
SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module lab 2.1]
THREAD SAFETY

v1.0
BETA

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects 2

THREAD SAFETY DEFINITION

• A central aspect of concurrent programming is writing thread-safe
code / thread-safe classes
– a class is thread-safe if it continues to behave correctly when accessed

from multiple threads, regardless of the scheduling or interleaving of the
execution of those threads by the runtime environment, and with no
additional synchronization or other coordination on the part of the calling
code

• Correctness means that a class conforms to its specification.
– a good specification defines

• invariants constraining an object's state
• post-conditions describing the effects of its operations

> Thread-safe classes encapsulate any needed synchronization so
that clients need not to provide their own

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

SHARED MUTABLE STATE
• Writing thread-safe code is – at its core – about managing access to

state and in particular to shared, mutable state:
– shared: variable or object could be accessed by multiple threads
– mutable: its value could change durint its lifetime

• if multiple threads access the same mutable state variable without
appropriate synchronization, your program is broken.

• There are three ways to fix it:
– don't share state variable across threads
– make the state variable immutable
– use synchronization whenever accessing the state variable

3

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

THREAD-SAFETY AND OO PRINCIPLES
• It is far easier to design a class to be thread-safe than to retrofit it for

thread-safety later
> OO techniques and principles – encapsulation, immutability, clear

specification of invariants – are very important also for designing and
developing thread-safe code

• ”Good practice first to make your code right and clean, and then
make it fast”
– if this well-known rule is important in programming in general, it is even

more important in concurrent programming
– first safety, then performance

• ...with some exceptions, of course...

4

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

STATELESS OBJECT
• Stateless objects are always thread-safe

– actions of a thread accessing a stateless object cannot affect the
correctness of operations in other threads

• As an example, let's consider a simple servlet [*]

• This servlet – as most of the servlets – is stateless: it has no fields
and references no fields from other classes.
– this class is thread-safe.

5

@ThreadSafe
public class StatelessFactorizer implements Servlet {
 public void service(ServletRequest req, ServletResponse resp){
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 encodeIntoResponse(resp,factors);
 }
 private BigInteger extractFromRequest(ServletRequest req){...}
 private BigInteger[] factor(BigIntger x){...};
 private void encodeIntoResponse(ServletResponse resp,BigInteger[] v){...};
}

[*] about servlets: the Servlet Framework – as almost all the other Java frameworks, such as RMI or Swing
– create threads and call your components from those threads, leaving you the responsibility of making
your components thread-safe

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

STATE-FULL OBJECTS & ATOMICITY
• Atomicity is the key aspect in thread safety for state-full objects.

– example: extension of the servlet with a notion of state
• functioning as 'hit counter'

• The class is not thread-safe
– lost update problem in this case, in particular
– reason: count++ is not atomic
– count++ is an example of read-modify-write operation
– needs to be made atomic

6

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {
 private long count = 0;
 public void service(ServletRequest req, ServletResponse resp){
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 count++;
 encodeIntoResponse(resp,factors);
 }
 public long getCount() { return count; }
 ...
}

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

RACE CONDITIONS
• The concurrent execution of non-atomic sequence of statements

that should be considered atomic generate race conditions
– a race condition occurs when the correctness of a computation depends

on the relative timing or interleaving of multiple threads by the runtime
• ...and getting the right answer relies on lucky timing..

• UnsafeCountingFactorizer servlet has several race conditions
making its results unreliable

7

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

CHECK-AND-ACT
• Most common race condition type: check-and-act

– when a potentially stale observation is used to make a decision on what
to do next

• Example:

• Since check+act are not atomic, the state can change after check
and before act.

8

...
If (file X doesn't exist) -- check
 then create file X -- act
...

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

EXAMPLE: LAZY INITIALIZATION PATTERN
(SINGLETON PATTERN)

• This class has race conditions (on the field instance) that undermine
its correctness.

