
SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module 1.3]
CONCURRENT LANGUAGES

AND MACHINES

v1.0 BETA

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines 2

CONCURRENT LANGUAGES AND
MACHINES

• To describe / specify a concurrent program we need concurrent
programming languages
– enabling programmers to write down programs as set of instructions to

be executed concurrently
• To execute a concurrent program we need a concurrent machine

– a machine (which can be abstract) designed to handle the execution of
multiple sequential processes, by exploiting multiple processors
(physical or virtual)

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

FLYNN’S TAXONOMY
• Categorization of all computing systems according to the number of

instruction stream and data stream
– stream as a sequence of instruction or data on which a computer

operate
• Four possibilities

– Single Instruction, Single Data (SISD)
• Von-Neumann model, single processor computers

– Single Intruction, Multiple Data (SIMD)
• single instruction stream concurrently broadcasted to multiple processors,

each with its own data stream
• fine grained parallelism, vector processors

– Multiple Instruction, Single Data (MISD)
• no well known systems fit this

– Multiple Instruction, Multiple Data (MIMD)
• each processor has its own stream of instructions operating on its own data

3

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

MIMD MODELS
• MIMD category can be then decomposed according to memory

organization
– shared memory

• all processes (processors) share a single address space and communicate
each other by writing and reading shared variables

– distributed memory
• each process (processor) has its own address space and communicate with

other process by message passing (sending and receiving messages)

4

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

MIMD FURTHER CLASSIFICATIONS
• Two further classes for shared-memory computers

– SMP
• all processors share a connection to a common memory and access all

location memories at equal speed
– NUMA (Non-uniform Memory Access)

• the memory is shared, by some blocks of memory may be physically more
closely associated with some processors than others

• Two further classes for distributed-memory computers
– MPP (Massively Parallel Processors)

• processors and the network infrastructure are tightly coupled and specialized
for a parallel computer

• extremely scalable, thousands of processors in a single system
– Clusters

• distributed-memory systems composed of off-the-shelf computers connected
by an off-the-shelf network

• e.g. Beowulf clusters (= clusters on Linux)
– Grid

• systems that use distributed, heterogeneous resources connecred by LAN
and/or by WAN, without a common point of administration

5

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

MPP EXAMPLE:
THINKING MACHINE CM-5
• MIMD, 512 Processors

6

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

FROM PHYSICAL TO ABSTRACT MACHINES

• Abstract machine or abstract processor
– an entity that can execute the instructions of a specific source

programming language
• generalization of the notion of processor

– can be realized on top of lower level processor, which can be physical or
abstract

• the lower level processor has its own programming language

• Different kinds of techniques / architectures to build abstract
machines / processors on top of lower level processors
– hardware

• maximum efficiency, minimum flexibility
– software

• interpreters, compilers, virtual machines

7

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

ABSTRACT MACHINES
• Terms

– PS = abstract processor / machines
– LS = programming language to write programs on top of PS
– PO = lower level processor
– LO = programming language to write programs on top of PO

8

PO

PS written in PL}

Program written in LS}

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

ABSTRACT MACHINE ARCHITECTURE:
INTERPRETERS & COMPILERS

• Interpreter
– a LO program that simulates PS on PO, interpreting LS
– very flexible, but also very inefficient

• Compiler
– the process PS is completely virtual, without an interpreter
– LS is translated into a functionally equivalent program, written (compiled) in

LO so as to run directly on PO
• high efficiency + more resource consuming
• less dynamism and portability

9

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

ABSTRACT MACHINE ARCHITECTURE:
VIRTUAL MACHINES

• Virtual Machine
– an abstract processor PI between PS and PO, executing programs written in

a LI language
– LS is translated into LI and executed onto an interpreter of LI - i.e. a

simulator of the PI processor - running directly on PO
• PI extends the functionalities of the physical machine PO so as to make it easier

the translation of the source language
• at the same time it makes it ieasier the portability of the language on different POs

• Examples
– JVM, CLR, Erlang Virtual Machine

• Advantages
– LI/PI is higher-level than LO/PO

10

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

CONCURRENT MACHINES
• A concurrent machine provides:

– a support for the execution of concurrent programs and realizing then
concurrent computations

– as many virtual processors as the number of processes composing the
concurrent computation

• Providing basic mechanisms for
– multiprogramming (virtual processors generation and management)
– synchronization and communication
– access control to resources

