
SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module 2.4]
VISUAL FORMALISMS FOR

CONCURRENT SYSTEMS

v1.0
BETA

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

VISUAL FORMALISMS
• Formalisms for rigorously describing models of concurrent systems

by means of some kind of visual diagrams
– structural and behavioural aspects

• Useful for both requirement specification / analysis and design
– formal analysis when formally specified

• Formalisms considered in this module
– Petri Nets
– Statecharts
– Activity Diagrams

2

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

PETRI NETS

3

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

PETRI NETS
• Abstract, formal model of information flow

– describing and analyzing the flow of information and control in systems
– particularly systems that may exhibits asynchronous and concurrent

activities
• Introduced by Carl Adam Petri ~ 1965

– further developed, extended and adopted in many computer science
contexts

• Major use
– modelling of systems of events in which it is possible for some events to

occur concurrently but there are constraints on the concurrence,
precedence, or frequency of these occurrences

4

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

PETRI NET GRAPH
• Bi-partite graphs representing a Petri Net

– two types of nodes
• places (the circles) and transitions (the bars)

– connected by directed arcs
• from node i to node j: i is an input to j and i is an output of i

• Models the static properties of the system
5

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

TOKENS
• In addition to the static properties represented by the graph, a Petri

Net has dynamic properties that result from its execution
– the execution of a Petri net is controlled by the position and movement of

markers called tokens in the net.

– tokens are indicated by black dots, residing in places
• A Petri Net with tokens is called marked Petri Net

6

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

EXECUTION RULES
• Tokens are moved by the firing of transitions of the net

– a transition must be enabled in order to fire
• a transition is enabled when all of its input places have a token in them

– the transition fires by removing the enabling tokens from their input
places and generating new tokens which are deposited in the output
place of the transition

7

firing
t2

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

MARKINGS
• The distribution of tokens in a marked Petri Net defines the state of

the net and is called marking
– the marking may change as a result of firing transitions

• Different transitions may fire, with different result markings
– inherent non-determinism

8

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

TRANSITIONS ON THE BOUNDARY

• source transition
– without any input place
– just produce tokens

• sink transition
– without any output place
– just consume tokens

9

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

WEIGHTED ARCS
• A variant consider also weights for arcs:

– a transition is enabled if each input place p of t is marked with at least
w(p,t) tokens, where w(p,t) is the weight of the arc from p to t

– a firing of an enabled transition t removes w(p,t) tokens from each input
place p of t, and adds w1 tokens to each output place p of t, where w(t,p)
is the weight of the arc from t to p

• Reaction example
–

10

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

MODELING WITH PETRI NETS
• Petri nets can be used to model quite naturally concurrent systems in

terms of:
– events and conditions
– the relationships among them

• Interpretation
– in a system at any given time certain conditions will hold
– the fact that these conditions hold may cause the occurrence of certain

events
– the occurrence of events may change the state of the system

• causing some of the previous conditions to cease holding and causing other
conditions to begin to hold

– firing of a transition = occurrence of an event
• considered instantaneous or better: atomic change of the system

11

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

EXAMPLE: RESOURCE ALLOCATION

12

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

EXAMPLE: A VENDING MACHINE

13

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

INTERPRETATIONS
• Typical intepretations of places and transitions

14

Input places Transition Output places

Pre-conditions Event Post-conditions

Input data Computational step output data

Input signals Signal processor Output signals

Resource needed Task or Job Resource Released

Conditions Clause in Logic Conclusion(s)

Buffers Processor Buffers

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

MODELLING CONCURRENCY AND
PARALLELISM
• PN are ideal for modelling systems of distributed control with multiple

processes occurring concurrently

15

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

DATA-FLOW COMPUTATION

16

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

MODELLING CONFLICT AND CONCURRENT
EVENTS

• Representing conflicting or choice events:

• Conflict vs. concurrent events
– two events e1 and e2 are in conflict if either e1 or e2 can occur but

not both
– two events e1 and e2 are concurrent if both events can occur in any

order without conflicts
• A situation where conflict and concurrency are mixed is called a

confusion

17

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

ASYNCHRONY AND LOCALITY
• In a PN there is no inherent measure of time or the flow of time

– the only important property of time, from a logical point of view, is in
defining a partial ordering of the occurrence of events

– events which need not be constrained in terms of their relative order of
occurrence are not constrained

• Locality
– in a complex systems composed by independent asynchronously

operating subparts each part can be modelled by a Petri Net
– the enabling and firing of transitions are then affected by, and in turn

affect only, local changes in the marking of the Petri Net

18

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

NON-DETERMINISM
• Naturally modelling non deterministic behaviours

– a PN is viewed as a sequence of discrete events whose order of
occurrence is one of the possibly many allowed by the basic structure

– if at any time more than one transition is enabled, then any of the several
enabled transitions may fire

– the choice as to which transition fires is made in a nondeterministic
manner

• randomly or by forces that are not modelled

19

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

ATOMIC VS. NON-ATOMIC EVENTS
• The occurrence of (primitive) events is instantaneous

– non primitive events (with a duration) must be modelled by multiple
events

– e.g.: activity with a beginning and an ending event

20

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

HIERARCHIES
• Natural support to model hierarchies

– an entire net may be replaced by a single place or transition for
modelling at a more abstract level (abstraction)

– places and transitions may be replaced by subnets to provide more
detailed modeling (refinement)

21

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

APPLICATION TO CONCURRENT DESIGN
AND PROGRAMMING
• PN can be natually used to model software systems, concurrent

software systems in particular
• Representing problems

– critical sections and mutual exclusion problems
– synchronization

• Representing mechanisms behaviour
– semaphores
– synchronizers

• Representing entire problems
– Producers / Consumers
– Readers-Writers
– Dinining Philosophers

22

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

CRITICAL SECTION AND MUTUAL
EXCLUSION PROBLEMS
• p2 and p4 represent critical sections

– s is the token needed for entering in CS

23

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

SYNCHRONIZATION
• Imposing an order between process actions

– process actions represented by transitions
– relating actions (transitions) trhough conditions (places)

24

a

b

P

Q

a

b

P

Q

• b action of process Q can be
executed after the execution
of action a of process P

• b action of process Q and a
action of process P must be
executed synchrounously

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

COMMUNICATION

25

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

SEMAPHORES
• Semaphore modeled as a shared resource (place)

– modelling wait (P) as a transition with the semaphore res. as input place
– modelling signal (Q) as a transition with the semaphore res. as output

place

26

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

PRODUCERS AND CONSUMERS

27

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

READERS-WRITERS
• The n tokens in p1 represent n processes that may want to read or

write a shared memory represented by p3

28

n

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

DINING PHILOSOPHERS
• Forks are represented by places ai
• Philosophers thinking by At,Bt,Ct,Dt,Et places and eating by

Ae,Be,Ce,De,Ee places

29

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

EXTENDED PETRI NETS WITH INHIBITOR
ARCS
• Zero-testing extension

– extending the basic PN with the possibility of firing a transition only if a
certain place has zero tokens

• inhibitor arc represented by an arc with a small circle at the end

– PN+inhibitor arc = Turing-equivalent
• expressiveness and undecidability problems

30

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

FORMAL DESCRIPTION OF PETRI NETS
• PN can be formally described so as to enable a rigourous analisys of

properties and problems of the system modeled
– structural properties

• independent from the initial marking
– behavioural properties

• dependent on the marking

• Mapping correctness of the systems on to structural / behavioural
properties of the nets
– safety and liveness properties

31

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

PETRI NET STRUCTURE
• The structure of a Petri Net can be formally described as a tuple

– P is a set of places
– T is a set of transitions
– input function I defines the set of input places for each transition tj
– output function O defines the set of output places for each transition tj