9

@NotThreadSafe
public class LazeInitRace {

 private ExpensiveObject instance = null;

 public ExpensiveObject getInstance(){
 if (instance == null){
 instance = new ExpensiveObject();
 }
 return instance;
 }
}

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

COMPOUND ATOMIC ACTIONS
• check-and-act and read-modify-write are examples of compound

actions
– sequences of operations that must be executed atomically in order to

remain thread-safe

10

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

USING ATOMIC VARIABLES TO SOLVE
RACE CONDITIONS
• Atomic variable classes in java.util.concurrent.atomic

package
– for effecting atomic state transitions on numbers and objects references

11

@ThreadSafe
public class CountingFactorizer implements Servlet {

 private final AtomicLong count = new AtomicLong(0);

 public void service(ServletRequest req, ServletResponse resp){
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 count.incrementAndGet();
 encodeIntoResponse(resp,factors);
 }

 public long getCount() { return count.get(); }
 ...
}

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

ATOMIC VARIABLES ARE NOT ENOUGH
• When multiple variables participate in an invariant, atomic access on

the individual variable is not enough
– for instance compound actions on different objects

• Example: unsafe servlet with caching

12

@NotThreadSafe
public class UnsafeCachingFactorizer implements Servlet {
 private final AtomicReference<BigInteger> lastNumber =
 new AtomicReference<BigInteger>();
 private final AtomicReference<BigInteger[]> lastFactors =
 new AtomicReference<BigInteger[]>();
 public void service(ServletRequest req, ServletResponse resp){
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber.get())){
 encodeIntoResponse(resp,lastFactors.get());
 } else {
 BigInteger[] factors = factor(i);
 lastNumber.set(i);
 lastFactors.set(factors);
 encodeIntoResponse(resp,factors);
 }
 }
}

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

ATOMIC COMPOUND ACTIONS IN JAVA :
SYNCHRONIZED BLOCKS
• Compound-actions - and atomic statement blocks - in Java can be

realised by means of synchronized blocks or methods

• A synchronized block has 2 parts
– a reference to an object that will serve as the lock
– block of code to be guarded by the lock

13

synchronized(lock){
 statement
 statement
 statement
}

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

INTRINSIC LOCK AND ENTRY SET
• Atomic blocks work by exploiting the lock embedded in each Java

object (more on this in next modules)
– called intrinsic lock or monitor lock
– functioning as a guard for the block

• The lock is automatically acquired and then released by a thread
respectively when entering and exiting the block
– if the lock is already acquired, the thread is blocked (suspended) and

added to the entry set
– when a thread exited the block , one thread of the entry set is selected

and re-activated
– no ordering policy is specified
– if the lock is not released by the thread inside the block, threads in the

entry set are blocked forever (starvation)
• For static methods and fields, the lock is associated to the related

Class object
• For synchronized methods, the object serving as lock is this

14

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

REENTRANCY (1/2)
• Java intrinsic locks are reentrant:

– if a thread tries to acquire a lock that it already holds, the request
succeeds

• def: lock reentrancy
– when locks are acquired on a per-thread basis

• vs. per-invocation basis
• per-invocation basis is adopted instead as default locking behaviour for

Pthreads (POSIX threads) mutex-es

15

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

REENTRANCY (2/2)
• Reentrancy facilitates encapsulation of locking behaviour and thus

simplify the development of OO concurrent code

• Without reentrancy the above example would lead to a deadlock

16

public class Widget {
 public synchronized doSomething(){...}
}

public class LoggingWidget extends Widget {
 public synchronized void doSomething(){
 System.out.println(toString()+”: calling doSomething”);
 super.doSomething();
 }
}

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

GUARDING STATE WITH LOCKS

• Guarding a state – possibly composed by more than one variables --
means making its access atomic
– taking into the account that it could be accessed by multiple (different)

compound actions
• “Golden rules” for keeping safety:

– for each mutable state variable that may be accessed by more than one
thread, all accesses to that variable must be performed with the same
lock held (variables guarded by locks)

– every shared, mutable variable should be guarded by exactly one lock
• common pattern: encapsulating all mutable state within an object and then

protected it through its intrinsic lock
• Towards the monitor abstraction (next module)

– for every invariant that involves more than one variables, all the
variables involved in that invariant must be guarded by the same lock

17

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

PERFORMANCE: POOR CONCURRENCY
PROBLEM (1/2)
• The misuse of atomic blocks can lead to performance problems.
• Example

