
SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module 2.3]
SYNCHRONIZATION MECHANISMS

AND CONSTRUCTS

v1.2
BETA

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

BASIC CONSTRUCTS
FOR PROCESS SYNCHRONIZATION

• The algorithms for the CS problem described in previous module can
be run on a bare machine
– they use only machine language instructions that the computer provides
– too low level to be used efficiently and reliably

>> introduction of basic programming constructs higher-level that
machine instructions
– constructs and primitives provided by the concurrent machine and used

in concurrent languages
• Main constructs

– semaphores
– monitors

2

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

SEMAPHORES
• Introduced by Dijkstra in 1968, semaphores are a very simple but

powerful general-purpose construct which makes it possible to solve
almost any mutual exclusion and synchronization problem
– informally, a semaphore functions as street semaphore, blocking and

unblocking process execution (car movement) according to the need
• Semaphore as a primitive data type provided by the concurrent

machine

3

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

SEMAPHORE DATA TYPE

• A semaphore S is a compound data type with two fields:
– S.V is an integer >= 0
– S.L is a set of process (id)

• It can be initialized with:
– a value k >= 0 for S.V
– the empty set {} for S.L
– ex: semaphore S = (k,{})

• It provides two basic atomic operations
– wait(S)

• also called P(S) from Dijkstra original choice
– signal(S)

• also called V(S) from Dijkstra original choice

4

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

WAIT OPERATION
• Behaviour (p is current process executing wait):

• Description
– If the value of the semaphore V is > 0 (~the semaphore is green), then it

is simply decremented.
– Otherwise if the value V = 0 (the semaphore is red), then the process is

blocked
• p is blocked on the semaphore S

• Note that wait is meant to be atomic

5

wait(S)=
< if (S.V > 0)
 S.V ← S.V - 1
 else
 S.L = S.L + {p}
 p.state ← blocked >

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

SIGNAL OPERATION
• Behaviour:

– If no process is waiting, then the semaphore value is incremented
– otherwise select a process q blocked on the semaphore, and unblock it.

• Also signal is meant to be atomic

6

signal(S)=
< if (S.L = {})
 S.V ← S.V + 1
 else
 let q ← arbitrary element of S.L
 S.L ← S.L - {q}
 q.state ← ready >

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

SEMAPHORE INVARIANT
• Let k be the initial value of the integer component of the semaphore,

#signal(S) the number of signal(S) statements that have been
executed, and #wait(S) the number of wait(S) statements that have
been executed.
– a process that is blocked when executing wait(S) is not considered to

have successfully executed the statement
• THEOREM: A semaphore S satisfies the following invariants:

7

S.V >= 0
S.V = k + #signal(S) - #wait(S)

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

MUTEX OR BINARY SEMAPHORES
• Mutex or binary semaphores are semaphores whose integer

component can take only two values, 0 and 1
– the name derives from their typical use for implementing mutual

exclusion
• General semaphores

– semaphores whose integer component can take any value >= 0

8

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

SEMAPHORE USAGE
• Semaphores are primitive constructs that can be used as low-level

building block to solve almost any problem concerning process
interaction (in shared memory architecture)

• In particular they can be used for both:
– mutual exclusion

• e.g. critical section problem
• implementing locks
• ...

– synchronization
• event semaphore for signaling
• barriers
• ...

9

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

CRITICAL SECTION WITH SEMAPHORES
• Using a semaphore, the solution of the critical section problem for

two processes is trivial
– using a semaphore as a lock

10

p q
loop forever
p1: NCS
p2: wait(S)
p3: CS
p4: signal(S)

loop forever
q1: NCS
q2: wait(S)
q3: CS
q4: signal(S)

CS with semaphores: 2 processes
binary semaphore S ← (1,{})

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

PROVING CORRECTNESS
• Building the reduced state diagram and checking properties

• It can be verified that the semaphore solution for the CS problem is
correct
– there is mutual exclusion, free from deadlock and starvation

11

p q

loop forever
p1: wait(S)
p2: signal(S)

loop forever
q1: wait(S)
q2: signal(S)

CS with semaphores: 2 processes (abbreviated)
binary semaphore S ← (1,{})

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

CRITICAL SECTION FOR N PROCESSES
• The same solution applies also for N processes

• But it there is no more freedom from starvation

12

Any process
loop forever
p1: NCS
p2: wait(S)
p3: CS
p4: signal(S)

CS with semaphores: N processes
binary semaphore S ← (1,{})

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

USING SEMAPHORES FOR
SYNCHRONIZATION
• Semaphores provide a basic mechanism also to synchronize

processes, that is solving order of execution problems
> event semaphores

– used to send / receive a temporal signal
– initialized to (0,{})

• An example: merge sort

13

sort1 sort2 merge
p1: sort 1st half of A
p2: signal(S1)

q1: sort 2nd half of A
q2: signal(S2)

r1: wait(S1)
r2: wait(S2)
r3: merge halves of A

Merge sort
binary semaphore S1 ← (0,{})
binary semaphore S2 ← (0,{})
integer array A

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

THE PRODUCER-CONSUMER PROBLEM
• The producer-consumer problem is an example of an order-of-

execution problem
• Two types of processes:

– producers
• a producer process executes a statement produce to create a data element

and then sends this element to the consumer process
– consumers

• upon receipt of a data element from a producer process, a consumer process
executes a statement consume with the data element as a parameter

• Ubiquitous patterns in CS:

14

PRODUCER CONSUMER
Communication line Web browser

Web browser Communication line

Keyboard Operating Sytems

Word processor Printer

Game program Display screen

... ...