11

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

BASIC MECHANISMS
• Multiprogramming

– set of mechanisms that make it possible to create new virtual processors
and allocate physical processors of the lower-level machine to the virtual
processors by means of scheduling algorithms

• Synchronization and Communication
– two different typologies of mechanisms, related to two different

architectural models for concurrent machines:
• shared memory model and message passing (local memory) model

– shared memory model
• presence of a shared memory among the virtual processors
• example: multi-threaded programming

– message passing model
• every virtual processor has its own memory and no shared memory among

processors is present
• every communication and interaction among processors is realized through

message passing

12

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

CONCURRENT PROGRAMMING LANGUAGES
• Programming languages for specifying concurrent programs on top

of concurrent machines
– programs organized as sets of sequential processes to be executed

concurrently on the virtual processors of the concurrent machine
– basic constructs for

• specifying concurrency
– creation of multiple processes

• specifying process interaction
– synchronization and communication
– mutual exclusion

• Main design approaches
– sequential language + library with concurrent primitives

• e.g. C + PThreads
– language designed for concurrency

• e.g. OCCAM, ADA, Erlang
– hybrid approach

• sequential paradigm extended with a native support for concurrency
• e.g. Java

13

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

BASIC NOTATIONS AND CONSTRUCTS

• First proposals (back to ~1960/1970)
– fork/join
– cobegin/coend

• More recent proposals
– first-class abstractions and constructs for defining processes

• called also tasks
– e.g. ADA, Erlang languages

• Mainstream languages
– support for threads and multi-threaded programming
– e.g. Java, C#

• Research landscape
– actor-based models
– coordination models and languages
– agent-oriented approaches

14

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

FORK / JOIN
• Among the first basic language notations for expressing concurrency

(Conway 1963, Dennis 1968)
– adopted in UNIX system / POSIX, provided by MESA language (1979)

• fork primitive
– behavior similar to procedure invocation, with the difference that a new

process is created and activated for executing the procedure
• input param: procedure to be executed
• output param: the identifier of the process created

> it results in a bifurcation of the program control flow
• the new process (child) is executed asynchronously with respect to the

generating process (parent) and existing processes
• join primitive

– it detects when a process created by a fork has terminated and it
synchronize current control flow with such event

• input parameter: the identifier of the process to wait
> it results in a join of independent control flows

15

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

FORK / JOIN IN MESA

16

process p;
A: ...;
 p=fork fun;
B: ...;
 join p;
D:;

void fun() {
 C:;
}

A

B

C

D

fun()

fork

join

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

FORK / JOIN: WEAKNESSES
• Pro

– general and flexible
• can be used to build any kind of concurrent application

• Cons
– low-level of abstraction

• not providing any discipline for structuring complex processes
• error-prone

– programs difficult to read
• it is hard getting from the text an idea of what processes are active in a

specific point of the program
– no explicit representation of the process abstraction

• as abstraction to organize the overall system

17

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

COBEGIN / COEND CONSTRUCT
• Construct proposed by Dijkstra (1968) to provide a discipline for

concurrent programming
– enforcing the programmer to follow a specific scheme to structure

concurrent programs
• Concurrency is expressed in blocks:

• The process executing a cobegin (pared) creates as many processes
(children) as the number of instructions in the body and suspends
its execution until all the processes have terminated

18

cobegin
 S1;
 S2;
 ...
 Sn;
coend

- instructions S1, S2, Sn are executed in parallel

- an instruction Si can be as complex as a full
program (it can include nested cobegin/coend)

- a parallel structure terminates only when all its
components (processes) have terminated

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

EXAMPLE

19

S0
cobegin
 S1;
 S2;
 S3;
coend
S4;

S0

S2 S3

S4

S1

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

COBEGIN / COEND
• Pro

– stronger discipline in structuring a concurrent program with respect to
fork/join primitives

– programs are more readable
• Cons

– less flexibility than fork/join
• how to create N concurrent processes, where N is known only at runtime ?