32

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

EXAMPLE

33

P = { p1, p2, p3, p4, p5 }
T = { t1, t2, t3, t4 }

I(t1) = {p1}
I(t2) = {p2,p3,p5}
I(t3) = {p3}
I(t4) = {p4}

O(t1) = {p2,p3,p5}
O(t2) = {p5}
O(t3) = {p4}
O(t4) = {p2,p3}

Corresponding
Petri-Net graph:

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

MARKING
• A marking is an assignement of tokens to the places of the net
• Can be formally represented either as

– a vector of N elements, one for each place, representing the number of
tokens for each place

– a function

• mu (pi) is the number of tokens in the place pi

• A marked Petri Net is represented by 5-tuple:

34

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

EXECUTION RULE SEMANTICS
• The state of a Petri Net is defined by is marking

– firing of a transition represents a change in a the state of the net.
• Next-State partial function

– the function is undefined if the transition is not enabled in the marking
– if tj is enabled is the marking that results from removing

tokens from the input of tj and adding tokens to the output of tj.
• Given a PN and an initial marking, we can execute the PN by

successive transition firings
– firing a transition tj in the initial marking produces a new marking
– in this new marking we can fire any new enabled transition, say tk,

resulting in a new marking
– this can continue as long as there is at least one enabled transition in

each marking
– if we reach a marking in which no transition is enabled, then no transition

can fire and the PN must stop
• Non determinism

– multiple sequence of markings and related transitions
can result by executing a PN

• 35

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

REACHABILITY SET
• Immediately reachable marking

– a marking mu' is immediately reachable from mu if we can fire some
enabled transition in mu resulting in mu'

• Reachable marking
– a marking mu' is reachable from mu if it is immediately reachable from

mu or is reachable from any marking mu’’ which is immediately
reachable from mu

• Reachability set of a PN
– set of all states into which the PN can enter by any possible execution

36

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

ANALYSIS OF PN MODELS
• Safe nets

– Petri nets in which no more than one token can ever be in any place of
the net at the same time.

– Justification based on the original definition of events and conditions
• a condition is represented by a place.
• the fact that the condition holds is indicated by a token in the place
• so a token should be either present or not: more than 2 token is pointless

• Bounded net or k-bounded net (boundness)
– Nets in which the number of tokens in any place is bounded by k
– safe nets are 1-bounded net
– Boundedness is a very important practical property:

• Conservative net
– PN is conservative if the number of tokens in the net is conserved.
– think for instance of using tokens to represent resources..

37

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

LIVENESS
• Based on transition analysis

– dead transition in a marking
• if there is no sequence of transition firings that can enable it
• related to deadlock situations

– potentially firable
• if there exists some sequence that enables it
• related to starvation situation

– live transition
• if it is potentially firable in all reachable markings

• For liveness, it is important not only that a transition be firable in a
given marking, but staying potentially firable in all markings
reachable from that marking
– if it is not true, then it is possible to reach a state in which the transition is

dead
• deadlocks

38

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

PETRI NET EXTENSIONS
• Timed Nets

– introducing time delays associated with transitions and/or places
• useful for performance evaluation and scheduling problems

– deterministic timed nets
• delay are deterministically given

– stochastic nets
• delays are probabilistically specified

• High-level Nets
– associate some kind of symbolic / numerical information to tokens and

some computational rules to transition consuming and producing tokens
• Coloured Petri Nets, Predicate Transitions Nets

– Coloured Petri Nets
• assigning typed values (“a color”) to each token

39

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

PETRI NET TOOLS
• Many tools available for creating and analysing Petri Nets

– check http://www.informatik.uni-hamburg.de/TGI/PetriNets/
• An example: PIPE 2

– Platform Independent Petri net Editor 2
– Java-based, open-source: http://pipe2.sourceforge.net/

40

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

STATECHARTS

41

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

STATECHARTS
• Introduced by David Harel in 1987 for modelling complex reactive

systems
– now part of UML with the name of state diagrams

• Reactive systems
– systems being, to a large extent, event-driven, continuosly having to

react to external and internal stimuli
• examples include automobiles, communication networks, operating systems,

avionic systems, man-machine interface of many ordinary software
– contrast to transformational systems