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

P/C WITH A BUFFER

• When a data element must be sent from one process to another, the
communication can be
– synchronous, that is, communication cannot take place until both the

producer and consumer are ready to do so
– asynchronous, in which the communications channel itself has some

capacity for storing data elements
• uncoupling very useful useful for dynamic / open systems

– temporal uncoupling among participants
– dynamic set of processes

• useful also when producers and consumers have different speed

• The asynchronous case needs the introduction of a proper buffer
where to store and retrieve data
– shared data structures with a mutable state, read by consumers and

written by producers

15

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

P/C + INFINITE BUFFER
• If there is an infinite buffer, there is only one interaction that must be

synchronized
– the consumer must not attempt a take operation from an empty buffer

• invariant: notEmpty.V = #buffer
– actually true only if p2+p3 and q1+q2 are considered atomic

• Note that in this example append and take are meant to be atomic
• notEmpty is called resource (counter) semaphore

16

producer consumer
loop forever
p1: Item el ← produce
p2: append(buffer,el)
p3: signal(notEmpty)

loop forever
q1: wait(notEmpty)
q2: Item el ← take(buffer)
q3: consume(el)

P/C with infinite buffer
UnboundedQueue<Item> buffer ← empty queue
semaphore notEmpty ← (0,{})

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

P/C + BOUNDED BUFFER
• In this case, there is also another interaction that must be synchronized

– the producer must not attempt an append operation on a buffer which is full

• notEmpty and notFull are an example of split semaphores
• invariant: notEmpty + notFull = N

17

producer consumer
loop forever
p1: Item el ← produce
p2: wait(notFull)
p2: append(buffer,el)
p3: signal(notEmpty)

loop forever
q1: wait(notEmpty)
q2: Item el ← take(buffer)
q3: signal(notFull)
q4: consume(el)

P/C with bounded buffer

BoundedQueue<Item> buffer ← empty queue
semaphore notEmpty ← (0,{})
semaphore notFull ← (N,{})

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

COMBINING MUTEX+SYNCH SEMAPHORES
• As a generalisation of previous case, we consider the shared use of

a non-atomic data structure (a buffer in this case), so with non-
atomic operations

• introducing a mutex for guaranteeing also mutual exclusion

18

producer consumer
loop forever
p1: Item el ← produce
p2: wait(notFull)
p3: wait(mutex)
p4: append(buffer,el)
p5: signal(mutex)
p3: signal(notEmpty)

loop forever
q1: wait(notEmpty)
q2: wait(mutex)
q3: Item el ← take(buffer)
q4: signal(mutex)
q4: signal(notFull)
p4: consume(el)

P/C with finite buffer with multiple producers & consumers
BoundedQueue<Item> buffer ← empty queue
semaphore notEmpty ← (0,{})
semaphore notFull ← (N,{})
binary semaphore mutex ← (1,{})

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

DEFINITIONS OF SEMAPHORES
• There are several different definitions of the semaphore type

– differences relate to the specification of liveness properties, and do not
affect the safety properties that follow from the semaphore invariants

• Main types
– strong vs weak semaphores
– busy-wait semaphores

19

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

STRONG SEMAPHORES
• In strong semaphore S.L is not a set, but a queue

– semaphores in which S.L is a set are also called weak semaphore.

• Important property: no starvation
– for a strong semaphore starvation is impossible for any number N of

processes

20

wait(S) =
< if (S.V > 0)
 S.V ← S.V - 1
 else
 append(S.L,p)
 p.state ← blocked >

signal(S) =
< if (S.L = empty_queue)
 S.V ← S.V + 1
 else
 let q ← take(S.L)
 q.state ← ready >

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

BUSY-WAIT SEMAPHORES
• Semaphores without S.L:

– semaphore operations are still atomic, so there is no interleaving
between the two statements implementing the wait(S) operation

• Loosing freedom from starvation
– with busy-wait semaphores you cannot assume that a process enters in

its critical section event in the 2-process solution
• Busy-wait semaphores are appropriate in a multiprocessor system

when the waiting process has its own processor and is not wasting
CPU time that could be used for other computation
– they would also appropriate in a system with a little contention so that

the waiting process would not waste too much CPU time

21

wait(S) =
< await(S.V > 0)
 S.V ← S.V - 1 >

signal(S) =
< S.V ← S.V + 1 >

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

DINING PHILOSOPHERS
• Classical problem in the field of concurrent programming

– originated by an examination question set by Dijkstra in 1971 on a
synchronization problem where five computers competed for access to
five shared tape drive peripherals

• retold as the dining philosophers problem by Tony Hoare.
– nowadays it is an entertaining vehicle for comparing various formalism

for writing and proving concurrent problems
• sufficiently simple & challenging

• Description
– there is a secluded community of five philosophers who engage in only

two activities: thinking and eating
– meals are taken communally at a table set with 5 plates and 5 forks
– tt the center of the table a bowl of spaghetti that is endlessly replenished.
– the spaghetti is hopelessly tangled and a philosopher needs two forks in

order to eat
– each philosopher may pick up the forks on his left and on his right, but

only one at a time

22

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

DP PROPERTIES

• The problem is to design pre- and post- protocols to ensure the
following properties:
– A philosopher can eat only if he/she has two forks
– mutual exclusion

