
SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module lab 2.2]
BASIC BUILDING BLOCKS
FOR SYNCHRONIZATION

BETA
v1.1

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

CONCURRENT BUILDING BLOCKS
• The Java platform libraries (Java 5.0 & Java 6.0) include a rich set of

concurrent building blocks such as thread-safe collections and a
variety of synchronizers that can coordinate the control flow of
cooperating threads
– Synchronized Collections
– Concurrent Collections
– Synchronizers

2

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

SYNCHRONIZED COLLECTIONS
• Synchronized wrappers

– created by Collections.synchronizedXXX factory methods
– achieving thread-safety by

• encapsulating the state
• synchronizing every public method

> achieving safety by serializing all access to the collection’s state
• Problems

– need to use additional client-side locking to guard compound actions
• common compound actions include iteration, navigation, conditional

operations such as put-if-absent
– the object to be used for client-side locking is the synchronized collection

object itself
– performance problems

• locking the collection for long-term operations, such as iteration...
• strongly limiting concurrency

3

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

CONCURRENT COLLECTIONS
• Introduced with Java 5.0 and designed for concurrent access from

multiple threads
– greatly improving scalability and performance with respect to

synchronized collections
• Main classes

– ConcurrentHashMap
• replacement for synchronized hash-based Map implementations

– CopyOnWriteArrayList
• a replacement for synchronized List implementations

– Queue and BlockingQueue
• interfaces with a different kinds of implementations available

4

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

BLOCKING QUEUE
• Provides blocking put / take methods + timed equivalent offer / poll

– if the queue is full, put blocks until space become available
– it the queue is empty, take blocks until an element is available

• Queue can be bounded and unbounded
– unbounded queue are never full

• Bounded queue as a basic building block for producer-consumer
design pattern
– powerful resource management tool for building reliable applications

• making programs more robust to overload by throttling activities that threaten
to produce more work than can be handled

• Different classes implementing BlockingQueue
– LinkedBlockingQueue, ArrayBlockingQueue,

PriorityBlockingQueue,...

5

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

EXAMPLE: DESKTOP SEARCH
• A concurrent program scanning local drives for documents and

indexes them for later searching
– similar to Google Desktop or the Window Indexing Service

• Two agents + work queue
– File Crawler

• producer searching a file hierarchy for files meeting an indexing criterion and
putting their names on the work queue

– Indexer
• consumer taking the file names from the queue and indexes them

• Benefits of the concurrent architecture (vs. sequential)
– decomposing the overall problem in simple problems

• increasing readability and reusability of the solution
– several performance benefits

• producers and consumers can execute concurrently (possibly in parallel)
• good also in the case of mono-processor architecture, if the processes are I/

O bound + CPU bound

6

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

FILE CRAWLER

7

public class FileCrawler extends Thread {
 private final BlockingQueue<File> fileQueue;
 private final FileFilter fileFilter;
 private final File root;

 public FileCrawler(BlockingQueue<File> q, FileFilter f, File r){
 fileQueue = q;
 fileFilter = f;
 root = r;
 }

 public void run(){
 try {
 crawl(root);
 } catch (InterruptedException ex){
 Thread.currentThread().interrupt();
 }
 }

 private void crawl(File root) throws InterruptedException {
 File[] entries = roo.listFiles(fileFilter);
 if (entries != null){
 for (File entry: entries){
 if (entry.isDirectory()){
 crawl(entry);
 } else if (!alreadyIndexed(entry)){
 fileQueue.put(entry);
 }
 }
 }
 }
 ...
}

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

INDEXER

8

public class Indexer extends Thread {
 private final BlockingQueue<File> fileQueue;

 public Indexer(BlockingQueue<File> q){
 fileQueue = q;
 }

 public void run(){
 try {
 while (true) {

indexFile(queue.take);
 }
 } catch (InterruptedException ex){
 Thread.currentThread().interrupt();
 }
 }
}

 ...
 BlockingQueue<File> queue = new LinkedBlockingQueue<File>(BOUND);
 FileFilter filter = new FileFilter(){
 public boolean accept(File file){ return true; }
 }

 for (File root: roots){
 new FileCrawler(queue,filter,root).start();
 }

 for (File root: N_CONSUMERS){
 new Indexer(queue).start();
 }
 ...