• input / output, data-processing systems

• Main objective
– introducing a way of describing reactive behaviour that is clear and

realistic, and at the same time formal and rigorous
• to be simulated and analyzed

42

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

BEYOND BASIC STATE DIAGRAMS
• General agreement that states and events are a rather natural

medium for describing the dynamic behaviour of a complex systems
– state transition: "when event alfa occurs in state A, if condition C is true

at that time, the system tranfers to state B"
• But finite state machine and state transition diagrams don’t scale with

complexity
– unmanageable, exponentially growing moltitude of states, all of which

have to be arranged in a "flat" unstratified manner
– lead to unstructured, unrealistic and chaotic state diagram

• To be useful a state/event approach must be modular, hierarchical
and well-structured
– it must solve the exponential blow-up problem, by somehow relaxing the

requirement that all cobinations of stateshave to be represented
explicitly

• Statecharts proposal
– extension of conventional state diagrams by mechanisms to enhance the

descriptive power

43

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

STATECHARTS FORMALISM
• Visual formalism to describe states and transitions in a modular

fashion
– hierarchy

• clustering
• refinement
• promoting 'zoom' capabilities for moving easily back and forth between levels

of abstractions
– orthogonality

• independence / concurrency of substates
• synchronization among substates

44

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

STATE AND EVENTS IN STATECHARTS
• States and events

– boxes (rounded rectangle) denotates states
– arrows labelled with event

• optionally with a parenthesized conditions and an action (described later on)
• Different state levels (= hierarchy support)

– encapsulation express hierarchies
– arrows can originate and terminate at any level

45

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

HIERARCHY: CLUSTERING
• XOR Decomposition

– economizing arrows

• since beta takes the system to B from either A or C, we can cluster
the latter into a new super-state D and replace the two arrows by one
– the semantics of D is a XOR of A and C: to be in state D one must be

either in A or in C, and not in both.
– D is an abstraction of A and C

• capturing common properties

• bottom-up approach

46

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

REFINEMENT
• We can proceed on the opposite direction, refining states:

– in this case the incoming alfa and beta arrows are underspecified
• top-down approach

• Zooming in and out support
– zooming-in

• by looking inside a state
– zooming-out

• abstracting from the inside of a state

47

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

DEFAULT STATES
• Special arrow to explicitly represent the default entering state

– at any level

• Take into the account the history
– entering the state most recently visited
– H default-state arrows

48

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

HIERARCHY 2: ORTHOGONALITY
• AND decomposition

– capturing the property that, being in a state, the system must be in all of
its AND components

– the notation used in statecharts is the physical splitting of a box into
component using dashed lines

– state Y consists of AND components A and D
• with the property that being in Y entails being in some combination of B or C

with E, F or G.
• Y is the orthogonal product of A and D

– Independency and / or Concurrency

49

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

SYNCHRONIZATION
• In the example, if an event alfa occurs, it transfers B to C and F to G

simultaneously, resulting in a new combined state (C,G)

• This illustrates a certain kind of synchronization
– a single event causing simultaneous happenings

50

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

INDEPENDENCE
• On the other hand, mu occurs at (B,F) it affects only the D

component, resulting in (B,E)

• This illustrates a certain kind of independence
– the transition is the same whether the system is in B or C in its A

components

51

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

AND-FREE EQUIVALENT
• The AND-Free equivalent diagram has the product of the states

• That is: if we have two components with 1000 states, we have one
million of states in the product
– if we have 3 components: 10^9 states..

52

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

NOTATIONS FOR AND-DECOMPOSITION

53

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

AN EXAMPLE

54

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

ACTIONS
• Actions represents the ability of the statecharts to generate events

and to change the value of conditions
– influencing other components of the system
– influencing the environment of the system

• Expressed by the notation ".../S" that can be attached to the label of
the transition
– S is an action carried out by the system
– actions have instantaneous occurrences that take ideally 0 time.