• no two philosophers may hold the same fork simultaneously
– freedom from deadlock
– freedom from starvation
– efficient behaviour in the absence of contention

23

Philosopher
loop forever
p1: think
p2: <pre-protocol>
p3: eat
p4: <post-protocol>

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

FIRST ATTEMPT
• Each fork is modeled as a semaphore

– wait => taking a fork
– signal => putting down the fork

• It can be proved that no fork is ever held by two philosophers
• Unfortunately this solution deadlocks

– under an interleaving that has all philosophers pick up their left forks
before any of them tries to pick up the right fork

24

Dining philosophers (first attempt)
semaphore array[0..4] fork ← [1,1,1,1,1]

loop forever
p1: think
p2: wait(fork[i])
p3: wait(fork[i+1])
p3: eat
p4: signal(fork[i])
p5: signal(fork[i+1])

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

A SOLUTION
• To ensure liveness we can limit the number of philosophers eating

simultaneously (or entering the dining room)
– introducing meal (or room) tickets
– N-1 tickets for N philosophers

• It can be proved that this solution satisfies all the properties

25

Dining philosophers (second attempt)

semaphore array[0..4] fork ← [1,1,1,1,1]
semaphore ticket ← (4,{})

loop forever
p1: think
p2: wait(ticket)
p3: wait(fork[i])
p4: wait(fork[i+1])
p5: eat
p6: signal(fork[i])
p7: signal(fork[i+1])
p8: signal(ticket)

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

OTHER SOLUTIONS
• Asymmetric schema for picking forks

– the Nth philosopher picks up first the right fork and then left one
• With random numbers

– Lehman and Rabin proved (1981) that there is no deterministic,
distributed, symmetric, deadlock-free solution to the problem of dining
philosophers.

– they proposed a randomized solution, with all the above properties
except determinism.

• each philosopher flips a coin before choosing the fork
• once he has acquired the first fork he looks for the other fork. If the latter is

not available, then he releases the first fork
– to be more precise, in this solution it is still possible that no philosopher

ever gets to eat, but this situation has probability 0

26

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

READERS-AND-WRITERS PROBLEM
• The problem of readers-writers is similar to the mutual exclusion

problem in that several processes are competing for access to a
critical section [Courtois, Heymans, Parnas - 1971].

• In this problem, however, we divide the processes into two classes:
– Readers

• which are required to exclude writers but not other readers
– Writers

• which are required to exclude both readers and other writers

• The problem is an abstraction of access to databases (or any kind of
shared resource)
– no danger in having process reading data concurrently
– writing or modifying data must be done under mutual exclusion to ensure

consistency of the data
• Solutions must satisfy these invariants

27

nR >= 0
nW = 0 || nW = 1
(nR > 0 → nW = 0) ⋀ (nW = 1 → nR = 0)
nR = number of readers, nW = number of writers

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

AN OVER-CONSTRAINED SOLUTION
• Using a single semaphore functioning as a lock

• Each reader and writer has exclusive access to the dbase
– over-constrained solution: serializing access also for readers!

28

reader writer
loop forever
p1: wait(rw)
p2: Item el ← read(dbase)
p3: signal(rw)

loop forever
q1: wait(rw)
q2: Item el ← create_record;
q3: write(dbase,el)
q4: signal(rw)

Readers-and-writers: first attempt
binary semaphore rw ← (1,{})
DataBase dbase;

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

SOLUTION
• Readers don’t use the same lock of writers

– mutexR lock for reader for updating common data structures (nr integer)

29

reader writer
loop forever
p1: wait(mutexR)
p2: if (nr == 0)
p3: wait(rw)
p4: nr ← nr + 1
p5: signal(mutexR)
p6: Item el ← read(dbase)
p7: wait(mutexR)
p8: nr ← nr - 1
p9: if (nr == 0)
p10: signal(rw)
p11: signal(mutexR)

loop forever
q1: wait(rw)
q2: Item el ← create_record;
q3: write(dbase,el)
q4: signal(rw)

Readers-and-writers: solution

binary semaphore mutexR ← (1,{})
int nr ← 0
binary semaphore rw ← (1,{})
DataBase dbase;

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

THE CIGARETTE SMOKER’S PROBLEM
• Synchronization problem proposed by S.S. Patil in 1971, to

investigate the limits of the semaphore primitive
• Problem statement

– assume that there is a group of four people: 3 smokers and 1 agent
(arbiter). To roll and smoke a cigarette three ingredients are needed:
paper, tobacco, matches. One of the smokers has an infinite supply of
papers, another has an infinite supply of tobacco, and another has an
infinite supply of matches. The agent has an infinite supply of all three
ingredients.

– the four participants repeadetly perform the following: the agent puts two
ingredients on the table; the smoker who has the remaining ingredient
takes the two ingredients, rolls a cigarette, smokes it, and notifies the
agent on completion. Then the agent puts another two ingredients on the
table, and so on

– the problem is to write a program to synchronize the agent and the
smokers

30

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

PATIL’S ARGUMENT
• Patil's argument was that Edsger Dijkstra's semaphore primitives

were limited
– he used the cigarette smokers problem to illustrate this point by saying

that it cannot be solved with semaphores.
• However, Patil placed heavy constraints on his argument:

– the agent code is the following (and is not modifiable)

– the solution is not allowed to use conditional statements or an array of
semaphores.

