
SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module 2.4]
ELEMENTS OF CONCURRENT

PROGRAMS DESIGN

v1.0
BETA

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

STEPS IN DESIGN SPACE
• Analyzing the problem to identify exploitable concurrency

– identifying task / data decomposition and their dependencies
• Choosing a suitable concurrent architecture

– mapping tasks into agents responsible of task execution
– shared resources encapsulating result of agent work
– coordination means to enact and manage dependencies

2

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

PROBLEM ANALYSIS

• Objective:
– identifying task / data decomposition and their dependencies

• Two steps
1. Task and Data Decomposition Analysis
2. Dependency Analysis

3

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

TASK AND DATA DECOMPOSITION
• Task decomposition pattern

– the problem can be naturally decomposed into tasks
• then data decomposition follows

– example
• “Concurrent quick-sort” problem

• Data decomposition pattern
– problem's data can be easily decomposed into units that can be

operated on relatively independently
• then task related to that units can be identified

– example
• “Concurrent Mandelbrot” problem

4

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

DEPENDENCY ANALYSIS
• Analyzing dependencies among the tasks within a problem's

decomposition
– grouping and ordering tasks according to the type of dependencies

• Possible kinds of dependencies
– temporal dependencies
– data / resource dependencies

• A classification of dependencies in coordination problem can be
found in [MAL-93]
– interdisciplinary issue

5

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

IDENTIFYING CONCEPTUAL CLASSES
• From the analysis we can choose one of three main conceptual

classes representing basic methods to solve the problem [CAR-89]
– Result parallelism

• envisioning parallelism in terms of program’s result
– Agenda parallelism

• envisioning parallelism in terms of program’s agenda of activities
– Specialist parallelism

• envisioning parallelism in terms of an ensemble of specialists that
collectively constitute the programs

6

“...To write a parallel program, (1) choose the concept class that is most natural
for the problem; (2) write a program using the method that is most natural for
that conceptual class; and (3) if the resulting program is not acceptably efficient,
transform it methodically into a more efficient version by switching from a more-
natural method to a more-efficient one” [CAR-89]

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

“BUILDING A HOUSE” EXAMPLE (1/3)

• Adopting a result parallelism approach
– think about the components of the house

• front, rear, side walls, interior walls, foundations, roof, etc.
– proceed by building all the components simultaneously

• assembling them as they are completed
– separate workers set to work on the different parts, proceeding in parallel

up to the point where work on one component can’t proceed untile
another is finished

7

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

“BUILDING A HOUSE” EXAMPLE (2/3)

• Adopting a specialist approach
– identify the separate skills required to build the house

• surveyors, excavators, foundation builders, carpenters, roofers, etc
– then assemble a constructor crew in which each skill is represented by a

separated specialist worker
– they all start simultaneously

• but initially most workers will have to wait around
• once the project is well underway, however, many skills (hence many

workers) will be called to play simultaneously
– strong role of worker interaction and coordination

• different kind of strategies
• e.g. pipelined jobs

• Opposite approach with respect to result parallelism

8

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

“BUILDING A HOUSE” EXAMPLE (3/3)

• Adopting an activity agenda approach
– we write out a sequential agenda and carry it in order, but at each stage

we assign many workers to the current activity
• doing the foundation, doing the frame, doing the roof, etc

– we assemble a work team of generalists
• each capable of performing any construction step

– the team is set to work stage by stage following the agenda

9

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

RESULT PARALLELISM
• Designing the system around the data structure or resource yielded

as the ultimate result
– we get parallelism by computing all the elements of the result

simultaneously
• Each agent is assigned to produce one piece of the result

– they all work in parallel up to the natural restriction imposed by the
problem

• Proper shared data structures are designed to wrap the result (data)
under construction
– encapsulating mutex and synchronization issues

10

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

SPECIALIST PARALLELISM
• Designing the system around an ensamble of specialists connected

into a logical network of some kind
– parallelism results from all the nodes of the logical network (all the

specialists) being active simultaneously
• Each agent is assigned to perform one specified kind of work