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

DEQUES AND WORK STEALING
• Deque and BlockingDeque data structure

– introduced with Java 6.0
– double-ended queue that allows for efficient insertion and removal from

both the head and the tail
– implementations: ArrayDeque and LinkedBlockingDeque

• Used for work stealing design pattern
– similar to producers-consumers
– each consumer has its own deque
– if a consumer exhausts the work in its own deque, it can steal work from

the tail of someone else’s deque
• More scalable that producers-consumers

– workers don’t contend for a shared work queue
• most of the time they access only their own deque, reducing contention

– when accessing to others’ deque, the access is from the tail, not from the
head

• further reducing contention

9

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

SYNCHRONIZERS
• A synchronizer is any object that coordinates the control flow of

threads based on its state
– blocking queue can function as synchronizers

• Very important building blocks of concurrent applications
– passive component encapsulating coordination functionalities

• All synchronizers share certain structural properties
– encapsulating state that determines whether threads arriving at the

synchronizers should be allowed to pass or forced to wait
– providing methods to manipulate that state
– providing methods to wait efficiently for the synchronizer to enter in the

desired state
• Main types provided with Java library

– Locks
– Semaphores
– Latches
– Barriers
– ...

10

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

LOCKS
• Providing explicit lock functionality

– vs. intrinsic lock given by synchronized blocks
• Lock interface and ReentrantLock implementation

• Typical usage:

11

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException;
 void unlock();
 Condition newCondition();
}

Lock lock = new ReentrantLock();
...
lock.lock();
try {
 // update shared object state
 // catch exception and restore invariants if necessary
} finally {
 lock.unlock();
}

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

public boolean transferMoney(Account from, Account to, Amount am)
 throws InsufficientFundException, InterruptedException {
 while (true) {
 if (from.lock.tryLock()){
 try {
 if (to.lock.tryLock()){
 try {
 if (from.getBalance().compareTo(am)<0) {
 throw new InsufficientFundException();
 } else {
 from.debit(am);
 to.credit(am);
 return true;
 }
 } finally {
 to.lock.unlock();
 }
 }
 } finally {
 from.lock.unlock();
 }
 }
 }
}

POLLED AND TIMED LOCK ACQUISITION
• Using tryLock for polled and timed lock acquisition to have more

sophisticated error recovery

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

EXPLICIT VS. INTRINSIC LOCKS
• Intrinsic locking works fine in most situations but has some functional

limitations
– it is not possible to interrupt a thread waiting to acquire a lock..
– ..or to attempt to acquire a lock without being willing to wait it forever

• In this case explicit locks can be used...
– managing interruption
– specifying bounded wait time

• ..with a strong discipline that must be followed by the programmers
– explicit unlocking locks, for every possible scenario

• Performance comparison
– in Java 5.0 explicit locks outperform intrinsic locks

• ReentrantLock throughput about 4 times than intrinsic lock
– in Java 6.0 same performance

13

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

SEMAPHORES
• Implementation of Dijkstra’s basic semaphore construct
• Semaphore class

– created specifying a number of virtual permits
– acquire + release method
– possibility to enforce fairness

14

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

LATCHES
• A latch is a synchronizer that can delay the progress of a thread until

it reaches its terminal state
• Function as a gate

– until the latch reaches the terminal state, the gate is closed and no
thread can pass

– in the terminal state the gate opens allowing all threads to pass
– once the latch reaches the terminal state, it cannot change the state

again and so it remains open forever
• CountDownLatch class

– CountDownLatch(int count)
• to initialize the latch with a specific count

– countDown
• method to decrement the count

– await
• method that causes the current thread to wait until the latch has counted

down to zero, unless the thread is interrupted.