• With these two constraints, a solution to the cigarette smokers
problem is impossible.

31

shared S: array[1..3] of binary semaphores, initially all 0
 agent: binary semaphore, initially 1
local i,j: range over [1,2,3]
loop
 set i and j (at random) to two different values from [1,2,3]
 wait(agent)
 signal(S[i])
 signal(S[j])
end_loop

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

EXERCISES 1/2
• Consider the following algorithm ([BEN-ARI], p.138)

– what are the possible outputs of this algorithm?
– what are the possible outputs if we erase the statement wait(S)?
– what are the possible outputs if we erase the statement wait(T)?

32

p q
p1: wait(S)
p2: write(“p”)
p3: signal(T)

q1: wait(T)
q2: write(“q”)
q3: signal(S)

semaphore S ← 1
semaphore T ← 0

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

EXERCISES 2/2
• Consider the following algorithm ([BEN-ARI], p.138)

– what are the possible outputs?
• What are the possible outputs of the following algorithm?

33

p q r
p1: write(“p”)
p2: signal(S1)
p3: signal(S2)

q1: wait(S1)
q2: write(“q”)

r1: wait(S2)
r2: write(“r”)

semaphore S1 ← 0
semaphore S2 ← 0

p q
p1: wait (S)
p2: B ← true
p3: signal(S)

q1: wait(S)
q2: while not B
q3: write(“*”)
q3: signal(S)

semaphore S ← 1
boolean B ← false

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

BEYOND SEMAPHORES...

• Semaphores are a powerful construct, but very low level
– error-prone programs
– hard to use in complex concurrent programs

> looking for high-level constructs: monitors
– introduces by Brinch Hansen (1973)
– Generalized by Hoare (1974)

34

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

MONITORS
• def. Monitor

– a concurrent programming data structure encapsulating the
synchronization and mutual exclusion policy in accessing a resource /
data structure

– like a module + basic mechanisms to enforce correctness in module
concurrent access

• Generalization of the kernel or supervisor concept in operating
systems, where critical sections such as the allocation of memory are
centralized in a privileged program
– applications programs request services which are performed by the

kernel
– kernels are run in a HW mode that ensures that they cannot be

interfered with by application programs
– monitors as decentralized versions of the monolithic kernel

• Generalization of the object notion in OOP
– classes encapsulating data + operation + synchronization / mutex policy

35

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

MONITOR DECLARATION
• Monitor are declared and created in different ways according to the

specific language.

• An abstract representation:

36

monitor MonitorName {

 declaration of permanent variables

 initialization statements

 operations (or procedures or entries)

}

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

MONITOR PROPERTIES (1/2)
• Monitors as instances of abstract data type

– only operations (procedures) name are visible outside the monitor
• they are the interface
• they provide the only gates through the “wall” defined by the monitor

declaration
• call to monitor procedures: call MonitorName.OpName(params)

(often written simply MonitorName.OpName(params))
– statements within the monitor cannot access variables declared outside

del monitor
– permanent variables are initialized before any procedure is called

37

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

MONITOR PROPERTIES (2/2)
• Intrinsic / implicit mutual exclusion

– procedures by definition execute with mutual exclusion
• a monitor procedure is called by an external process
• a procedure is active if some process is executing a statement in the

procedure
• at most one instance of one monitor procedure may be active at a time
• processes that find the monitor ‘busy’ are suspended

• explicit synchronization support
– through condition variables

• used inside the monitors by the programmers to delay a process that cannot
safely continue executing until the monitor’s state satisfies some boolean
condition

• used also to awake a delayed process when the condition becomes true

38

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

REMARKS
• The mutual exclusion is implicit and does not require the

programmers to use any other mechanism (such as wait and signal..)
– if operations of the same monitor are called by more than one process,

the implementation ensures that these are executed under mutual
exclusion

> operations are executed atomically (with respect to each other)
– if operations of different monitors are called, their execution can be

interleaved
• There is no explicit queue associated with the monitor entry

– starvation problem

39

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

CONDITION VARIABLES
• Primitive data types that can be used to suspend (wait) and resume

(signal) processes inside a monitor
– representing conditions (events) on the monitor state that wait to be

satisfied and that becomes satisfied
– two basic atomic operations, waitC and signalC

• sometimes written simply wait and signal
– each condition variable is associated with a FIFO queue of blocked

processes
• waitC(cond)

– suspend the execution of the process and release lock of the monitor
• signalC(cond)

– unblock a process waiting on a condition

40

waitC(cond) =
< append p to cond.queue
 p.state ← blocked
 monitor.lock ← release >

signalC(cond) =
< if cond.queue != empty
 q ← remove head of cond.queue
 q.state ← ready >

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

IMPORTANT REMARK
• There is an explicit link between condition variables and their

encapsulating monitor

41

wait operation releases the monitor lock

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

OTHER PRIMITIVES
• emptyC(cond)

– check if the queue is empty
• signalAll(cond)

– like signal, but all the processes waiting on the condition are resumed
• wait(cond,rank)

– wait in order of increasing value of rank
• minrank(cond)

– returns the value of rank of process at front of wait queue

42

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

IMPLEMENTING A SEMAPHORE

43

monitor Semaphore

 integer s ← 0
 condition notZero

 operation wait
 if s = 0
 waitC(notZero)
 s ← s - 1

 operation signal
 s ← s + 1
 signalC(notZero)

monitor Semaphore

 integer s ← 0
 condition notZero

 operation wait
 if s = 0
 waitC(notZero)
 s ← s - 1

 operation signal
 if emptyC(notZero)
 s ← s + 1
 else
 signalC(notZero)