55

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

ACTIVITIES
• Activities

– are to actions what conditions are to events
– an activity always takes a nonzero amount of time (like beeping,

displaying, executing lengthy compytations..)
– activities are durable

• Activities are associated with states
– entry and exit actions

56

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

FURTHER FEATURES: UNCLUSTERING
• Laying out parts outside the natural neighborhood

57

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

THE STATEMATE TOOL
• Statemate is a comprehensive graphical modeling and simulation

tool for the rapid development of complex embedded systems based
on statecharts
– using a combination of traditional graphical design notations combined

with some of the Unified Modeling Language (UML) diagrams
• Statemate provides a direct and formal link between user

requirements and software implementation by allowing the user to
create a complete, executable specification
– this specification may be executed, or graphically simulated, so the

system engineer can explore what-if scenarios to determine if the
behavior and the interactions between system elements are correct

– these scenarios can be captured and included in Test Plans which are
later run on the embedded system to ensure that what gets built meets
what was specified.

– this executable specification is also used to communicate with the
customer or end user to confirm that the specification meets their
requirements

58

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

ACTIVITY DIAGRAMS

59

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

ACTIVITY DIAGRAMS

• Activity diagrams are one of the diagrams adopted in UML to
represent the business and operational workflows of software system
– an activity diagram is a dynamic diagram that shows the activity and the

event that causes the object to be in the particular state
• Activity diagrams vs. state diagrams

– a state diagram shows the different states an object is in during the
lifecycle of its existence in the system, and the transitions in the states of
the objects

• these transitions depict the activities causing these transitions, shown by
arrows

– an activity diagram talks more about these transitions and activities
causing the changes in the object states

60

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

ACTIVITY DIAGRAM OVERVIEW (*)
• Showing the flow of activities through the

system
– diagrams are read from top to bottom and have

branches and forks to describe conditions and
parallel activities. A fork is used when multiple
activities are occurring at the same time.

• The diagram below shows a fork after activity1
– this indicates that both activity2 and activity3 are

occurring at the same time. After activity2 there
is a branch. The branch describes what
activities will take place based on a set of
conditions. All branches at some point are
followed by a merge to indicate the end of the
conditional behavior started by that branch.
After the merge all of the parallel activities must
be combined by a join before transitioning into
the final activity state.

61

(*) taken from http://atlas.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/activity.htm

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

PROCESSING ORDER EXAMPLE (*)

• The diagram shows the flow of actions
in the system's workflow
– once the order is received the activities

split into two parallel sets of activities
– one side fills and sends the order while

the other handles the billing
– on the Fill Order side, the method of

delivery is decided conditionally.
– depending on the condition either the

Overnight Delivery activity or the
Regular Delivery activity is performed.

– finally the parallel activities combine to
close the order.

62

(*) taken from http://atlas.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/activity.htm

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

SWIMLANES
• A swimlane is a way to group activities performed by the same actor

on an activity diagram or to group activities in a single thread

63

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

SIGNALS
• Signal Activities

– activities that send or receive messages (output / input signals)
• Triggers

– temportal signals

64

input signal

time trigger
output signal

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

PASSING OBJECTS
• Specifying objects passed between activities

65

object passed
between activities

SISCO LS - II Facoltà Ingegneria - Cesena Visual Formalisms for Concurrent Systems

BIBLIOGRAPHY
• James Peterson, "Petri Nets”, ACM Computing Surveys (CSUR),

Volume 9, Issue 3, Sept. 1977
• Tadao Murata, “Petri Nets: Properties, Analysis and Applications”,

Proceedings of the IEEE, Vol. 77, No:4, April 1989
• David Harel, “Statecharts: A Visual Formalism for Complex Systems”.

Science of Computer Programming, 8 (1987)
• David Harel, “On Visual Formalisms”, CACM, Vol. 31, No. 5, 1988

66