– caching servlet with atomic block implemented by synchronized method:

18

@ThreadSafe
public Class SynchronizedFactorizer implements Servlet {
 private BigInteger lastNumber;
 private BigInteger[] lastFactors;
 public synchronized void service(ServletRequest req, ServletResponse resp){
 BigInteger i = extractFromRequest(req);
 if (i.equals(lastNumber)){
 encodeIntoResponse(resp,lastFactors);
 } else {
 BigInteger[] factors = factor(i);
 lastNumber.set(i);
 lastFactors.set(factors);
 encodeIntoResponse(resp,factors);
 }
 }
}

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

PERFORMANCE: POOR CONCURRENCY
PROBLEM (2/2)
• The class is thread-safe, but it inhibits multiple clients for using the

factoring servlets simultaneously at all, resulting in unacceptably
poor responsiveness!
– the intended use of the servlet framework is subverted, since servlets

have been conceived to handle multiple requests simultaneously
– as a result, the web application exhibits poor concurrency
– the number of simultaneous invocations is limited not by the availability

of processing resources, but by the structure of the application itself
• The problem can be solved by good engineering, understanding

which parts need to be atomic blocks

19

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

A MORE EFFICIENT SOLUTION

20

@ThreadSafe
public Class CachedFactorizer implements Servlet {
 private BigInteger lastNumber;
 private BigInteger[] lastFactors;
 private long hits;
 private long cachedHits;
 public void service(ServletRequest req,ServletResponse resp){
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = null;
 synchronized(this){
 hits++;
 if (i.equals(lastNumber)){
 cachedHits++;
 factors = lastFactors.clone();
 }
 }
 if (factors == null){
 BigInteger[] factors = factor(i);
 synchronized(this){
 lastNumber = i;
 lastFactors = factors.clone();
 }
 }
 encodeIntoResponse(resp,factors);
 }
}

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

NOTE
• When implementing a policy for atomic blocks, resist the temptation

to prematurely sacrifice simplicity (potentially compromising safety)
for the sake of performance

• Avoid holding locks during lengthy computations or operations at risk
of not completing quickly such as network or console I/O

21

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

THREAD-CONFINEMENT
• Accessing shared, mutable data requires synchronization: one way

to avoid this requirement is to not share
– if data is accessed from a single thread, no synchronization is needed

• Thread confinement technique
– confining the creation and use of an object to a thread

• Example: Swing uses thread confinement extensively
– Swing visual components and data model objects are not thread-safe
– safety is achieved by confining them to the Swing event dispatch thread
> code running in threads other than the Swing dispatcher thread should

not access this objects!
• Thread confinement is an element of program’s design

– no direct language support
– must be enforced by the implementation

22

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

STACK-CONFINEMENT
• Stack-confinement is a special case of thread confinement in which

an object can only be reached through local variables
– it makes it easier to confine objects to a thread

• Example:

– there is exactly one reference to the set (TreeSet), held in local variable
and then confined to the executing thread

23

public int loadTheArk(Collection<Animal> candidates){
 SortedSet<Animal> animals;
 int numpairs = 0;
 Animal candidate = null;

 // animals confined to method, don’t let them escape!
 animals = new TreeSet<Animal>(new SpecialGenderComparator());
 animals.addAll(candidates);
 for (Animal a: animals){
 if (candidate == null || !condidate.isPotentialMate(a)){
 candidate = a;
 } else {
 ark.load(new AnimalPair(candidate,a));
 numPairs++;
 candidate = null;
 }
 }
}

SISCO LS - II Facoltà Ingegneria - Cesena Thread Safety & Sharing Objects

WRAP UP:
POLICIES FOR USING AND SHARING
OBJECTS IN A CONCURRENT PROGRAM
• Thread-confined

– a thread-confined object is owned exclusively by and confined to one
thread, and can be modified by its owning thread

• Shared read-only (no updates)
– a shared-only object can be accessed concurrently by multiple threads

without additional synchronization
• but cannot be modified by any thread

• Shared thread-safe
– a thread-safe object performs synchronization internally, so multiple

threads can freely access it through its public interface without further
synchronization

• Guarded
– a guarded object can be accessed only with a specific lock held

24