• Two implementations of a semaphore using monitors

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

SEMAPHORES VS. CONDITION VARIABLE
IN MONITORS

44

SEMAPHORE MONITOR

wait may or may not block waitC always blocks

signal always has an effect signalC has no effect if queue is
empty

signal unblocks an arbitrary
blocked process

signalC unblocks the process at
the head of the queue

a process unblocked by signal can
resume execution immediately

depend ing on the spec i f i c
signaling semantics, a process
unblocked by signalC must wait
for the signaling process to leave
the monitor

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

SIGNALING DISCIPLINES (1/2)
• When a process executes a signal, even if there could be multiple

process ready to execute within the monitor, only one process can
have exclusive access
– because of the basic semantics of monitors
– only one process is chosen to keep active
> either the signaling or the waiting process can be resumed, not both

• Possibilities
– Signal and Continue

• the signaler continues and the signaled process executes at some later time
• nonpreemptive

– Signal and Wait
• signaled process executes now and the signaler waits, eventually competing

with other processes waiting for entering the monitor
• preemptive

– Signal and Urgent Wait (or Immediate Resumption Requirement)
• like signal and wait, but the signaler has priority over processes waiting for

the lock
• classic solution for monitors

45

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

SIGNALING DISCIPLINES (2/2)
• Given

– S = precedence of the signaling processes
– W = precedence of the waiting processes
– E = precedence of processes blocked on an entry

• Signal and Continue
– E < W < S

• Signal and Wait
– E = S < W

• Signal and Urgent Wait
– E < S < W

46

if (!B)
 wait(cond)
<access>

while (!B)
 wait(cond)
<access>

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

USING MONITORS
• Monitors can be used to implement any resource or data structure

which is used concurrently by multiple processes and in which we
want to encapsulate the synchronization policies

• Revisiting the main examples
– Producers-Consumers

• implementing the bounded-buffer as a monitor
– Readers-and-Writers

• implementing the rw-lock as a monitor
– Resource allocation and management

• implementing the resource allocator as a monitor

47

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

PRODUCERS-CONSUMERS

48

monitor BoundedBuffer

 bufferType<T> buffer ← empty
 condition notFull, notEmpty;

 operation put(T elem)
 if (buffer is full)
 waitC(notFull)
 append(buffer,elem)
 signalC(notEmpty)

 operation take
 if (buffer is empty)
 waitC(notEmpty)
 Elem el ← head(buffer)
 signalC(notFull)
 return el

Producer Consumer
loop

p1: Item el ← produce

p2: BoundedBuffer.put(el)

loop

q1: Item el ← BoundedBuffer.take

q2: consume(el)

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization 49

monitor RWLock {
 int nr, nw = 0;
 cond okToRead,okToWrite;

 procedure request_read(){
 while (nw > 0)
 wait(okToRead);
 nr = nr + 1;
 }
 procedure release_read(){
 nr = nr - 1;
 if (nr == 0)
 signal(okToWrite)
 }
 procedure request_write(){
 while (nr > 0 || nw > 0)
 wait(okToWrite)
 nw = nw + 1;
 }
 procedure release_write(){
 nw = nw - 1;
 signal(okToWrite);
 signal(okToRead);
 }

READERS-AND-WRITERS
(signal-and-continue)

Invariant:
(nr == 0 or nw == 0) and (nw <= 1)

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization 50

monitor RWLock
 integer readers ← 0
 integer writers ← 0
 condition okToRead,okToWrite;

 operation startRead
 if writers != 0 or not empty(okToWrite)
 waitC(okToRead)
 readers ← readers + 1
 signalC(okToRead)

 operation endRead
 readers ← readers - 1
 if readers = 0
 signalC(okToWrite)

 operation startWrite
 if writers != 0 or readers != 0
 waitC(okToWrite)
 writers ← writers + 1

 operation endWWrite
 writers ← writers - 1
 if empty(okToRead)
 then signalC(okToWrite)
 else signalC(okToRead)

READERS-AND-WRITERS
alternative solution

Reader Writer
p1: RWLock.startRead

p2: read the dbase

p3: RWLock.endRead

q1: RWLock.startWrite

q2: write the dbase

q3: RWLock.endWrite

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

RESOURCE ALLOCATION:
SHORTEST-JOB-NEXT SCHEDULING
• Monitors can be used to rule resource allocation and access

– Example of an allocator applying the Shortest-Job-First:

51

monitor SJFAllocator {
 bool free = true;
 cond turn;

 procedure request(int time){
 if (free)
 free = false;
 else
 wait(turn,time);
 }

 procedure release(){
 if (empty(turn))
 free = true;
 else
 signal(turn)
 }
}

Invariant:
turn ordered by time AND
(free => turn is empty)

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

THE SLEEPING BARBER [Dijkstra, 1965]
• Classic synchronization problem, representative of complex resource

allocation and client / service problems
– e.g. disk-head scheduler

• Elements
– customers are clients processes who request a service
– the barber is a server who repeatedly provides the service
– the barber’s shop is a monitor
– rendez-vous between barber and customers

