
SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module 3.1]
DISTRIBUTED PROGRAMMING

OVERVIEW

v1.0

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

DISTRIBUTED PROGRAMMING
• Distributed programming

– the overall computation is realized by means of a set of sequential
processes that are executed concurrently (in parallel) by processors
distributed over the nodes of a network, communicating by exchanging
messages through the network links

– the model is referred to the (abstract) concurrent machine
• independently from the architecture of the physical machine

• Message Passing model
– no shared memory is available among the processors
– also called distributed memory model

• Key aspects
– concurrency of the components
– decentralization & lack of global clock

• no total order among the events of the system
• specific algorithms to recover global properties

– independent failures of the components

2

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

CHALLENGES (1/4)
• Heterogeneity & openness

– heterogeneity of elements composing distributed concurrent systems
• networks, computers, OS, programming languages, implementation...

– openness
• dynamic change of system structure & dynamics

– importance role of:
• middlewares
• virtual Machines
• standards & public interfaces

• Security
– Confidentiality

• protection against the disclosure of unauthorized individuals
– Integrity

• protection against alteration or corruption
– Availability

• protection against interference with the means to access the resource

3

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

CHALLENGES (2/4)
• Scalability

– designing systems that remain effective when there is a significant
increase in the number of resources & users

• e.g. Internet
– design challenges

• controlling the cost of physical resources
– adding dynamically resources by need

• controlling the performance loss
• preventing software resources running out

– e.g. IP numbers...
• avoiding performance bottleneck

• Failure Handling
– aspects

• detecting failures, masking failures, tolerating failures, recovery from failures
– measure

• availability = proportion of time that the system is available for use
– techniques

• redundancy (replication)

4

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

CHALLENGES (3/4)
• Transparency

– system conceived as a (centralized) whole rather than a collection of
independent components

• users / programmers perspective
– different kinds of transparency

• access transparency
– local interfaces = remote interfaces

• location transparency
– no need of knowing addresses

• concurrency transparency
– no need to know that there is concurrency

• replication transparency
– no need to know that there are replica

• failure transparency
– no need to deal with failures / recovery

• mobility transparency
– no need to change programs & co if resources / users move

• scaling transparency
– no need to change programs / applications when scaling up / down

5

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

CHALLENGES (4/4)
• Decentralized concurrency control

– distributed mutual exclusion
– elections & consensus
– transactions

6

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

MAIN MODELS IN DISTRIBUTED
PROGRAMMING / SYSTEMS

• Interaction model
• Failure model
• Security model

7

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

INTERACTION MODEL
• Main aspects

– process communication and coordination
– communication protocols for distributed algorithms

• Inter-Process Communication
– from shared-memory architecture to multi-processing & distributed

architectures
• decentralization
• synchronization more based on communication than sharing

– communication as information exchange
• sending and receiving messages
• sender process and receiver process
• integration with synchronization & coordination mechanisms

• Basic types of communication
– asynchronous
– synchronous
– rendez-vous (rpc)

8

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

SYNCHRONOUS / ASYNCHRONOUS
COMMUNICATION
• Synchronous communication

– exchange of a message as an atomic action between a sender and a
receiver

• e.g. telephone calls
• typically two-way data flow

– blocking behaviour
• sender ready and receiver not ready
• sender not ready and receiver ready

> communication acts as basic synchronization mechanism
• no support required other than send and receive primitives

• Asynchronous communication
– no temporal dependence between the execution sequence of the

processes
• e.g. emails
• one-way data flow

– need of proper communication media
• buffering capability

9

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

ADDRESSING
• Asymmetric

– the receiver does not know the sender
– e.g. telephone call

• Symmetric
– the receiver knows the address of the sender
– e.g. emails

10

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

BASIC INTERACTION MODELS
• Channel-based

– processes directly 'connected' through channels
– strongly coupled / control-driven communication model

• Space-based
– processes communicate through space abstraction
– loosely coupled / data-driven communication model

11

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

FAILURE MODEL
• Both processes and communication channels may fail

– Omission failures
• a process or a communication channel fails to perform actions that it is

supposed to do
– Arbitrary or Byzantine failures

• a process arbitrarily omits intended processing steps or takes unintended
processing steps the worst ones

– Timing failures
• violating timing constraints

– e.g. in synchronous sytstems, in real-time systems

12

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

SECURITY MODEL
• Protecting objects

– access control & authorization
• Securing processes and their interactions against threats

– authentication
– secure channels
– use of cryptography and shared secrets

13

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

MIDDLEWARES FOR DISTRIBUTED
COMPUTING
• Software Layers

– Platform = typically Application + Middleware

• Middleware
– a layer of software whose purpose is to mask heterogeneity and provide

a convenient programming model to application programmers
• Infrastructure

– (software) layer providing some kinds of functionality that can be
exploited as a service

– typically distributed
– often used as a synonim of middleware

14

Applications, services

Middleware / Software infrastructures

Operating Systems
Computer and network hardware

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

MIDDLEWARE EXAMPLES
• Procedure oriented

– RPC
• Object / component oriented:

– CORBA
– Java RMI
– Microsoft DCOM, .NET
– ...

• Service oriented:
– Web Services
– OSGi (?)
– JXTA (Peer-to-peer)
– Jini

• Agent oriented
– JADE
– Coordination middleware (JavaSpaces, TuCSoN,...)
– Mobile agents: SOMA (DEIS Bologna)

15

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

ARCHITECTURES FOR DISTRIBUTED
SYSTEMS
• Defining the division of responsibilities between components and

their placement on computer in the network
– major aspect of distributed system design

• Main architectures
– Client-Server

• two roles: clients as service users, and servers as service providers
• conceptual centralization: servers, providing services
• typically N clients and M servers, with N >> M, multiple clients for the same

server
– Peer-to-Peer

• no roles, only peers
• no centralization
• high openness & dynamism

– Mobile code / agents
• programs or processes / agents travelling through hosts of the network

16

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

DESIGN REQUIREMENTS FOR
DISTRIBUTED SYSTEMS
• Requirements

– Functional
• the functionality we desire for the systems, as a solution of some problem

– Non-functional (NF requirements)
• define system properties and constraints

• Quality of Service as NF requirements
– Reliability

• measuring the capability of a system to perform as specified without
interruption

– Availability
• measuring the capability of a system to be up and running

– Performance
• responsiveness, throughput, balancing computational loads

– Dependability
• qualitative term for the ability of the system to perform properly
• encapsulates reliability, availability, safety, maintainability, performability,

testability

17

SISCO LS - II Facoltà Ingegneria - Cesena Distributed Programming Overview

DISTRIBUTED ALGORITHMS
• Algorithms designed for loosely-connected distributed systems that

communicate by sending and receiving messages over a
communication network

• Some recurrent problems (classes)
– Distributed mutual exclusion

• Ricart-Agrawal algorithm
– Distributed termination

• Dijkstra-Scholten algorithm
– Distributed snapshots

• Chandy-Lamport algorithm
– Distributed consensus

• Byzantine general algorithm

18