– also in this case we haven’t an explicit abstraction encapsulating the
process

20

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

LANGUAGES WITH FIRST-CLASS
SUPPORT FOR PROCESSES
• Introducing a notion of process as first-class entity of the concurrent

language (and of the concurrent machine)
– as “modules” to organize a program (static) and the system (runtime)
– explicit encapsulation of the control flow

• First concurrent languages
– Concurrent Pascal (70ies)

• Modern languages
– OCCAM (1980...OCCAM3 ~90ies)
– SR (90ies)
– ADA (~1980 up today with new versions - ADA95 with OO),
– Erlang (end of 90ies up today)

• used in particular by telecom industries

21

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

CONCURRENT PASCAL
• Designed by Per Brinch Hansen (~1975) as a language to write

concurrent programs like operating systems and real-time monitoring
systems, for shared-memory contexts

• Extension of Pascal language with first-class constructs to define
processes and monitors
– procedural/imperative language + process abstraction
– monitor as data structure encapsulating and enforcing mutual exclusion

and synchronization
• Process body specified as a procedure

– declaration of the process type
– dynamic creation of process instances

22

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

PROCESSES IN CONCURRENT PASCAL

23

type myProcess = process()
begin
 cycle

<process actions>
 end
end;

var proc: myProcess;

begin
 init myProcess();
end;

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

ADA
• Introduced at the end of 70ies / 80ies as the reference language for

(concurrent and sequential) programming inside US DoD
– for programming in-the-large (being high-level, structural programming

with OO elements, strong typing..)
– for concurrent programming, to develop critical and real-time systems

(such as aircraft controllers)
– Ada was named after the Countess Ada Lovelace (1815-1852), who is

often credited with inventing computer programming (actually based on
the work on the “Analytical machine” of Charles Babbage)

• Processes in Ada are called task
– task body specified as a procedure

• declaration of the task type and definition of the task body
• dynamic creation of task instances

– task entry for task communication
• operations served by tasks

• Ada is an international standard; the current version (known as Ada 2005) is
defined by joint ISO/ANSI standard (ISO-8652:1995), combined with major
Amendment ISO/IEC 8652:1995/Amd 1:2007.

24

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

TASK IN ADA

25

task <identifier> is
 <entry declarations>
end;

task body <identifier> is
 <local declarations>
begin
 <statements>
end <identifier>;

task Worker is
 entry DOTASK(T is Task)
end;

task body Worker is
 T: Task;
begin
 loop
 ...
 accept DOTASK(T);
 ...
 end loop;
end Worker;

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

COUNTER EXAMPLE IN ADA

26

with Ada.Text_IO;
use Ada.Text_IO;
procedure Count is
 N: Integer := 0;
 pragma Volatile(N)
 task type Count_Task;
 task body Count_Task is
 Temp: Integer;
 begin
 for I in 1..10 loop
 Temp := N;
 N := Temp + 1;
 end loop
 end Count_Task;
begin
 declare
 P,Q: Count_Task;
 begin
 null;
 end;
 Put_Line(“The value of N is “ & Integer’Image(N));
end Count;

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

ERLANG
• Functional language providing a native support for concurrent

programming based on processes and process asynchronous
communication through message passing
– developed in Ericsson since 1987 for building telecom applications
– along with ADA, it can be considered the most used and robust

concurrent programming language adopted by the industry
• BEAM concurrent virtual machine

– BEAM stands for Bogdan/Björn's Erlang Abstract Machine
– completely abstract / virtual notion of process

• not related to OS process or OS threads
– extremely efficient process management

• hundred of thousands processes can be created on a single host

27

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

ERLANG AS A FUNCTIONAL LANGUAGE
• An Erlang program describes a series of functions

– operators as special kind of functions
– each function uses pattern matching to determine which function to

execute
• variables start with upper-case

– no global variables

• Modules are used to package functions

28

fact(0) -> 1;
fact(N) -> N * fact(N - 1).

-module(math).
-export([fact/1]).
-export([fib/1]).

fact(0) -> 1;
fact(N) -> N * fact(N - 1);

fib(1) -> 1;
fib(2) -> 1;
fib(N) -> fib(N-1) + fib(N-2);

fib(1) -> 1;
fib(2) -> 1;
fib(N) -> fib(N-1) + fib(N-2).

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

ERLANG AS A FUNCTIONAL LANGUAGE
• Calling functions

• Compiling and executing programs (..is calling functions..)

29

Erlang (BEAM) emulator version 5.6.4 [source] [smp:2] [async-
threads:0] [kernel-poll:false]

Eshell V5.6.4 (abort with ^G)
1> c(math).
{ok,math}
2> Res = math:fact(15).
1307674368000

X = math:fact(100).