52

DESCRIPTION
A barbershop consists of a waiting room with s seats and a barber room with one
barber chair. There are c customers and one barber. Customers alternate
between growing hair and getting a haircut. The barber sleeps and cuts hair.
- If there are no customers to be served, the barber sleeps.
- If a customer wants a haircut and all chairs are occupied, then the customer
 leaves the shop and skips the haircut
- If chairs are available but the barber is busy, then the customer waits in one
 of the available chairs until the barber is free
- If the barber is asleep, the customer wakes up the barber

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

DESIGNING THE BARBERSHOP
• Monitor with three procedures

– get_haircut
• called by client (customers) processes

– get_next_customer and finished_cut
• called by the service process (barber) to get next request and to signal

service completion

• Synchronization
– rendez-vous between the barber and a customer for the request

• the barber has to wait for a customer to arrive and a customer has to wait for
the barber to be available

– the customer needs to wait until the barber has finished giving him a
haircut, which is indicated by the barber’s opening the exit door

– before closing the door, the barber needs to wait until the customer has
left the shop

53

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

THE BARBER-SHOP MONITOR

54

monitor BarberShop {
 boolean barber=false, chair=false, open=false;
 cond barber_available; # signaled when barber is true
 cond chair_occupied; # signaled when chair is true
 cond door_open; # signaled when open is true
 cond customer_left; # signaled when open is false

 procedure get_haircut(){
 while (!barber) wait(barber_available);
 barber = false;
 chair = true; signal(chair_occupied);
 while (!open) wait(door_open);
 open = false; signal(customer_left);
 }
 procedure get_next_customer(){
 barber = true; signal(barber_available);
 while (!chair) wait(chair_occupied);
 chair = false;
 }
 procedure finished_cut(){
 open = true; signal(door_open);
 while (open) wait(customer_left);
 }
}

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

DISK-SCHEDULING PROBLEM
• The disk-scheduling problem is representative of numerous

scheduling problems
– its solution schema can be applied in numerous other situations

• Problem description
– scheduling access to a moving head disk

• concurrent requests made by different processes
– applying different scheduling strategies to minimize disk access time

• disk-access time = seek-time + rotational latency
• seek time as major component => positioning the arm on the right cylinder

– different strategies
• FCFC, SSTF, SCAN, LOOK, C-SCAN

55

SISOP LA - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

DISK-SCHEDULING: HARDWARE

56

SISOP LA - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization 57

DISK-SCHEDULING STRATEGIES
• FCFS (First-Come-Fist-Server) scheduling

– requests served in FIFO order => fairness, but seek-time
• SSTF (Shortest-Seek-Time-First) scheduling

– serving first requests with lower seek time from current head pos
• possible starvation

• SCAN scheduling (elevator algorithm)
– arm moving forward and backward

• no starvation
• C-SCAN scheduling

– like SCAN but serving the request only along one direction
• LOOK e C-LOOK scheduling

– like SCAN and C-SCAN but constraining the movement of the arm
between cylinders with pending requests

SISOP LA - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

• A possible solution accounts for using a monitor DiskScheduler
functioning as scheduler, separated from the resource to be
controlled (the disk)

• Roles
– scheduling requests
– ensuring that one process at a time uses the disk

• Operations
– request(int cyl)

– release
• All users must follow the protocol:

A SOLUTION USING MONITORS

58

Disk Scheduler

Disk Access

User
Process

(1) request

(3) release

(2) access

...
DiskScheduler.request(cyl)
<access the disk>
DiskScheduler.release()
...

SISOP LA - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

DISK-SCHEDULER MONITOR STRATEGY
• Disk cylinder numbered between 0 and MAXCYL
• CSCAN strategy
• Let

– position indicating current head position
• -1 means not being accessed

– keeping track of pending requests to be serviced on the current scan
across the disk (C set) and on the next scan (N set)

– C and N are disjoint sets, ordered according to the cylinder
• C contains requests for cylinders >= current head position
• N contains requests < current head position

• Invariant

• Using two condition variables c and n for C and N

59

(C and N are ordered set) ∧
(all elements of set C are >= position) ∧
(all elements of set N are < position) ∧
((position == -1) → (C empty ∧ N empty))

SISOP LA - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

A DISK SCHEDULER IMPLEMENTING C-SCAN

60

monitor DiskScheduler {
 int position = -1, c = 0, n = 1;
 cond scan[2]; # signaled when disk released

 procedure request(int cyl){
 if (position == -1) # disk is free
 position = cyl;
 elseif (cyl > position)
 wait(scan[c],cyl);
 else
 wait(scan[n],cyl);
 }

 procedure release(){
 int temp;
 if (!empty(scan[c]))
 position = minrank(scan[c]);
 elseif (!empty(scan[n])){
 temp = c; c = n; n = temp; # swap c and n
 position = minrank(scan[c]);
 } else position = -1;
 signal(scan[c]);
 }
}

SISOP LA - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

ALTERNATIVE SOLUTIONS
• Using an intermediary

– in previous solution all the processes must follow the required protocol
for requesting the disk, then using and releasing it.