– they all work in parallel up to the natural restriction imposed by the
problem

• Coordination means (communication protocols, shared data
structures) are used to support specialists communication and
coordination
– examples: message boxes, blackboards, event services

11

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

AGENDA PARALLELISM
• Designing the system around a particular agenda of activities and

then assign many workers to each step
• Each agent is assigned to help out with the current item on the

agenda
– they all work in parallel up to the natural restriction imposed by the

problem
• Shared data structures are designed to manage data consumed and

produced by agenda activities
– examples: bounded-buffers

12

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

REMARKS
• The boundaries between the three classes are not rigid

– we will often mix elements of several approaches in getting a particular
job done

• e.g. a specialist approach might make secondary use of agenda parallelism,
for example, by assigning a team of workers to some speciality

• However the three approaches represent three clearly separate ways
of thinking about the problem
– result parallelism focuses on the shape of the finished product
– specialist parallelism focuses on the makeup of the work crew
– agenda parallelism focuses on the list of tasks to be performed

• The approach can be recursively applied
– following task and data decomposition

13

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

FROM CONCEPTUAL CLASSES TO
ARCHITECTURES

• Some specific architectures can help to bridge the gap between the
conceptual class and the implementation [MAG-99]
– Master-Workers
– Filter-Pipeline
– Announcer-Listeners

14

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

MASTER-WORKERS
• Also called Supervisor-Workers or Manager-Workers
• Description

– the architecture is composed by a master agent and a possibly dynamic
set of worker agents, interacting through a proper coordination medium
functioning as a bag of tasks

– master agent
• decompose the global task in subtasks
• assign the subtasks by inserting their description in the bag
• collect tasks result

– worker agent
• get the task to do from the bag, execute the tasks and communicate the

results
– bag of tasks resource

• typically implemented as a blackboard or a bounded buffer

• Example of problems
– quadrature problem
– quick sort

15

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

FILTER-PIPELINE
• Description

– the architecture is composed by a linear chain of agents interacting
through some pipe or bounded buffer or channel resources

– generator agent
• the agent starting the chain, generating the data to be processed by the

pipeline
– filter agent

• an intermediate agent of the chain, consuming input information from a pipe
and producing information into another pipe

– sink agent
• the agent terminating the chain, collecting the results

• Example of problems
– Primes Sieve

16

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

ANNOUNCER-LISTENERS
• Description

– the architecture is composed by an announcer agent and a dynamic set
of listener agents, interacting through an event-service

– announcer agent
• announce the occurrence of events on the event service

– listener agents
• register on the event service so as to be notified of the occurrence of events

interesting for the listener
– event-service resource

• uncouple announcer-listeners interaction
• collect and dispatch events

• Example of problems
– Structuring GUI in concurrent programs

17

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

REVISITING THE MODEL VIEW
CONTROLLER
• Issue

– how to separate model / view / controller aspects in the design of
complex concurrent programs

• A mapping
– encapsulating control in agents

• active components of the program
• encapsulating the control logic

– model as passive shared data structure, enforcing mutex
• can be used by agents
• encapsulating mutex properties

– view as passive shared data structures, with synch functionalities
• enabling and mediating the interaction with users
• observed and used by agents
• can access to model resources to get the state

18

SISCO LS - II Facoltà Ingegneria - Cesena Elements of Concurrent Programs Design

BIBLIOGRAPHY
• [CAR-89]

– Nicholas Carriero and David Gelernter, "How to write parallel programs:
a guide to the perplexed", ACM Computing Surveys (CSUR). Volume
21, Issue 3 (1989)

• [MAT-05]
– T. Mattson, B. Sanders, B. Massingill, "Patterns for Parallel

Programming", Addison Wesley (2005)
• [MAG-99]

– Jeff Magee and Jeff Kramer, "Concurrency - State Models and Java
Programs", Wiley (http://www.doc.ic.ac.uk/~jnm/book/)

• [MAL-93]
– Thomas W. Malone, Kevin Crowston. "The interdisciplinary study of

coordination". Center for Coordination Science, Alfred P. Sloan School of
Management, Massachusetts Institute of Technology, 1993

19