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

ERLANG AS A FUNCTIONAL LANGUAGE
• Tuple and list as primitive structured data structures

– besides atomic data structures (atoms), such as symbols, constants,
numbers and strings

• Tuples
– record-like ordered structure with a fixed number of elements

• e.g. Point = { point, 10, 20 }
– support for pattern matching

• e.g. {point, X, Y } = Point
– X is bound to 10 and Y to 20

• Lists
– to store a variable number of data items

• e.g. ThingsToBuy = [{ apples, 10 }, { pears, 6 }, { smirnoff, 2 }]
– head and tail notation: [H | T]

• e.g. ThingsToBuy = [{apples, X} | T]
– X is bound to 10 and T to [{ pears, 6 }, { smirnoff, 2 }]

30

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

ERLANG FOR CONCURRENT PROGRAMMING

• A process is a computational activity whose computational behaviour
is given by some specific function

• The spawn primitive to launch a process, getting its PID
– specifying the function module, function name and parameters

• Processes can communicate solely through message passing
– ! operator to send a message

– receive construct to receive a message, specifying a pattern

31

Pid = spawn(math, fact,[999]).

Pid ! Message

receive
 Pattern1 [when Guard1] -> Expression1;
 Pattern2 [when Guard2] -> Expression2;
 ...
end

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

A SIMPLE EXAMPLE

32

-module(area_server0).
-export([loop/0]).

loop() ->
 receive
 { rectangle, Width, Ht} ->
 io:format("Area of rectangle is ~p~n",[Width*Ht]),
 loop();
 { circle, R } ->
 io:format("Area of rectangle is ~p~n",[3.14159*R*R]),
 loop();
 Other ->
 io:format("I don't know what the area of a ~p is ~n",[Other]),
 loop()
 end. 20> c(area_server0).

{ok,area_server0}
21> Pid = spawn(fun area_server0:loop/0).
<0.79.0>
22> Pid ! {rectangle, 3, 4}.
Area of rectangle is 12
{rectangle,3,4}
23> Pid ! {circle,1}.
Area of rectangle is 3.14159
{circle,1}
24> Pid ! {triangle,1,4}.
I don't know what the area of a triangle is
{triangle,1,4

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

HOW DOES IT TAKE TO CREATE A PROCESS
(...WHEN PROCESSES ARE VIRTUAL...)

33

-module(processes).
-export([max/1]).

%% max(N)
%% Create N processes then destroy them
%% See how much time this takes

max(N) ->
 Max = erlang:system_info(process_limit),
 io:format("Maximum allowed processes:~p~n",[Max]),
 statistics(runtime),
 statistics(wall_clock),
 L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
 {_, Time1} = statistics(runtime),
 {_, Time2} = statistics(wall_clock),
 lists:foreach(fun(Pid) -> Pid ! die end, L),
 U1 = Time1 * 1000 / N,
 U2 = Time2 * 1000 / N,
 io:format("Process spawn time=~p (~p) microseconds~n",[U1, U2]).

wait() ->
 receive
 die -> void
 end.

for(N, N, F) -> [F()];
for(I, N, F) -> [F()|for(I+1, N, F)].

1> processes:max(20000).
Maximum allowed processes:32768
Process spawn time=5.5 (9.4) microseconds
ok

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

COUNTER EXAMPLE IN ERLANG

• Note the “everything is process” philosophy
– no shared memory, then a counter is a process...

34

-module(counter).
-export([start/0]).

start() -> loop(0).
loop(Sum) ->
 receive
 {inc} ->
 loop(Sum+1);
 {getValue, Pid} ->
 Pid ! {count_value, Sum},
 loop(Sum)
 end.

-module(counter_user).
-export([start/2]).

start(Counter,N) -> loop(Counter,0,N).

loop(_,N,N).
loop(Counter,I,N) ->
 Counter ! {inc},
 loop(Counter,I+1,N).

1> Pid = spawn(counter,start,[]),
 spawn(counter_user,start,[Pid,100)), spawn(counter_user,start,[Pid,100]).