• If any process fails to follow this protocol, the scheduling is defeated
– a Disk Interface monitor can be used, encapsulating both the scheduler

and the disk access

• Using nested monitors

61

Disk Scheduler Disk access
User

Process

doIO read

write

Disk Interface
User

Process

use disk
Driver

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

MONITOR IMPLEMENTATION
• Monitor can be realized using semaphores, in particular

– one semaphore mutex for mutual exclusion
– for each condition variable, a semaphore condsem and a counter

condcount keeping track of the number of processes suspended on the
variable

62

Signal and Continue semantics:

Prologue for each operation:
 wait(mutex)
Epilogue for each operation:
 signal(mutex)

waitC(cond) =
 condcount++;
 signal(mutex);
 wait(condsem);
 wait(mutex);

signalC(cond) =
 if (condcount > 0){
 condcount--;
 signal(condsem)
 }

Signal and Wait semantics:

Prologue for each operation:
 wait(mutex)
Epilogue for each operation:
 signal(mutex)

waitC(cond) =
 condcount++;
 signal(mutex);
 wait(condsem);

signalC(cond) =
 if (condcount > 0){
 condcount--;
 signal(condsem);
 wait(mutex);
 }

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

IMPLEMENTING MONITORS IN JAVA
• Two basic approaches to develop monitors in Java

– exploiting low-level Java mechanisms (synchronized, wait, notify)
– exploiting high-level java.util.concurrent support

63

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

FIRST APPROACH
• An object following the monitor pattern encapsulates all its mutable

state and guards it with object’s own intrinsic lock
– the bytecode instructions for entering and exiting a synchronized block

are callled monitorenter and monitorexit
– Java’s builtin intrinsic locks are sometimes called monitor locks or

monitors
• Rules

– every public method must be implemented as synchronized
– only one condition variable (which is the object itself)

• wait, notify,notifyAll operation
– no public field
– monitor code must access / use only objects completely confined inside

the monitor
• Signaling semantics: variant of Signal-and-Continue strategy

– E = W < S

64

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

FIRST APPROACH: DYNAMICS

• Entry set
– set where threads waiting for the lock are suspended

• Wait set
– set where threads that executed a wait are waiting to be notified

65

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

FIRST EXAMPLE

66

public class OneShotSynchAdder {
 private int x, y;
 boolean xAvailable, yAvailable;

 public OneShotSynchAdder(){
 xAvailable = yAvailable = false;
 }

 public synchronized void setFirstOperand(int x){
 this.x = x;
 xAvailable = true;
 if (xAvailable && yAvailable){
 notifyAll();
 }

 }

 public synchronized void setSecondOperand(int y){
 this.y = y;
 yAvailable = true;
 if (xAvailable && yAvailable){
 notifyAll();
 }
 }

 public synchronized int getSum() throws InterruptedException {
 if (!(xAvailable && yAvailable)){
 wait();
 }
 return x + y;
 }

}

• Getting the sum of the two
operands only when both
operands are available

– computing + synchronizing
functionality

• “One shot” semantics
– it can be used just once, for a

couple of operands

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

CRITICALITIES
• Criticalities in Java basic support

– more than one condition predicate can be associated to the same
(unique) condition variable

• multiple threads with different roles waiting for different condition predicates
can be waiting on the same (implicit) condition variable

– wait semantics include “spurious wake up” (check Java doc)
• not in response to any thread calling notify

• Consequences
– a thread waiting on the cond variable can be awakened even if its

specific condition predicate is not satisfied
– to awake the desired threads, all the threads waiting on the condition

variable must be awakened
• Basic “safe” implementation schema

– wrapping wait in while loop checking the specific condition predicate
– using notifyAll instead of notify

67

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

FIRST EXAMPLE EXTENDED

68

public class SynchAdder {
 private int x, y;
 boolean xAvailable, yAvailable;

 public SynchAdder(){
 xAvailable = yAvailable = false;
 }

 public synchronized void setFirstOperand(int x){
 while (xAvailable) {
 wait();
 }
 this.x = x; xAvailable = true;
 if (xAvailable && yAvailable){
 notifyAll();
 }

 }
 public synchronized void setSecondOperand(int y){
 while (yAvailable) {
 wait();
 }
 this.y = y; yAvailable = true;
 if (xAvailable && yAvailable){
 notifyAll();
 }
 }

 public synchronized int getSum() throws InterruptedException {
 while (!(xAvailable && yAvailable)){
 wait();
 }
 xAvailable = yAvailable = false;
 notifyAll();
 return x + y;
 }

}

• Reusable synch adder
– can be used for multiple

operations

• Multiple threads waiting on
different cond predicates on
the same cond variable
– using notifyAll
– using a loop for predicate

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

IMPLEMENTING A BOUNDED-BUFFER

69

public class BoundedBuffer<Item> {
 private int first;
 private int last;
 private int count;
 private Item[] buffer;

 public BoundedBuffer(int size){
 first = 0;
 last = 0;
 count = 0;
 buffer = (Item[])new Object[size];
 }

 public synchronized void put(Item item) throws InterruptedException {...}

 public synchronized Item get() throws InterruptedException {...}

 public synchronized boolean isEmpty(){
 return count == 0;
 }

 public synchronized boolean isFull(){
 return count == buffer.length;
 }
}

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

PUT AND GET OPERATIONS

• Question: is it really necessary to use notifyAll?
– is there any scenario in which both producers and consumers are

blocked in the wait set?
70

 ...
 public synchronized void put(Item item) throws InterruptedException {
 while (isFull()){
 wait();
 }
 last = (last + 1) % buffer.length;
 count++;
 buffer[last] = item;
 notifyAll();
 }

 public synchronized Item get() throws InterruptedException {
 while (isEmpty()){
 wait();
 }
 first = (first + 1) % buffer.length;
 count--;
 notifyAll();
 return buffer[first];
 }
 ...