15

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

LATCHES USE
• Used to ensure that certain activities do not proceed until other one-

time activities complete.
• Main examples:

– ensuring that a computation does not proceed until resources it needs
have been initialized

• using a binary latch for each resource
– ensuring that a service does not start until other services on which it

depends have started
• using a binary latch for each service
• starting service S would involve first waiting on latches for other services on

which S depends, and then releasing the S latch after startup completes
– waiting all parties involved in an activity (e.g: players in a multi-player

game) are ready to proceed
• the latch reaches its terminal state after all the players are ready

16

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks 17

class Driver { // ...
 void main() throws InterruptedException {
 CountDownLatch startSignal = new CountDownLatch(1);
 CountDownLatch doneSignal = new CountDownLatch(N);
 for (int i = 0; i < N; ++i) // create and start threads
 new Thread(new Worker(startSignal, doneSignal)).start();
 doSomethingElse(); // don't let run yet
 startSignal.countDown(); // let all threads proceed
 doSomethingElse();
 doneSignal.await(); // wait for all to finish
 }
 }

 class Worker implements Runnable {
 private final CountDownLatch startSignal;
 private final CountDownLatch doneSignal;
 Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
 this.startSignal = startSignal;
 this.doneSignal = doneSignal;
 }
 public void run() {
 try {
 startSignal.await();
 doWork();
 doneSignal.countDown();
 } catch (InterruptedException ex) {} // return;
 }
 void doWork() { ... }
 }

AN EXAMPLE

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks 18

class Driver2 { // ...
 void main() throws InterruptedException {
 CountDownLatch doneSignal = new CountDownLatch(N);
 Executor e = ...

 for (int i = 0; i < N; ++i) // create and start threads
 e.execute(new WorkerRunnable(doneSignal, i));

 doneSignal.await(); // wait for all to finish
 }
 }
 class WorkerRunnable implements Runnable {
 private final CountDownLatch doneSignal;
 private final int i;
 WorkerRunnable(CountDownLatch doneSignal, int i) {
 this.doneSignal = doneSignal;
 this.i = i;
 }
 public void run() {
 try {
 doWork(i);
 doneSignal.countDown();
 } catch (InterruptedException ex) {} // return;
 }

 void doWork() { ... }
 }

ANOTHER EXAMPLE

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

BARRIERS
• Implementation of the barrier synchronization

– similar to latches in that they block a group of threads until some event has
occurred

– the key difference is that in this case all the threads must come together at a
barrier point at the same time in order to proceed

> Latches are for waiting for events, barriers for other threads
• CyclicBarrier class

– allows a fixed number of parties to rendezvous repeatedly at a barrier point
– CyclicBarrier(int parties)

• creates a new CyclicBarrier that will trip when the given number of parties (threads)
are waiting upon it, and does not perform a predefined action upon each barrier.

– CyclicBarrier(int parties, Runnable barrierAction)
• ...executing an action when the barrier is passed

– int await()
• waits until all parties have invoked await on this barrier.
• the barrier is reset as soon as all threads met at the barrier point

– boolean isBroken()
• queries if this barrier is in a broken state, i.e. a thread blocked in await was

interrupted
– ... 19

SISCO LS - II Facoltà Ingegneria - Cesena Synchronization Building Blocks

AN EXAMPLE

20

 class Solver {
 final int N;
 final float[][] data;
 final CyclicBarrier barrier;

 class Worker implements Runnable {
 int myRow;
 Worker(int row) { myRow = row; }
 public void run() {
 while (!done()) {
 processRow(myRow);
 try {
 barrier.await();
 } catch (InterruptedException ex) {
 return;
 } catch (BrokenBarrierException ex) {
 return;
 }
 }
 }
 }

 public Solver(float[][] matrix) {
 data = matrix;
 N = matrix.length;
 barrier = new CyclicBarrier(N,
 new Runnable() {
 public void run() {
 mergeRows(...);
 }
 });
 for (int i = 0; i < N; ++i)
 new Thread(new Worker(i)).start();

 waitUntilDone();
 }
 }