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

PROCESSES IN MAINSTREAM LANGUAGES

• For the most part, mainstream languages - both procedural (like C)
and Object-Oriented (Java) - provide a support for the creation and
execution of processes by means of libraries
– without extending the language
– not completely true for Java

> Support for multi-threaded programming
– threads as implementation of the abstract notion of process

• also called “lightweight processes” by referring to OS “heavyweight
processes”

– not to be confused with the notion of process as defined in OS
• process as a programming in execution, with one or multiple control flows

(threads)

• Main examples
– multi-threaded programming in Java
– Pthread library for C/C++ language on POSIX systems

35

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

MULTITHREADED PROGRAMMING IN JAVA

• Java has been the first “mainstream” language providing a native
support for concurrent programming
– “conservative approach”

• the language is still ~purely OO, with no explicit construct for defining
processes (threads)

• introduction of some keywords and mechanisms for concurrency
– synchronized blocks, wait / notify mechanisms

• The abstract notion of process is implemented as a thread, with a
direct mapping onto OS support for threads
– thread defined by specific classes, so at runtime they are objects

36

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

THREADS IN JAVA
• Thread model

– a thread is defined by a single control flow, sharing memory with all the
other threads

• private stack (=> local variables, activation records for method invocation)
• common heap

– each Java program contains at least one thread, corresponding to the
execution of the main in the main class

– further threads can be dynamically created and activated with program
execution, running concurrently

• Thread (process) definition
– threads are objects of classes extending Thread class provided in

java.lang package
• multiple process types can be defined, as different classes extending

java.lang.Thread
• what kind of specialization is this??

• Thread (process) execution
– thread object can be instantiated and “spawned” by invoking the start

method, beginning the execution of the process

37

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

JAVA THREADS: SIMPLE EXAMPLE

38

class ClockVisualizer extends Thread {
 private int step;

 public ClockVisualizer(int step){
 this.step=step;
 }

 public void run(){
 while (true) {
 System.out.println(new Date());
 try {
 sleep(step);
 } catch (Exception ex){
 }
 }
 }
}

class TestClockVisualizer {
 static public void main(String[] args) throws Exception {
 ClockVisualizer clock = new ClockVisualizer(1000);
 clock.start();
 }
}

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

MULTITHREADED PROGRAMMING WITH
C/C++ & Pthreads
• Defined in the POSIX (Portable Operating System Interface) context

the Pthread (POSIX-thread) library provides a set of basic primitives
for multithreaded programming in C / C++
– the abstract notion of process is implemented as thread
– differently from Java, process body is specified by means of a procedure
– the standard defines just the interface / specification, not the

implementation (which depends on the specific OS)
• An implementation is available on every modern OS, including Solaris, Linux,

Tru64 UNIX, Mac OS X and Windows
• Basic API for threads creation and synchronization

• good tutorial: http://www.llnl.gov/computing/tutorials/pthreads/

39

Concurrent Languages & Machines SISCO LS - II Facoltà Ingegneria - Cesena 40

Pthread API: SOME FUNCTIONS
• Interface defined in pthread.h
• Two main data types

– pthread_t
• thread identifier data type

– pthread_attr_t
• data structure for specifying thread attributes

• Among the main functions
– thread creation (Fork)

• pthread_create(pthread_t* tid, pthread_attr_t*
attr, void* (*func)(void*), void* arg)

• pthread_attr_init(pthread_attr_t*)
– for setting up attributes

– thread termination
• pthread_exit(int)

– thread join
• int pthread_join(pthread_t thread, void
**value_ptr);

Concurrent Languages & Machines SISCO LS - II Facoltà Ingegneria - Cesena

AN EXAMPLE
• Creation of 5 threads running concurrently

41

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid)
{
 printf("\n%d: Hello World!\n", threadid);
 pthread_exit(NULL);
}

int main (int argc, char *argv[])
{
 pthread_t threads[NUM_THREADS];
 int rc, t;
 for(t=0; t<NUM_THREADS; t++){
 printf("Creating thread %d\n", t);
 rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
 if (rc){
 printf("ERROR; return code from pthread_create() is %d\n", rc);
 exit(-1);
 }
 }
 pthread_exit(NULL);
}

Concurrent Languages & Machines SISCO LS - II Facoltà Ingegneria - Cesena

RESEARCH LANDSCAPE

• Introducing higher-level first-class abstractions for organizing a large-
scale concurrent software systems (from 80ies...)
– actor-based models
– active-objects
– coordination models and languages
– agent-based models

42

Concurrent Languages & Machines SISCO LS - II Facoltà Ingegneria - Cesena

ACTORS
• Model proposed originally by Carl Hewitt in 1977 in the context of

Distributed Artificial Intelligence [HEW-77]
– adopted and further developed by Gul Agha & colleagues as a model

unifying objects and concurrency [AGH-96]
• Actor as unique abstraction

– autonomous entities, possibly distributed on different machines, executing
concurrently and communicating through asynchronous message passing

• no shared memory
• every actor has a mailbox

• First languages
– ACT family (ACT/1, ACT2, ACT/3)
– ABCL family (ABCL/1...ABCL/R3)