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

AN ALTERNATIVE APPROACH
• Exploiting explicit locks with ReentrantLock and Condition

c lasses implement ing condi t ion var iables provided by
java.util.concurrent library
– Condition class represents condition variables to be used only inside

blocks protected by a ReentrantLock
– creating a condition from a ReentrantLock

• public Condition newCondition();
– returns a Condition instance for use with this Lock instance

– in this case synchronized blocks / methods (intrinsic locks) are not used

• Use
– ReentrantLock mutex for each monitor
– wrapping each method with mutex.lock and mutex.unlock
– for each condition to use, create it from the mutex lock

71

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

BOUNDER BUFFER REVISITED (1/4)

• Note
– methods are not synchronized
– conditions are taken from the same lock

72

public class BoundedBuffer<Item> {
 private int first, last, count;
 private Item[] buffer;
 private Lock mutex;
 private Condition notFull, notEmpty;

 public BoundedBuffer(int size){
 first = last = count = 0;
 buffer = (Item[])new Object[size];
 mutex = new ReentrantLock(); // new ReentrantLock(true) for fair mutex
 notFull = mutex.newCondition();
 notEmpty = mutex.newCondition();
 }

 public void put(Item item) throws InterruptedException {...}
 public Item get() throws InterruptedException {...}
 public boolean isEmpty() throws InterruptedException {...}
 public boolean isFull() throws InterruptedException {...}
}

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

BOUNDER BUFFER REVISITED (2/4)

• Note
– finally block, for ensuring mutex unlocking

73

public class BoundedBuffer<Item> {
 ...
 public boolean isEmpty() throws InterruptedException {
 try {
 mutex.lock();
 return count == 0;
 } finally {
 mutex.unlock();
 }
 }

 public boolean isFull(){
 try {
 mutex.lock();
 return count == buffer.length;
 } finally {
 mutex.unlock();
 }
 }
 ...
}

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

BOUNDER BUFFER REVISITED (3/4)

• Note
– signaling the specific condition variable

74

public class BoundedBuffer<Item> {
 ...
 public void put(Item item) throws InterruptedException {
 try {
 mutex.lock();
 while (isFull()){
 notFull.await();
 }
 last = (last + 1) % buffer.length;
 count++;
 buffer[last] = item;
 notEmpty.signal();
 } finally {
 mutex.unlock();
 }
 }
 ...
}

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

BOUNDER BUFFER REVISITED (4/4)

75

public class BoundedBuffer<Item> {
 ...
 public Item get() throws InterruptedException {
 try {
 mutex.lock();
 while (isEmpty()){
 notEmpty.await();
 }
 first = (first + 1) % buffer.length;
 count--;
 notFull.signal();
 return buffer[first];
 } finally {
 mutex.unlock();
 }
 }
 ...
}

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

BUILDING REUSABLE SYNCHRONIZATION
AND COORDINATION COMPONENTS

• Exploiting monitors to realize reusable synchronization / coordination
components
– latches
– barriers
– rendez-vous
– message boxes
– blackboards
– event services

• Often related to specific concurrent architectural patterns
– described in next module

76

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

LATCHES
• A latch is a condition starting out false, but once set true, remains

true forever
– initialization flags
– End−of−stream conditions
– thread termination
– event occurrence indicators

• A count down is similar but fires after a pre−set number of releases,
not just one

77

monitor Latch
 operation set()
 operation await()

monitor CountDown
 CountDown(int n)
 operation countDown()
 operation await()

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

BARRIERS
• Components for multiparty synchronization

– each party must wait for all others to hit barrier
– similar to a count down, but with a single agent role

• every agent signals and wait until everyone hits the barrier
– useful in iterative partitioning algorithms

78

monitor Barrier
 Barrier(int nParticipants)
 operation hitAndWait()

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

RENDEZ-VOUS
• A barrier at which each party may exchange information with others

– useful in resource−exchange protocols

79

monitor RendezVous
 RendezVous(int nParticipants)
 operation hitAndWait(DataX x): DataY

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

MESSAGE BOXES
• A bounded buffer with multiple producers and one consumer (the

owner of the message box)
– for peer-to-peer asynchronous communication
– filter can be used for data-driven message consuming

80

monitor MessageBox
 MessageBox(int nMaxMessages)
 operation insertMsg(Msg msg)
 operation fetchNextMsg(): Msg
 operation fetchNextMsg(MsgFilter filter): Msg

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

BLACKBOARDS
• For data-driven temporal-uncoupled communication and

synchronization among open set of agents
– synchronization obtained by blocking agents reading or removing

messages not available on the blackboard
– no specific roles for agents

81

monitor Blackboard
 operation post(Msg msg)
 operation readMsg(MsgFilter filter): Msg
 operation removeMsg(MsgFilter filter): Msg

SISCO LS - II Facoltà Ingegneria - Cesena Constructs for Process Synchronization

EVENT SERVICES
• For realizing the pattern observer in concurrent context

– one agent (announcer) publishing events
– multiple agents (observers) reacting to event occurrence

• Semantics
– awaitForEvent blocks until an event specified in subscription is

available
– no event is lost

82

monitor EventService
 operation publish(Event msg)

 operation subscribe(ObserverId id, EventTemplate EvTmpl)
 operation unsubscribe(ObserverId id)
 operation awaitForEvent(ObserverId id): Event

