisticated error recovery

public boolean transferMoney(Account from, Account to, Amount am)
throws InsufficientFundException, InterruptedException {
while (true) {
if (from.lock.tryLock()){

try {
if (to.lock.tryLock()){

try {
if (from.getBalance().compareTo(am)<0) {
throw new InsufficientFundException();
} else {
from.debit(am);
to.credit(am);
return true;
}
} finally {
to.lock.unlock();

}

}
} finally {

from.lock.unlock();

}
}

}
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EXPLICIT VS. INTRINSIC LOCKS

Intrinsic locking works fine in most situations but has some functional
limitations
— itis not possible to interrupt a thread waiting to acquire a lock..
— ..or to attempt to acquire a lock without being willing to wait it forever
In this case explicit locks can be used...
— managing interruption
— specifying bounded wait time
..with a strong discipline that must be followed by the programmers
— explicit unlocking locks, for every possible scenario
Performance comparison

— in Java 5.0 explicit locks outperform intrinsic locks
* ReentrantLock throughput about 4 times than intrinsic lock

— in Java 6.0 same performance
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SEMAPHORES

« Implementation of Dijkstra’s basic semaphore construct

 Semaphore class
— created specifying a number of virtual permits

— acquire + release method
— possibility to enforce fairness
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LATCHES

« A latch is a synchronizer that can delay the progress of a thread until
it reaches its terminal state
* Function as a gate

— until the latch reaches the terminal state, the gate is closed and no
thread can pass

— in the terminal state the gate opens allowing all threads to pass
— once the latch reaches the terminal state, it cannot change the state
again and so it remains open forever
* CountDownLatch class
— CountDownLatch(int count)
* to initialize the latch with a specific count
— countDown
* method to decrement the count
— await

 method that causes the current thread to wait until the latch has counted
down to zero, unless the thread is interrupted.
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LATCHES USE

« Used to ensure that certain activities do not proceed until other one-
time activities complete.
* Main examples:
— ensuring that a computation does not proceed until resources it needs
have been initialized
 using a binary latch for each resource
— ensuring that a service does not start until other services on which it
depends have started

» using a binary latch for each service

 starting service S would involve first waiting on latches for other services on
which S depends, and then releasing the S latch after startup completes

— waiting all parties involved in an activity (e.g: players in a multi-player
game) are ready to proceed
» the latch reaches its terminal state after all the players are ready
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AN EXAMPLE

class Driver { // ...
void main() throws InterruptedException {
CountDownLatch startSignal = new CountDownLatch(1l);
CountDownLatch doneSignal = new CountDownLatch(N);
for (int i = 0; i < N; ++i) // create and start threads

new Thread(new Worker(startSignal, doneSignal)).start();
doSomethingElse(); // don't let run yet
startSignal.countDown(); // let all threads proceed
doSomethingElse();
doneSignal.await(); // wait for all to finish

}

class Worker implements Runnable {
private final CountDownLatch startSignal;
private final CountDownLatch doneSignal;
Worker (CountDownLatch startSignal, CountDownLatch doneSignal)
this.startSignal = startSignal;
this.doneSignal = doneSignal;

}
public void run() {
try {
startSignal.await();
doWork();
doneSignal.countDown( ) ;
} catch (InterruptedException ex) {} // return;
}
void doWork() { ... }

{
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ANOTHER EXAMPLE

class Driver2 { // ...
void main() throws InterruptedException {
CountDownLatch doneSignal = new CountDownLatch(N);

Executor e = ...

for (int i = 0; i < N; ++i) // create and start threads
e.execute(new WorkerRunnable(doneSignal, i));

doneSignal.await(); // wait for all to finish

}
}

class WorkerRunnable implements Runnable {
private final CountDownLatch doneSignal;

private final int 1i;
WorkerRunnable(CountDownLatch doneSignal, int i) {

this.doneSignal = doneSignal;

this.i = 1i;
}
public void run() {
try {
doWork(i);
doneSignal.countDown();
} catch (InterruptedException ex) {} // return;
}
void doWork() { ... }

}
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BARRIERS

* Implementation of the barrier synchronization

— similar to latches in that they block a group of threads until some event has
occurred

— the key difference is that in this case all the threads must come together at a
barrier point at the same time in order to proceed

> Latches are for waiting for events, barriers for other threads
* CyclicBarrier class

— allows a fixed number of parties to rendezvous repeatedly at a barrier point
— CyclicBarrier(int parties)

e creates a new CyclicBarrier that will trip when the given number of parties (threads)
are waiting upon it, and does not perform a predefined action upon each barrier.

— CyclicBarrier(int parties, Runnable barrierAction)
- ...executing an action when the barrier is passed

— int await()
» waits until all parties have invoked await on this barrier.
» the barrier is reset as soon as all threads met at the barrier point

— boolean isBroken()

» queries if this barrier is in a broken state, i.e. a thread blocked in await was
interrupted
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AN EXAMPLE

class Solver {
final int N;
final float[][] data;
final CyclicBarrier barrier;

class Worker implements Runnable {
int myRow;
Worker (int row) { myRow =
public void run() {

row; }

public Solver(float[][] matrix) {
data = matrix;
N = matrix.length;
barrier = new CyclicBarrier(N,
new Runnable() {
public void run() {
mergeRows (...);
}
)i
for (int i = 0; i < N; ++i)
new Thread(new Worker(i)).start();

while (!done()) {
processRow (myRow) ; waitUntilDone();
try { }
barrier.await(); }
} catch (InterruptedException ex) {
return;
} catch (BrokenBarrierException ex) {
return;
}
}
}
}
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