Sistemi Concorrenti e di Rete LS

Il Facolta di Ingegneria - Cesena
a.a 2008/2009

v1.0 BETA

[module lab 2.2]

GUlI FRAMEWORKS &
CONCURRENCY

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency

1




GUI FRAMEWORKS & CONCURRENCY

« Once upon a time GUI applications were single-threaded...
— GUI events processed by a “main event loop”

 ..modern GUI Frameworks are not so different

— creating a dedicated event dispatch thread (EDT) for handling GUI
events

— the thread fetches events off a queue and dispatches them to
application-defined event handlers

* Most of the modern GUI Frameworks are single-threaded
— Java, QT, NextStep, Mac OS Cocoa, XWindow...

« Multithreaded GUI as a “failed dream” [*]

— many attempts, failed due to the generation of problems with race
conditions and deadlock

[*] referred in this way by Sun VP Graham Hamilton in his blog
http://weblogs.java.net/blog/kgh/archive/2004/10

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 2




MULTITHREADED GUI FRAMEWORKS:
THE PROBLEM

« Clash between input event processing and OO modelling of GUI
components
— that can easily lead to deadlocks and race conditions

* Inconsistent lock ordering
— in managing user-initiated actions and application-initiated actions

 user actions “bubble up” from OS to the application

— OS mouse click ->mouse click event of the GUI toolkit -> high-level event of the
application listener...

» application-actions “bubble down” from application to action

— changing background color of a component at the application level -> disptached
to component class -> dispatched to OS for rendering,,,

« most of the actions need to lock objects

— model-view-control (MVC) pattern
« the control calls into the model, which notifies the view that something has
changed...
 ...but the controller calls also the view, which may in turn call back into the
model to query the model state

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 3




SINGLE-THREADED GUI

» Achieving thread-safety via thread-confinement

— all GUI objects are accessed exclusively by the event thread
* including visual components and data models

— the application developer must make sure that these objects are properly
confined

* Sequential event processing
— events like kind of task to be processed sequentially by the event thread
 Problems and challenges

— if one task takes long time to execute, other task must wait
 blocking the overall GUI

> ...so tasks that execute in the event-thread must return quickly

— to initiate a long-term task a separate thread must be used
 es: spell-checking a document, searching the file system

> ...but typically a long-term task must provide a visual feedback for
indicating progress or when it completes
« and this code need to be executed by the event thread...

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 4




THREAD CONFINEMENT IN SWING

« All Swing components (such as JButton and JTable) and data

models (e.g. Table Model and Tree Model) are confined to the event
thread

— any code that access these objects must run in the event thread
« EXceptions

— Swing methods that can be safely called from any thread
* clearly identified in the Javadoc as thread-safe

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 5




THREAD-SAFE SWING METHODS

« Thread-Safe methods

SwingUtilities.isEventDispatchThread
« to check if the current thread is the event thread

SwingUtilities.invokelLater
« to schedule a Runnable for execution on the event thread

SwingUtilities.invokeAndWait

-+ to schedule a Runnable task for execution on the event thread, blocking the
current thread until it completes

« cannot be called by the event thread
methods to enqueue and repaint or revalidation request on the event
queue
methods for adding or removing listeners

« can be called from any thread, but listeners will always be invoked in the
event thread

 The swing event thread can be thought as a single-thread Executor
that processes tasks from the event queue

invokeLater and invokeAndWait used to submit new tasks to
execute

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 6




A SIMPLE GUI EXECUTOR

* Executor delegating tasks to SwingUtilities for executions

public class GuiExecutor extends AbstractExecutorService {
// Singletons have a private constructor and a public factory
private static final GuiExecutor instance = new GuiExecutor();

private GuiExecutor() { }
public static GuiExecutor instance() { return instance; }
public void execute(Runnable r) {
if (SwingUtilities.isEventDispatchThread())
r.run();

else
SwingUtilities.invokeLater(r);

// Plus trivial implementations of lifecycle methods

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 7




SHORT-RUNNING GUI TASKS

« Can be executed directly by the event thread
« Simple example

final Random random = new Random();
final JButton button = new JButton("Change Color");

button.addActionListener (new ActionListener() {

public void actionPerformed(ActionEvent e) {
button.setBackground(new Color(random.nextInt()));

)

* The control never leaves the event thread

— the event originates in the GUI toolkit, is delivered to the application, the
application modifies the GUI in response to user’s action