• Implemented as a pattern on top of existing languages
– many Java-based frameworks

43

Concurrent Languages & Machines SISCO LS - II Facoltà Ingegneria - Cesena

ACTORS IN ACT3

44

Concurrent Languages & Machines SISCO LS - II Facoltà Ingegneria - Cesena

ACTOR BASIC PRIMITIVES
• Only three primitives (actions) to compose actor behaviour

– send
• asynchronously sending a message to a specified actor
• it is to concurrent programming what procedure invocation is to sequential

programming
– create

• create an actor with the specified behaviour
• it is to concurrent programming what procedure abstraction is to sequential

programming
– become

• specify a new behaviour (local state) to be used by actor to respond to the
next message it processed

• gives actors a history-sensitive behaviour necessary for shared, mutable data
objects

45

Concurrent Languages & Machines SISCO LS - II Facoltà Ingegneria - Cesena

ACTIVE OBJECTS
• Integrating concurrency within the OO paradigm

– active + passive objects
– implicit thread creation + synchronization mechanisms

• Examples
– Languages with first-class support

• “Hybrid” language [NIE87]
– Active Objects as a pattern [LAV-96]

• can be implemented on top of sequential OO languages with a basic thread
support

46

Concurrent Languages & Machines SISCO LS - II Facoltà Ingegneria - Cesena

ACTIVE-OBJECT COMPONENTS

47

Concurrent Languages & Machines SISCO LS - II Facoltà Ingegneria - Cesena

AGENT-ORIENTED COMPUTING
• The notion of agent (and multi-agent system) has been introduced in

several research contexts, with different acceptations
– (distributed) artificial intelligence, complex systems modelling and

simulation, mobile technology, software engineering...
– agent-oriented computing

• introducing agent-orientation as a general-purpose programming paradigm
for developing software systems

• Basic abstractions
– agents

• autonomous entities designed to pro-actively do some kind of work,
encapsulating the logic and control of their activities

– goal-oriented / task-oriented behaviour
• interacting with their computational environment

– actions and perceptions
• interacting with other agents through some ACL

– asynchronous message passing

– agents environment
• target of agent actions and source of agent perceptions
• what can be used by agents to achieve their objective

48

Concurrent Languages & Machines SISCO LS - II Facoltà Ingegneria - Cesena

AMONG RECENT RESEARCH WORKS...
• Polyphonic C# [BEN-04]

– C# extension with new asynchronous concurrency abstractions, based
on the join calculus

• synchronous and asynchronous methods
• chord basic synchronization mechanism

– applicable both to multithreaded applications running on a single
machine and to the orchestration of asynchronous, event-based
applications communicating over a wide area network

• Map-reduce framework [DEA-04]
– software framework to support parallel computations over large (multiple

petabyte) data sets on clusters of computers
• simpA agent-oriented programming framework [RV-07]

– a framework on top of Java providing agent-oriented concepts to
program concurrent applications

49

SISCO LS - II Facoltà Ingegneria - Cesena Concurrent Languages & Machines

BIBLIOGRAPHY
• [HEW-77]

– C. Hewitt. Viewing Control Structures as Pattern of Passing Messages. Journal of
Artificial Intelligence, 8(3):323-364, 1977

• [AGH-86]
– Gul Agha. Actors: A model of concurrent computation in distributed systems. MIT

Press, 1986.
• [NIE-87]

– Oscar Nierstrasz. Active Objects in Hybrid. SIGPLAN Notices, 1987
• [LAV-96]

– R. Greg Lavender, Douglas C. Schmidt. Active Object An Object Behavioral
Pattern for Concurrent Programming. Proc.Pattern Languages of Programs, 1996

• [DEA-04]
– MapReduce: Simplified Data Processing on Large Clusters. Jeffrey Dean and

Sanjay Ghemawat. OSDI'04: Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA, December, 2004.

• [BEN-04]
– Nick Benton, Luca Cardelli and Cédric Fournet. Modern Concurrency Abstractions

for C#. ACM Transactions on Programming Languages and Systems (TOPLAS)
26(5) pp.269-804. September 2004.

• [RV-07]
– A. Ricci and M. Viroli. simpA: An agent-oriented approach for prototyping

concurrent applications on top of Java. 5th International Conference, Principles
and Practice of Programming in Java (PPPJ 2007), pages 185–194, PPPJ 2007

50

