
SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module lab 2.2]  
GUI FRAMEWORKS & 

CONCURRENCY

v1.0 BETA



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

GUI FRAMEWORKS & CONCURRENCY
• Once upon a time GUI applications were single-threaded...

– GUI events processed by a “main event loop”
• ..modern GUI Frameworks are not so different

– creating a dedicated event dispatch thread (EDT) for handling GUI 
events

– the thread fetches events off a queue and dispatches them to 
application-defined event handlers

• Most of the modern GUI Frameworks are single-threaded
– Java, QT, NextStep, Mac OS Cocoa, XWindow...

• Multithreaded GUI as a “failed dream” [*]
– many attempts, failed due to the generation of problems with race 

conditions and deadlock

2

[*] referred in this way  by Sun VP Graham Hamilton in his blog 
http://weblogs.java.net/blog/kgh/archive/2004/10



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

MULTITHREADED GUI FRAMEWORKS: 
THE PROBLEM
• Clash between input event processing and OO modelling of GUI 

components
– that can easily lead to deadlocks and race conditions

• Inconsistent lock ordering 
– in managing user-initiated actions and application-initiated actions 

• user actions “bubble up” from OS to the application
– OS mouse click ->mouse click event of the GUI toolkit -> high-level event of the 

application listener...
• application-actions “bubble down” from application to action

– changing background color of a component at the application level ->  disptached 
to component class -> dispatched to OS for rendering,,,

• most of the actions need to lock objects
– model-view-control (MVC) pattern 

• the control calls into the model, which notifies the view that something has 
changed...

• ...but the controller calls also the view, which may in turn call back into the 
model to query the model state

3



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

SINGLE-THREADED GUI
• Achieving thread-safety via thread-confinement

– all GUI objects are accessed exclusively by the event thread
• including visual components and data models 

– the application developer must make sure that these objects are properly 
confined

• Sequential event processing
– events like kind of task to be processed sequentially by the event thread

• Problems and challenges
– if one task takes long time to execute, other task must wait

• blocking the overall GUI
> ...so tasks that execute in the event-thread must return quickly
– to initiate a long-term task a separate thread must be used

• es: spell-checking a document, searching the file system
> ...but typically a long-term task must provide a visual feedback for 

indicating progress or when it completes
• and this code need to be executed by the event thread...

4



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

THREAD CONFINEMENT IN SWING
• All Swing components (such as JButton and JTable) and data 

models (e.g. Table Model and Tree Model) are confined to the event 
thread 
– any code that access these objects must run in the event thread

• Exceptions
– Swing methods that can be safely called from any thread

• clearly identified in the Javadoc as thread-safe

5



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

THREAD-SAFE SWING METHODS
• Thread-Safe methods

– SwingUtilities.isEventDispatchThread
• to check if the current thread is the event thread

– SwingUtilities.invokeLater
• to schedule a Runnable for execution on the event thread 

– SwingUtilities.invokeAndWait
• to schedule a Runnable task for execution on the event thread, blocking the 

current thread until it completes
• cannot be called by the event thread

– methods to enqueue and repaint or revalidation request on the event 
queue

– methods for adding or removing listeners
• can be called from any thread, but listeners will always be invoked in the 

event thread

• The swing event thread can be thought as a single-thread Executor 
that processes tasks from the event queue
– invokeLater and invokeAndWait used to submit new tasks to 

execute

6



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

A SIMPLE GUI EXECUTOR
• Executor delegating tasks to SwingUtilities for executions

7

public class GuiExecutor extends AbstractExecutorService {
    // Singletons have a private constructor and a public factory
    private static final GuiExecutor instance = new GuiExecutor();

    private GuiExecutor() { }

    public static GuiExecutor instance() { return instance; }

    public void execute(Runnable r) {
        if (SwingUtilities.isEventDispatchThread())
            r.run();
        else
            SwingUtilities.invokeLater(r);
    }

    // Plus trivial implementations of lifecycle methods
}



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

SHORT-RUNNING GUI TASKS
• Can be executed directly by the event thread
• Simple example

• The control never leaves the event thread
– the event originates in the GUI toolkit, is delivered to the application, the 

application modifies the GUI in response to user’s action

8

final Random random = new Random();
final JButton button = new JButton("Change Color");
...
button.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent e) {
        button.setBackground(new Color(random.nextInt()));
    }
});



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

LONG-RUNNING TASKS
• Some of the processing must be offloaded to another thread

– exploiting executors
• Two main cases

– long-term task without visual feedbacks
• simple case, quite unfrequent

– long-term task with visual feedbacks
• complex case, most frequent

9



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

BINDING A TASK 
WITHOUT VISUAL FEEDBACKS
• Exploiting a simple separated executor (or thread)
• Example:

10

ExecutorService backgroundExec = Executors.newCachedThreadPool();
...
button.addActionListener(new ActionListener() {
    public void actionPerformed(ActionEvent e) {
        backgroundExec.execute(new Runnable() {
            public void run() { doBigComputation(); }
        });
}});



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

LONG-RUNNING TASK WITH USER FEEDBACKS
• The long-running task must submit another task to run in the event 

thread whenever the user interface must be updated
• Example:

11

button.addActionListener(new ActionListener() {

    public void actionPerformed(ActionEvent e) {

        button.setEnabled(false);

        label.setText("busy");

        backgroundExec.execute(new Runnable() {

            public void run() {

                try {

                    doBigComputation();

                } finally {

                    GuiExecutor.instance().execute(new Runnable() {

                        public void run() {

                            button.setEnabled(true);

                            label.setText("idle");

                        }

                    });

                }

            }

        });

    }

});



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

SwingWorker
• Java 6.0 provides auxiliary classes for making it easier to program 

complex long-term tasks that can interact with the GUI
• SwingWorker class

– provide a direct support for task cancellation, completion notification and 
progress indication

12

class SwingWorker<T,V> implements RunnableFuture<T> {
  ...
  // to be overridden
  protected abstract  T doInBackground(); 
  protected  void  done()

  protected final void publish(V... chunks)
  protected void process(List<V> chunks);  
  ...
  // to be directly used
  boolean cancel(boolean mayInterruptIfRunning);
  protected  void setProgress(int progress);  
  ...  
}



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

TASK EXECUTION AND INTERFACE 
UPDATE
• Support for asynchronous task execution & consequent interface 

update
– doInBackground

• encapsulate the computational body of the task to be executed 
asynchronously w.r.t. GUI activity, computing a result or throwing an 
exception if unable to do so

• executed by some thread, not by the Swing EDT
– done

• encapsulate the action to do on the GUI when the task completed
• executed by the Swing EDT

• Support for asynchonous update of interfaces
– publish(V... chunks)

• used from inside doInBackground to deliver intermediate results for 
processing on the Event Dispatch Thread inside the process method

– process(List<V> chunks);  
• receives data chunks from the publish method asynchronously on the EDT

13



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency

AN EXAMPLE: SWING WORKER TEST

14

class CounterTask extends SwingWorker<Integer, Integer> { 

  protected Integer doInBackground() throws Exception { 
    int i = 0;
    int sum = 0; 
    int maxCount = 10; 
    while (!isCancelled() && i < maxCount) { 
      sum+=i;
      i++; 
      publish(new Integer[] { i }); 
      setProgress(100 * i / maxCount); 
      Thread.sleep(1000); 
    } 
    return sum; 
  } 
    
  protected void process(List<Integer> chunks) { 
    for (int i : chunks) 
      System.out.println("Step "+i); 
  } 

  protected void done() { 
    if (isCancelled()){ 
      System.out.println("Task cancelled."); 
    } else { 
      System.out.println("Task completed."); 
    }
  } 
} 



SISCO LS - II Facoltà Ingegneria - Cesena GUI Frameworks & Concurrency 15

public class SwingWorkerTest {
  public static void main(String[] args) {
    JTextArea textArea = new JTextArea(10, 20);
    JProgressBar progressBar = new JProgressBar(0, 100);
    CounterTask task = new CounterTask();

    JButton startButton = new JButton("Start");
    startButton.addActionListener(new ActionListener() {
       public void actionPerformed(ActionEvent e) { task.execute();}});

    JButton cancelButton = new JButton("Cancel");
    cancelButton.addActionListener(new ActionListener() {
       public void actionPerformed(ActionEvent e) { task.cancel(true); }});

    task.addPropertyChangeListener(new PropertyChangeListener() {
       public void propertyChange(PropertyChangeEvent evt) {
 if ("progress".equals(evt.getPropertyName())) {
   progressBar.setValue((Integer) evt.getNewValue());
 }
       }
    });
    
    JPanel buttonPanel = new JPanel();
    buttonPanel.add(startButton);
    buttonPanel.add(cancelButton);
    JPanel cp = new JPanel();
    LayoutManager layout = new BoxLayout(cp, BoxLayout.Y_AXIS);
    cp.setLayout(layout);
    cp.add(buttonPanel);
    cp.add(new JScrollPane(textArea));
    cp.add(progressBar);
    JFrame frame = new JFrame("SwingWorker Test");
    frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    frame.setContentPane(cp);
    frame.pack();
    frame.setVisible(true);
  }
}