. | mouse | action | action
EDT SR ] ol
-1 click | event listener

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 8




LONG-RUNNING TASKS

« Some of the processing must be offloaded to another thread
— exploiting executors

« Two main cases

— long-term task without visual feedbacks
» simple case, quite unfrequent

— long-term task with visual feedbacks
« complex case, most frequent

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency




BINDING A TASK
WITHOUT VISUAL FEEDBACKS

« Exploiting a simple separated executor (or thread)
« Example:

ExecutorService backgroundExec = Executors.newCachedThreadPool();

button.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
backgroundExec.execute(new Runnable() {
public void run() { doBigComputation(); }

)
)i

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 10




LONG-RUNNING TASK WITH USER FEEDBACKS

The long-running task must submit another task to run in the event

thread whenever the user interface must be updated
Example:

button.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
button.setEnabled(false);
label.setText("busy");
backgroundExec.execute(new Runnable() {
public void run() {
try {
doBigComputation();
} finally {
GuiExecutor.instance() .execute(new Runnable()
public void run() {
button.setEnabled(true);
label.setText("idle");

})i

)i

SISCOLS-|});

{

11




SwingWorker

« Java 6.0 provides auxiliary classes for making it easier to program
complex long-term tasks that can interact with the GUI
* SwingWorker class

— provide a direct support for task cancellation, completion notification and
progress indication

class SwingWorker<T,V> implements RunnableFuture<T> {
protected abstract T doInBackground();
protected void done ()
protected final void publish(V... chunks)

protected void process(List<V> chunks);

boolean cancel(boolean mayInterruptIfRunning);
protected void setProgress(int progress);

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 12




TASK EXECUTION AND INTERFACE
UPDATE

« Support for asynchronous task execution & consequent interface
update

— doInBackground

» encapsulate the computational body of the task to be executed
asynchronously w.r.t. GUI activity, computing a result or throwing an
exception if unable to do so

» executed by some thread, not by the Swing EDT

— done
« encapsulate the action to do on the GUI when the task completed
« executed by the Swing EDT

« Support for asynchonous update of interfaces

— publish (V... chunks)

» used from inside dolnBackground to deliver intermediate results for
processing on the Event Dispatch Thread inside the process method

— process(List<V> chunks);
* receives data chunks from the publish method asynchronously on the EDT

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 13




AN EXAMPLE: SWING WORKER TEST

class CounterTask extends SwingWorker<Integer, Integer> {

protected Integer doInBackground() throws Exception {

int i = 0;

int sum = 0;

int maxCount = 10;

while (!isCancelled() && i < maxCount) {
sum+=1i;
i++;
publish(new Integer[] { i });
setProgress (100 * i / maxCount);
Thread.sleep(1000);

}

return sum;

}

protected void process(List<Integer> chunks) {
for (int i : chunks)
System.out.println("Step "+i);

}

protected void done() {
if (isCancelled()){
System.out.println("Task cancelled.");
} else {
System.out.println("Task completed.");
}
}
}

SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency

14




public class SwingWorkerTest ({
public static void main(String[] args) {
JTextArea textArea = new JTextArea(10, 20);
JProgressBar progressBar = new JProgressBar(0, 100);
CounterTask task = new CounterTask();

JButton startButton = new JButton("Start");
startButton.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) { task.execute();}});

JButton cancelButton = new JButton("Cancel");
cancelButton.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) { task.cancel(true); }});

task.addPropertyChangelListener (new PropertyChangeListener() {
public void propertyChange(PropertyChangeEvent evt) {
if ("progress".equals(evt.getPropertyName())) {
progressBar.setValue((Integer) evt.getNewValue());
}
}
})i

JPanel buttonPanel = new JPanel();
buttonPanel.add(startButton);
buttonPanel.add(cancelButton);

JPanel cp = new JPanel();

LayoutManager layout = new BoxLayout(cp, BoxLayout.Y AXIS);
cp.setLayout (layout);

cp.add(buttonPanel);

cp.add(new JScrollPane(textArea));
cp.add(progressBar);

JFrame frame = new JFrame("SwingWorker Test");
frame.setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE);
frame.setContentPane(cp);

frame.pack();

frame.setVisible(true);

}
SISCO LS - Il Facolta Ingegneria - Cesena GUI Frameworks & Concurrency 15




